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Abstract
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and
is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference
on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step
reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory
neural network based on RNN with a gate attention mechanism. We evaluate IMA-GloVe-GA on three
datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show
DeepLogic with gate attention can achieve higher test accuracy than DeepLogic and other RNN baseline
models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the
rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths
in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more
examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-
Plus can increase the model’s performance on examples requiring deeper reasoning depths. The source
code and data are available at https://github.com/Strong-AI-Lab/Multi-Step-Deductive-Reasoning-Over-
Natural-Language.
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1. Introduction
Symbolic reasoning and deep learning remain two cornerstones in AI with profound yet di-
vergent consequences. Indeed, symbolic approaches, equipped with various logic languages
for knowledge representation and inference, have been the dominant paradigm in problem
solving and reasoning. Deep learning approaches, through superior ability to capture rich
semantic features from complex signals, triumph in tasks that usually require more intuitive and
automatic judgements. A growing interest in AI amounts to harnessing the power from both
schools, while mitigating each other’s weaknesses. First, symbolic reasoning were suitable only
when the task at hand, along with all contextual knowledge, can be encoded by rigorous and
structured logic expressions, which is itself a formidable obstacle. Then, deep learning relies
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Table 1
Logic programs written in Prolog with different reasoning depths. These examples were sampled from [1].

1 Step 2 Steps 3 Steps
𝑔(𝐿, 𝑆) :- 𝑥(𝑆, 𝐿). 𝑥(𝐺, 𝐵) :- 𝑘(𝐺, 𝐵). 𝑝(𝑃, 𝑅) :- 𝑏(𝑅, 𝑃).
𝑥(𝑎, 𝑚). 𝑘(𝑍 , 𝑉 ) :- 𝑔(𝑍 , 𝑉 ). 𝑏(𝐴, 𝐿) :- 𝑎(𝐴, 𝐿).
𝑦(𝑋) :- 𝑟(𝑋). 𝑔(𝑘, 𝑘). 𝑎(𝑊 , 𝐹) :- 𝑣(𝐹 ,𝑊 ).
𝑝(ℎ). 𝑒(𝑘, 𝑠). 𝑣(𝑡 , 𝑖).
𝑠(𝑡 , 𝑣). 𝑝(𝐿, 𝐺) :- 𝑣(𝐺, 𝐿). 𝑙(𝐷) :- 𝑡(𝐷).
? 𝑔(𝑚, 𝑎). 1 ? 𝑥(𝑘, 𝑘). 1 ? 𝑝(𝑡, 𝑖). 1
? 𝑔(𝑎, 𝑚). 0 ? 𝑥(𝑘, 𝑠). 0 ? 𝑝(𝑖, 𝑡). 0

on neural networks which have not demonstrated the ability to perform iterative, multi-step
reasoning, which has a gap in making them suitable tools for reasoning. Towards a trainable
reasoner that is able to perform complex real-world reasoning tasks, it is important to (1)
facilitate end-to-end reasoning by enabling multi-step reasoning and (2) bypass logic-based
knowledge representation and make inferences directly from natural language inputs. The
goal of this paper is to explore possibilities around these two objectives. We now present the
research background in detail.
Logic programs: Reasoning with logic programs is one of the key questions in AI. Here a

knowledge base consists of a number of rules, i.e., (universally quantified) implications where
the antecedent is a conjunction of literals and the consequent is an atom, and observed facts,
i.e., ground atoms. The task would specify a question which is another ground atom and asks if
the question logically follows from the knowledge base. Table 1 illustrates several archetypal
examples of reasoning tasks in logic programs (as in [1]). The rules, facts, and questions are
expressed in predicate logic where variables are capitalised (such as 𝐿, 𝑆) and constants are in
small case (such as 𝑎, 𝑚). The three columns show logic programs of different reasoning depths.
For example, the first column contains rule “𝑔(𝐿, 𝑆) :- 𝑥(𝑆, 𝐿)”, fact “𝑥(𝑎, 𝑚)”, and two questions
(starting with ?) at the bottom rows. Semantically, the rule expresses that 𝑔(𝐿, 𝑆) holds whenever
𝑥(𝑆, 𝐿) holds for any constants 𝐿 and 𝑆. From 𝑥(𝑎, 𝑚), a simple unification followed by a 1-step
forward chaining inference derives 𝑔(𝑚, 𝑎), which answers the first question positively [2]. On
the other hand, the second column contains rules “𝑥(𝐺, 𝐵) :- 𝑘(𝐺, 𝐵)” “𝑘(𝑍 , 𝑉 ) :- 𝑔(𝑍 , 𝑉 )”, and
fact “𝑔(𝑘, 𝑘)”. It takes two forward chaining steps to establish “𝑥(𝑘, 𝑘)” and thus has depth 2.

DeepLogic: The ability to conduct iterated inference for multi-step reasoning tasks such
as the ones above is viewed as an unchallenged strength of rule-based inference algorithms.
Yet recent advancements in deep learning techniques have challenged this view. DeepLogic,
introduced in [1], is an RNN-based neural network for solving reasoning tasks of logic programs.
The model encodes logic programs at the character level and is trained on 12 different types of
logic programs, without explicitly applying any symbolic inference algorithm. Through a series
of experiments, DeepLogic has demonstrated abilities to handle tasks that require multi-step
reasoning (up to a certain small depth).

Reasoning in natural language: The abilities demonstrated by DeepLogic has given hope
for similar neural networks to perform more general reasoning tasks. In particular, neural
network’s key strengths involve the ability to extract rich syntactical and semantic feature from



free-flowing texts, expressed in natural language. Indeed, PARARULES, introduced in [3], is
a multi-step reasoning dataset expressed in natural language1. Each sample in PARARULES
resembles a logic program in the style of Table 1, except that the knowledge base (rules and
facts) and questions are expressed in natural language (See Figure 2). We thus aim to explore
end-to-end neural-based multi-step reasoners over natural language using PARARULES as a
testing platform, while addressing three issues:

(1) Existingmodels, includingDeepLogic and other RNN-based baselinemodels, have room for
improvement in terms of their reasoning abilities over natural language. The vanilla GRU/LSTM
model might not handle well the multi-step reasoning tasks over logic programs from [1] and
natural language from Table 4. DeepLogic shows that with the help of GRU and dot-product
attention, the model can learn to reason over logic programs from [1] and natural language
from Table 4. However, DeepLogic does not show the best performance on Table 4. Dynamic
memory network with gate attention has shown remarkable performance on the bAbI deductive
reasoning task [4]. Our first contribution is to introduce IMA-GloVe-GA, an iterative neural
inference network that combined DeepLogic with gate attention, for multi-step reasoning tasks.
Our model achieves the best test accuracy among the RNN-based models on the PARARULES
dataset. The test accuracy of our model is on average 7.8 percentage points higher than that of
DeepLogic (from Table 4. IMA-GloVe-GA is our model, and IMA-GloVe is from DeepLogic).
(2) Out-of-distribution (OOD) generalisation means the test set has a distribution that is

unknown or different from the distribution of the training set. In multi-step reasoning tasks,
OOD generalisation means that (1) the model is able to reason for cases that have a depth
greater than the depths of the instances it was trained on, and (2) the model is able to handle
samples with shuffled rules from the training instances. Shuffling here means permuting the
rules in the knowledge base. Being able to handle OOD is a crucial indicator of a model’s
reasoning capabilities. In [3], pretrained RoBERTa-Large [5] achieves good performance on the
PARARULES dataset (See Table 4). However, it is unclear whether the model indeed performs
multi-step reasoning to the extend that it handles OOD test examples. Through a series of
experiments, we show that RoBERTa-Large overfits and fails to generalise on examples with
shuffled rules. This demonstrates that RoBERTa-Large over-utilises the ordering of rules. On
the other hand, our IMA-GloVe-GA outperforms RoBERTa-Large and DeepLogic, when the
models are trained on a dataset with fewer examples and unshuffled rules and are tested on a
larger dataset with more relations and entities and shuffled rules (See Table 5).
(3) CONCEPTRULES V1 and V2 [6, 7] are natural-language-based multi-step reasoning

datasets. Similar to PARARULES, the CONCEPTRULES datasets also contain samples that
require deep reasoning steps (depth up to 3), and thus are suitable alternatives when evaluating
models’ abilities for multi-step reasoning. A common issue with all three existing datasets
(PARARULES, CONCEPTRULES V1 & V2), however, lies in their unbalanced distributions over
reasoning depths. They have much fewer examples that require deep reasoning (depth ≥ 2)
than examples that require shallow reasoning (See Table 2). To address the issue of depth
imbalance, we develop a large dataset on multi-step reasoning over natural language called
PARARULE-Plus that has a balanced distribution over different reasoning depths. The test
accuracy on deeper depths and extra out-of-distribution examples is greatly improved when we

1https://allenai.org/data/ruletaker



add PARARULE-Plus in the training process (Table 7 and 8). The experiment result also verifies
the necessity of our dataset.

2. Related Work
Systems that integrate deep learning techniques with symbolic reasoning are called neuro-
symbolic systems [8]. Many such neural reasoning models can be viewed as logical program
interpreters. Neural-symbolic machines (NSM) [9] and neural program interpreters (NPI) [10]
are such examples. NSM describes a framework that consists of a seq-to-seq neural programmer,
a Lisp interpreter to execute the program, and iterative maximum likelihood to train the model;
NPI presents an RNN to learn and represent logic programs. NPI is designed for compositional
programs, including addition, sorting, and canonicalising 3D models. Reinforcement learning
has also been applied to learn Prolog-like algorithms [11]. Distributed representations of
predicates and constants for traditional symbolic reasoning engines can be learned by neural
theorem provers [12]. In our method, end-to-end neural networks learn representations at word
level and learn to reason with natural language.

Several reasoning datasets have been introduced for natural language-based reasoning tasks
which can be used to evaluate and compare neural models’ reasoning capabilities. Roughly
speaking, the datasets can be categorised as “shallow reasoning” and “deep reasoning” tasks.
The first category includes Task 15 in the bAbI dataset v1.0 [4], conditional probes in [13],
and “multi-hop” reasoning dataset HotpotQA [14]. In these datasets, the reasoning instances
usually do not go beyond 2-steps. A typical example in the bAbI dataset would be “Mouse is
afraid of cats. Alice is a mouse. What is Alice afraid of? A: cats.” and a typical example in the
conditional probes of [13] is “If A has visited B, then C has visited D. A visited B. Has C visited
D? A: Yes.” The main difference of HotpotQA with the other two is that the rules in HotpotQA
are embedded in sentences. In HotpotQA, a sentence contains both factual information and
rule information. Figure 1 shows a 2-hop example from HotpotQA dataset.

The second category contains instances where the reasoning depth may go beyond 2. These
datasets are PARARULES [3], CONCEPTRULES V1 [6] and CONCEPTRULES V2 [7]. Examples
in PARARULES may require reasoning depth as deep as 5, while CONCEPTRULES V1 and V2
require depths as deep as 3. PARARULES differs from the three above in the following senses:
First, solving the problems in bAbI Task 15 requires implicit rules. For example, “Alice goes to
the park. Peter goes to the restaurant. Where is Alice? A: park” requires the rule “A moves to B
→ A at B”. Contrary to the bAbI tasks, PARARULES requires reasoning with explicit rules that
is more akin to logic programming. Contrary to the HotpotQA dataset, in PARARULES, the
facts and rules are separate. One of the main issues of PARARULES, CONCEPTRULES V1 and
CONCEPTRULES V2 is the unbalanced distribution over reasoning depths. The datasets have
more examples of shallow reasoning (Depth<2) than that of deep reasoning (Depth ≥ 2).

Other work uses Transformer-based pretrained language models to perform tasks that require
multi-step reasoning over natural language. One such work is [3] which demonstrated that
the pretrained language models (RoBERTa [5], and BERT [15]) can be used to solve natural
language-based reasoning tasks. However, it is unknown whether these pretrained language
models would perform better than neural networks specifically designed for these tasks. One
of our goals is to compare them against models based on iterative memory mechanism which
have been shown to perform well on multi-step reasoning tasks over logic programs.



(Paragraph A:) LeBron James won the 2015-2016 NBA Championship.
(Paragraph B:) LeBron James is a basketball player for Cleveland Cavaliers.
(Question:) Which team did the players who won the 2015-2016 NBA Championship
play for? (Answer:) Cleveland Cavaliers.

Figure 1: A depth-2 example from HotpotQA [14].

3. Problem Definition
We consider multi-step deductive reasoning over natural language. Each sample is a triple
(𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝐴𝑛𝑠𝑤𝑒𝑟) where 𝐶𝑜𝑛𝑡𝑒𝑥𝑡 contains natural language implications (rules) and
observations (facts) resembling a knowledge base in logic programs, 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 is a natural
language sentence expressing an atomic fact, and 𝐴𝑛𝑠𝑤𝑒𝑟 ∈ {true, false} tells whether 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛
naturally follows from 𝐶𝑜𝑛𝑡𝑒𝑥𝑡. In this regard, (𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝐴𝑛𝑠𝑤𝑒𝑟) is a natural-language
counterpart to a logic program. Figure 2 illustrates several examples in the PARARULES dataset
[3]. The rules are expressed in phrases such as “If A, then B” and “All A are B”, and facts are
represented using propositions such as “A is happy” and “B is funny”.

Multi-step reasoning requires multiple reasoning steps to answer a question. We define the
reasoning depths (or steps) as the number of rules required to answer a question. For example,
from “Bob is smart.”, it takes only one rule “All smart people are talented.” to answer “Bob is
talented?”. This example is therefore considered as depth-1 reasoning. PARARULES has seven
sub-datasets, each is named by the greatest depth of reasoning required to deduce which related
facts support its question: depths 𝐷 = 1, 𝐷 = 2, 𝐷 = 3, 𝐷 ≤ 3, 𝐷 ≤ 3 + NatLang, 𝐷 ≤ 5, 𝐷 ≤ 5 +
NatLang, respectively. Here, NatLang means the extra out-of-distribution examples, containing
about 2,000 examples. These examples include questions of different depths. They were created
by paraphrasing examples using crowdsourcing. Crowdworkers rewrite part of the synthetic
dataset using phrases such as “often”, “rather resembles”, and “a bit”. For instance, sentences
like “Charlie is green, but often kind” and “Harry seems to be round” are more natural to a
human reader.

(Input Facts:) Anne is rough. Anne is blue.
(Input Rules:) Rule 1: Cold people are rough.
Rule 2: Rough people are young.
Rule 3: If Anne is green then Anne is blue.
Rule 4: If someone is rough and nice then they are green.
Rule 5: If someone is rough and furry then they are blue.
Rule 6: All young people are cold.
Q1: Anne is cold. True/False? [Answer: T]
Q2: Anne is not young. True/False? [Answer: F]
Q3: Anne is not green. True/False? [Answer: T]

Figure 2: Examples from PARARULES [3]. The context (facts + rules) and the question are grouped as the input,
and the output is a Boolean value indicating if the question is true or false, given the context.

While PARARULES separates fact and rule explicitly, CONCEPTRULES V1 and V2 [6, 7]
put fact and rule together. Each of CONCEPTRULES V1 and V2 has a simplified and a full
version. Both CONCEPTRULES V2 (simplified) and CONCEPTRULES V2 (full) include negation
as failure (NAF) and derivable cases. Derivable means answers can be derived from context
and question. Negation as failure means if we cannot find facts or rules to derive the answer,



we assume it is false. The different versions of CONCEPTULES are summarised in Table 3.
In CONCEPTRULES V2 (full), the rulesets are randomly shuffled and random textual noise
is added. Both CONCEPTRULES V1 and V2 contain examples with reasoning depths from
0 to 3. CONCEPTRULES V1 does not label the reasoning depth for each example, while
CONCEPTRULES V2 contains the labels.

4. Method
This section describes a word-level RNN-based iterative neural network. The general idea of
the model is borrowed from DeepLogic. DeepLogic is an end-to-end iterative memory attention
network trained on symbolic logic programs. For details about DeepLogic, we refer the reader
to the original paper [1]. The main differences in the work presented here are that we adapt the
DeepLogic model to learning logic expressed in natural language, and the model operates at the
word-level instead of character-level. The main architecture of the iteration framework is the
same as DeepLogic (shown in Figure 3).

Word-level embedding. The input representation layer of the network takes a sequence
of words concatenated from two sentences 𝑤𝐶

0 , … , 𝑤𝐶
𝑚 and 𝑤𝑆

0 , … , 𝑤𝑆
𝑛 for context and question

respectively.
ℎ𝑡 = GRU (GloVe [I𝐶∶∶𝑡 + I𝑆∶∶𝑡] , ℎ𝑡−1) (1)

The context I𝐶 and the question I𝑆 at time step 𝑡 are embedded by GloVe[I𝐶∶∶𝑡 + I𝑆∶∶𝑡], the GloVe
[16] word vector representation. GloVe is a set of large-scale pretrained word vectors. We
use GloVe instead of the character-level embedding in DeepLogic. In DeepLogic, the logic
programs are expressed by symbols using English letters and other characters. However, the
logic programs in our settings are expressed in natural language. Representing the programs
using word embeddings can better capture the semantic information of natural language. From
the other perspective, GloVe uses ratios of co-occurrence probabilities to enlarge or narrow the
relationship between words of different or similar meanings [16]. At the same time, Word2Vec
uses a local n-gram window to extract information. Furthermore, GloVe achieves better results
faster than the other word-level embeddings like Word2Vec on word analogy task [16]. The
dimension of the GloVe embedding we used is 1 × 100. The dimension of a sentence embedding
concatenated with 5 words is 5 × 100. The sentence embedding is processed by the gated
recurrent unit (GRU) [17]. Hidden state at time 𝑡 is denoted as ℎ𝑡. The context vector is
C ∈ ℝ𝑅×𝐿×𝑑, where 𝑅 is the number of rules, 𝐿 is the number of words in the rules and 𝑑 is the
dimension of the embedding.
Iteration. Each iteration step computes the new state based on the current state and rules.
In our model, gate attention is trained to decide how much of the state information will be
reserved from the current state and the previous state. The process is iterated for 𝑇 steps (𝑇 is
pre-determined). The initial state is denoted as 𝑠0 = 𝑞, where 𝑞 is the question vector and 𝑞 ∈ ℝ𝑑.
The 𝑖-th rule is denoted as 𝑟𝑖. 𝑊 and 𝑈 are the learnable weight matrices. 𝑏 is the bias vector.

𝑤 𝑡
𝑖 = [𝑠𝑡; 𝑞; 𝑟𝑖; (𝑠𝑡 − 𝑟𝑖)

2 ; 𝑠𝑡 ⊙ 𝑟𝑖] (2)

𝛼 𝑡
𝑖 = 𝜎(𝑊 (𝑈𝑤 𝑡

𝑖 + 𝑏) + 𝑏) (3)

At time step 𝑡, we compute a feature vector 𝑤 𝑡
𝑖 using the current state 𝑠𝑡 ∈ ℝ𝑑, question vector

𝑞 and a rule 𝑟𝑖. In (2), [; ] is a concatenation operator. We use a feed-forward network to compute



Figure 3: The iterative neural cell with word-level embeddings as input. Questions and contexts are represented
as word embeddings, and then attentions are computed to pick up related rules. Gate attention is used to compute
the weighted sum of the Unifier GRU outputs. Then the weighted sum updates the state for the next iteration.

the final attention vector 𝛼 𝑡𝑖 (3), where 𝜎 is a sigmoid function. For experimental comparison,
softmax is used for our IMA-GloVe-GA and another baseline model IMASM-GloVe to compute
the attention vector 𝛼 𝑡𝑖 , instead of the sigmoid function.

ℎ𝑡𝑖𝑗 = GRU (C𝑖𝑗, ℎ𝑡𝑖(𝑗−1)) (4)

𝑠𝑡+1 =
𝑅

∑
𝑖
𝛼 𝑡
𝑖ℎ𝑡𝑖𝐿 (5)

We use another recurrent neural network to process the context embedding C𝑖𝑗. The initial
hidden state ℎ𝑡𝑖0 = 𝑠𝑡, where 𝑠𝑡 is the current state. For each rule, the new hidden state ℎ𝑡𝑖𝑗 is
computed by (4). In the end, the new state 𝑠𝑡+1 is computed as a weighted sum of the final
hidden states in (5). The Unifier GRU learns the unification between pronouns (variables) and
nouns (constants).
Gate attention. Dynamic memory network+ [18] achieved 100% test accuracy by using gate
attention on the bAbI deductive reasoning task (Task-15). However, Task-15 is not multi-step
deductive reasoning as considered in our experiment. Dynamic memory network with gate
attention was shown to perform better than the one with the traditional GRU on bAbI tasks
[18]. Although gate attention can perform well on Task-15, it is worth exploring applying an
iterative neural network with gate attention to multi-step deductive reasoning. This inspired us
to integrate gate attention with DeepLogic which is an iterative neural inference network for
multi-step reasoning. We use gate attention to replace dot-product attention, and then update
the GRU utilizing the output of gate attention. Gate attention can be seen as one of variety
solution from gate mechanism and attention. There are two main existing work related to gate
attention. The first one is gate mechanism. The gate mechanism (forget gate in LSTM [19]) is
designed to address the issue of forgetting in long and short term memory for recurrent neural
network. The other one is gate mechanism and attention that DeepLogic shows that with the
help of GRU and dot-product attention, the model’s performance on the multi-step reasoning
tasks can improve a lot from pure GRU without adding dot-product attention. However, in
DeepLogic, the dot-product attention is added above on GRU. For each iteration, the attention
is used to compute a new state based on the embeddings of the context and question with
the previous time stamp state, while the gate in GRU is not specifically trained to keep the



useful information with multi-step reasoning. Then we want to use the gate attention to update
the gate with attention-enhanced information from context and question in order to improve
multi-step reasoning. By replacing the attention vector (4) with gate attention 𝑔 𝑡𝑖 (6), the gate
attention is used to update the internal state for GRU as in (7).

𝑔 𝑡
𝑖 =

exp (𝑊 (𝑈𝑤 𝑡
𝑖 + 𝑏) + 𝑏)

∑𝑅
𝑘=1 exp (𝑊 (𝑈𝑤 𝑡

𝑘 + 𝑏) + 𝑏)
(6)

ℎ𝑖 = 𝑔 𝑡
𝑖 ∘ ℎ̃𝑖 + (1 − 𝑔 𝑡

𝑖) ∘ ℎ𝑖−1 (7)
5. The Datasets
To investigate whether end-to-end neural networks designed for symbolic logic reasoning can
be adapted to do multi-step deductive reasoning in natural language, we evaluated the models
on PARARULES [3], CONCEPTRULES V1 [6], and CONCEPTRULES V2 [7] datasets that require
various depths of reasoning. The main difference between the existing datasets used to evaluate
DeepLogic and the multi-step natural language reasoning datasets is that the former are based
on logic programs like the examples in Table 1, each predicate is represented by a string of
symbols and characters. However, natural language is much more diverse and expressive.
Both PARARULES and CONCEPTRULES are synthetically generated datasets. PARARULES
also includes examples with sentences paraphrased by humans. These examples are more
diverse in language and more challenging for the model. Furthermore, to address the issue
of depth imbalance in the current multi-step reasoning datasets, we develop a new dataset
called PARARULE-Plus, a large multi-step reasoning dataset over natural language. The dataset
includes examples of four reasoning depths, from 2 to 5. There are around 100,000 samples for
each depth and nearly 400,000 samples in total. The detailed information about PARARULE-Plus
can be found in Table 2 and Appendix.

6. Experiments
We experiment with three variants of DeepLogic. The iterative memory attention (IMA) model
is adopted from DeepLogic. IMASM is similar to IMA, except that IMASM uses softmax rather
than sigmoid when computing attention scores. We also test three baseline models from the
bAbI leaderboard: Long short-term memory (LSTM) [20] (The baseline method on bAbI dataset),
dynamic memory networks (DMN) [21] (100% test accuracy on bAbI), and memory attention
control networks (MAC) [22] (A classical method using memory network). We use GloVe [16] as
the word vector representation for the baseline methods, including IMA-GloVe, IMASM-GloVe,
MAC-GloVe, DMN-GloVe, and LSTM-GloVe. Our IMA-GloVe-GA uses gate attention instead of
the dot-product attention in the IMA-GloVe model.

We train the models on PARARULES, incorporating all reasoning depths (Depth=0, Depth=1,
Depth= 2, Depth=3, Depth=5) and the examples paraphrased by humans (NatLang). We set the
random seed to 0. We train the models using the Adam [23] optimiser for 30 epochs. After each
epoch, the data is reshuffled, and the rules in the context are reshuffled for each mini-batch.
The batch size is 32. The maximum iteration depth is set to 4. The initial learning rate for
Adam2 is 1e-02. The latent dimension 𝑑 for GRU is set to 64. The loss function is binary
cross entropy because the task is a binary classification problem. The evaluation measure is
accuracy. It is computed as accuracy = 𝑛correct/𝑛total, where 𝑛correct is the number of correctly
classified examples and 𝑛total is the total number of examples. We evaluate the Transformer

2Keras Optimizers, https://keras.io/api/optimizers/



baseline model (RoBERTa-Large) from FAIRSEQ [24] that was included the original paper that
introduced PARARULES [3]. We follow the official script3 to fine-tune the model, we use the
same hyperparameter in [24] to fine-tune RoBERTa-Large on PARARULES. We use the initial
learning rate of 1e-05, and we use 16 as the batch size. We conduct all experiments using the
NVIDIA 460.84 Linux Driver. The CPU version is Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
and 16 cores. The CUDA version is 11.2 and a Quadro RTX 8000 with 48 GB GPU memory is
used for our experiments.
Experimental Results: Table 4 shows the results of the RNN-based models on test sets

that require different reasoning steps. Unless otherwise stated models are trained on the entire
training set with all reasoning depths. The first horizontal row denotes test sets with specific
reasoning depth(s), and the second horizontal row denotes the number of test samples. We find
that our IMA-GloVe-GA and RoBERTa-Large achieve the 2nd and 1st best results. These two
models also achieve the 2nd and 1st best results in the test set with additional human-rewritten
examples (+NatLang), showing a better generalisation performance and robustness. We find that
by adding gate attention the test accuracy improved over IMA-GloVe in all cases. The results
support that gate attention can be more effective than dot-product attention on examples that
require multi-step reasoning. IMA-GloVe and IMASM-GloVe obtained better performance than
the other RNN-based baseline models. We speculate that the dot-product attention enhances
the learning and representation between context and question. In addition, the vanilla LSTM
fails to converge in all those cases. We get similar results as reported in DeepLogic [1] that the
vanilla GRU/LSTM failed on the multi-step reasoning over logic programs. A possible reason
is that the vanilla LSTM is more sensitive to hyperparameter tuning. It is harder to train to
converge than the other models.

The results shown in Table 4 compare the performances of the IMAmodels based on the GloVe
word embeddings and the pretrained RoBERTa model on the same test sets of different reasoning
depths. We find that by adding gate attention the test accuracy improved over IMA-GloVe in all
cases. The results support that gate attention can be more effective than dot-product attention
on examples that require multi-step reasoning. We also find that the pretrained RoBERTa model
achieves better results in all of the cases. A possible reason is that our model is trained from
scratch without any large-scale pretraining. However, our model can perform better than the
other baselines without any pretraining.

Table 5 shows the results on CONCEPTRULES V1 (simplified) and CONCEPTRULES V1 (full).
The second column is the training set CONCEPTRULES V1 (simplified or full). The last two
columns show test accuracy on CONCEPTRULES V1 (simplified or full) test set. For example,
in the first row, we train IMA-GloVe on the simplified version of the training sets, and then
test on different test sets. We find that IMA-GloVe-GA (with gate attention) performs better
than IMA-GloVe in all cases. In contrast, the pretrained RoBERTa model only achieves high
performance in the simplified test set when it is trained on the simplified training set. It indicates
that the pretrained RoBERTa overfits CONCEPTRULES V1 (simplified) since the rules are not
shuffled. Most likely it learns spurious relations in the training data and fails to generalise on
test examples with shuffled rules.

Table 6 shows results on CONCEPTRULES V2. We select the four models used in Table 5, and

3FAIRSEQ, https://github.com/pytorch/fairseq



respectively select data of different depths in CONCEPTRULES V2 (full) as the training data. For
example, Mod3 represents a model trained on examples with depth of 3. Mod0123 represents a
model trained on examples with depth of 3 and less. Each row of the table represents a test
set of a specific reasoning depth. We find that the IMA-based model achieves better results in
almost all cases. The pretrained RoBERTa model does not outperform the IMA-based models in
all cases. We find that when the model is only trained on examples with reasoning step of 1,
the test accuracy dropped as we increase the reasoning steps in the test set. However, the drop
in performance is not as great as we expected for the IMA-based models. This shows that the
IMA-based models generalise better on out-of-distribution test examples. A possible reason why
models achieve higher test accuracies on CONCEPTRULES V2 (full) is that CONCEPTRULES
V2 has much more training data compared to PARARULES, from Table 2.

Table 7 shows the results of fine-tuning RoBERTa-Large on datasets with different reasoning
depths and testing on test sets of various reasoning depths. Depth≤2 means the model is trained
on the dataset with depths no larger than 2. Depth≤3+NatLang represents the model that is
trained on the dataset with depths no larger than 3 and extra examples paraphrase by humans.
The models trained on the datasets with shallow depths have lower test accuracies on test sets
that require deeper reasoning depths. We find that adding training examples that require deeper
reasoning steps for Mod0123 improves the results on the test sets with deeper reasoning steps
(e.g. Mod0123Nat vs. Mod0123, and Mod012345 vs. Mod0123). Additionally, we find that adding
the examples paraphrased by humans improves the performance on test examples with deep
reasoning steps and human-paraphrased test examples.

Table 8 shows the results of fine-tuning RoBERTa-Large on the datasets found in Table 7
and our PARARULE-Plus. The addition of PARARULE-Plus during the fine-tuning improves
the performance on the examples that require more reasoning steps. The yellow background
shows the improvement over the test accuracy reported in Table 7, and the bracket contains
the magnitude of the improvement. The bold numbers indicate the highest test accuracy on
corresponding test sets. The results support that our PARARULE-Plus addresses the depth
imbalance issue of the current datasets and the addition of it during training improves the
model’s generalisation on the examples that require deeper reasoning steps.

7. Conclusion
We provide insights into an RNN-based iterative memory model that incorporates gate attention
on multi-step reasoning over natural language. Instead of using the original GRU and dot-
product attention, we integrate gate attention to update hidden states. The experiment results
show themodel with gate attention achieves generally better performance than the original RNN-
based iterative-memory model with dot-product attention and other RNN-based models. The
performance of our model is comparable or better than the much larger and pretrained RoBERTa-
Large in some scenarios. Furthermore, our model shows better out-of-distribution generalisation
performance than the pretained RoBERTa. To address the issue of depth-imbalance in the
existing datasets on multi-step reasoning over natural language, we develop a large-scale
multi-step reasoning dataset called PARARULE-Plus, with more examples of deep reasoning
depths than previous datasets. We find that the performance of the models in our experiments
improves when we add PARARULE-Plus in the training, especially on examples that require
deeper reasoning depths and extra out-of-distribution examples.
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8. Appendix

Following the closed-world assumption, we use the entities from the PARARULES which
includes mainly PEOPLE and ANIMALS. We also consider negation, so there are 4 different
scenarios in each depth for each category: PEOPLE with negation in the rules, PEOPLE without
negation in the rules, ANIMALS with negation in the rules and ANIMALS without negation in
the rules. All of the questions can be derived from the contexts and rules. If a question cannot
be matched directly from the context, then it can be derived using rules. For the ANIMALS,
we consider 14 different animal entities (“the bald eagle”, “the tiger”, “the bear”, “the lion”, “the
wolf”, “the crocodile”, “the dinosaur”, “the snake”, “the leopard”, “the cat”, “the dog”, “the mouse”,
“the rabbit”, “the squirrel”), 7 different animals relationships (“is”, “likes”, “chases”, “needs”,
“visits”, “attacks”, “sees”), and 28 different animals attributes (“big”, “strong”, “awful”, “fierce”,
“heavy”, “horrible”, “powerful”, “angry”, “furry”, “small”, “cute”, “lovely”, “beautiful”, “funny”,
“dull”, “rough”, “lazy”, “slow”, “sleepy”, “boring”, “tired”, “reckless”, “kind”, “quiet”, “round”,
“nice”, “smart”, “clever”). For the PEOPLE, we consider 9 different entities (“Anne”, “Alan”, “Bob”,
“Charlie”, “Dave”, “Erin”, “Harry”, “Gary”, “Fiona”), 1 relationship (“is”) and 20 people attributes
(“wealthy”, “smart”, “nice”, “quiet”, “kind”, “poor”, “dull”, “rough”, “bad”, “sad”, “short”, “thin”,
“small”, “little”, “big”, “strong”, “high”, “old”, “young”, and “huge”).



Require: Type of dataset: animal/people, add negation rule or not: Yes/No,
reasoning depth 𝑑 ∈ 2, 3, 4, 5, animal name list = [’the bald eagle’, ’the tiger’, ’the bear’,
’the lion’, ’the wolf’, ’the crocodile’, ’the dinosaur’, ’the snake’, ’the leopard’, ’the cat’,
’the dog’, ’the mouse’, ’the rabbit’, ’the squirrel’],
people name list = [’Anne’, ’Alan’, ’Bob’, ’Charlie’, ’Dave’, ’Erin’, ’Harry’, ’Gary’, ’Fiona’],
animal relation list = [’is’, ’is not’, ’likes’, ’chases’, ’needs’, ’visits’, ’attacks’, ’sees’],
people relation list = [’is’, ’is not’], animal attribute list = [’kind’, ’quiet’, ’round’, ’nice’,
’smart’, ’dull’, ’rough’, ’lazy’, ’slow’, ’sleepy’, ’furry’, ’small’, ’cute’, ’lovely’, ’beautiful’,
’big’, ’strong’, ’awful’, ’fierce’, ’heavy’], people attribute list = [’big’, ’strong’, ’high’,
’huge’, ’short’, ’thin’, ’small’, ’little’, ’wealthy’, ’smart’, ’nice’, ’quiet’, ’kind’, ’poor’, ’dull’,
’rough’, ’bad’, ’sad’, ’old’, ’young’] total_list = []
for reasoning depth 𝑑 in 2,3,4,5 do

item_list = randomly select 4 animals/people name from animal/people name list

for index in 𝑟𝑎𝑛𝑔𝑒(0, 𝑙𝑒𝑛(𝑖𝑡𝑒𝑚_𝑙 𝑖𝑠𝑡)) do
item, item_1, item_2, item_3 = item_list[0], item_list[1, item_list[2], item_list[3]
random shuffle animal/people relation list
if add negation rules == ”No” then

context, question, label = load the template and fill item, item_1, item_2, item_3
to the subject or object in the template, and we select one of the elements from
the animal/people relation list as the verb. For some facts, we add an item,
item_1, item_2, item_3 as the subject, and one of the elements from the animal/
people attribute list as the object to generate a dataset that only includes the
depth = 𝑑, which means all questions have the same number of rules to derive
the answer.

else
context, question, label = load the template, the template is similar to the above,
but add a negation(not) in any rule to generate a dataset which only includes the
depth = 𝑑

end if
total_list = total_list.append(context, question, label, depth = 𝑑)

end for
end for
return total_list

Algorithm 1: PARARULE-Plus data generation



Table 2
Information about the datasets used in this paper. PARARULES has less number of examples that require deep
reasoning steps. CONCEPTRULES V2 does not consider reasoning depths greater than 3. The train, dev and test
set are already splitted by the author of each dataset.

Dataset Depth=0 Depth=1 Depth=2 Depth=3 Depth=4 Depth=5

Train 290435 157440 75131 48010 9443 7325
PARARULES Dev 41559 22276 10833 6959 1334 1038

Test 83119 45067 21496 13741 2691 2086

Train - - 89952 90016 90010 90022
PARARULE-Plus Dev - - 16204 16154 16150 16150

Test - - 2708 2694 2704 2692

Train 2074360 1310622 873748 436874 - -
CONCEPTRULES V2 (full) Dev 115148 72810 48540 24270 - -

Test 115468 72810 48540 24270 - -

Train 131646 74136 49424 24712 - -
CONCEPTRULES V2 (simplified) Dev 7166 4116 2744 1372 - -

Test 7362 4116 2744 1372 - -

Table 3
The entity types and relation types for CONCEPTRULES V1 (simplified/full), CONCEPTRULES V2 (simplified/full),
PARARULES, and our PARARULE-Plus.

Dataset #Entity #Relation Shuffled Rules Depth Tag Derivable NAF

CONCEPTRULES V1 (simplified) 385 7 No No Yes Yes
CONCEPTRULES V1 (full) 4048 24 Yes No Yes No
CONCEPTRULES V2 (simplified) 385 7 No Yes Yes Yes
CONCEPTRULES V2 (full) 4048 24 Yes Yes Yes Yes
PARARULES 19 4 No Yes Yes Yes
PARARULE-Plus 71 8 No Yes Yes Yes

Table 4
We use GloVe [16] as the word vector representation. We use PARARULES with all depths as the training set for all
models and then test them on examples with different reasoning depths (D). Comparison among our IMA-GloVe-GA,
IMA-GloVe, MAC-GloVe, DMN-GloVe, IMASM-GloVe, LSTM-GloVe, and RoBERTa-Large on PARARULES test sets
with different reasoning depths.

Train ↓; Test → D=1 D=2 D=3 D≤3 D≤3+NatLang D≤5 D≤5+NatLang

IMA-GloVe 0.861 0.853 0.830 0.842 0.810 0.792 0.705
MAC-GloVe 0.792 0.776 0.750 0.763 0.737 0.701 0.652
DMN-GloVe 0.846 0.843 0.817 0.827 0.789 0.779 0.666
IMASM-GloVe 0.864 0.855 0.824 0.838 0.801 0.782 0.608
LSTM-GloVe 0.500 0.500 0.500 0.499 0.499 0.500 0.500
IMA-GloVe-GA 0.950 0.943 0.919 0.927 0.883 0.879 0.741

RoBERTa-Large 0.986 0.985 0.977 0.979 0.972 0.967 0.949



Table 5
IMA-GloVe, IMA-GloVe-GA, and RoBERTa-Large trained on CONCEPTRULES V1 (simplified / full) and tested on
different test sets. Rules in CONCEPTRULES V1 Simplified are not shuffled, while CONCEPTRULES V1 full contains
randomly shuffled rules. CONCEPTRULES V1 full has larger number of relations and entities than CONCEPTRULES
V1 simplified.

Model Train set
Test accuracy

(Simplified Test set)
Test accuracy
(Full Test set)

IMA-GloVe Simplified 0.994 0.729
Full 0.844 0.997

IMA-GloVe-GA Simplified 0.998 0.747
Full 0.851 0.999

RoBERTa-Large Simplified 0.997 0.503
Full 0.927 0.995

Table 6
IMA-GloVe, IMA-GloVe-GA, and RoBERTa-Large trained on CONCEPTRULES V2 (full) and tested on test sets that
require different depths of reasoning.

Model Test set
Mod1

Depth=1
Mod2

Depth=2
Mod3

Depth=3
Mod01

Depth≤1
Mod012
Depth≤2

Mod0123
Depth≤3

Depth=1 0.999 0.998 0.990 0.997 0.998 0.997
IMA-GloVe Depth=2 0.998 0.999 0.988 0.995 0.998 0.997

Depth=3 0.997 0.998 0.981 0.991 0.996 0.997
Depth=1 0.993 0.996 0.987 0.987 0.991 0.997

IMA-GloVe-GA Depth=2 0.993 0.999 0.974 0.986 0.991 0.995
Depth=3 0.988 1 0.994 0.989 0.997 0.994
Depth=1 0.998 0.975 0.831 0.995 0.975 0.971

RoBERTa-Large Depth=2 0.997 0.972 0.885 0.993 0.972 0.965
Depth=3 0.987 0.951 0.984 0.988 0.951 0.936

Table 7
RoBERTa-Large trained on PARARULES with different reasoning depths and tested on test sets that require different
depths of reasoning. A bold number indicates the highest accuracy in a test set.

Model Test set
Mod012

(Depth≤2)
Mod0123
(Depth≤3)

Mod0123Nat
(Depth≤3+NatLang)

Mod012345
(Depth≤5)

Depth=0 0.971 0.946 0.968 0.953
Depth=1 0.943 0.907 0.933 0.909
Depth=2 0.933 0.902 0.932 0.902

RoBERTa-Large Depth=3 0.562 0.902 0.926 0.907
Depth=4 0.481 0.863 0.904 0.888
Depth=5 0.452 0.856 0.916 0.933
NatLang 0.573 0.579 0.962 0.594



Table 8
RoBERTa-Large is fine-tuned on examples with different depths from PARARULES and also the entire PARARULE-
Plus(PPT), and then is evaluated on test sets that require different depths of reasoning. The yellow background
indicates improvement on accuracy after adding our PARARULE-Plus in the training process.

Model Test set
Mod012

(Depth≤2+PPT)
Mod0123

(Depth≤3+PPT)
Mod0123Nat

(Depth≤3+NatLang+PPT)
Mod012345

(Depth≤5+PPT)

Depth=0 0.946 0.901 0.965 0.963 (+0.010)
Depth=1 0.877 0.847 0.937 (+0.004) 0.881
Depth=2 0.868 0.873 0.927 0.839

RoBERTa-Large Depth=3 0.771 (+0.209) 0.862 0.904 0.826
Depth=4 0.675 (+0.194) 0.852 0.897 0.832
Depth=5 0.661 (+0.209) 0.888 (+0.032) 0.923 (+0.007) 0.934 (+0.001)
NatLang 0.557 0.593 (+0.014) 0.970 (+0.008) 0.649 (+0.055)
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