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Abstract
Neural Theorem Provers (NTPs) are neural relaxations of the backward-chaining logic reasoning algo-
rithm. They can learn continuous representations for predicates and constants, induce interpretable rules,
can provide logic explanations for their predictions, and show strong systematic generalisation proper-
ties. However, since they enumerate all possible proof paths for proving a goal, they suffer from high
computational complexity, and are thus unsuitable for complex reasoning tasks. Conditional Theorem
Provers (CTPs) try to overcome this issue by generating relevant rules on-the-fly based on the goal, rather
than considering all possible rules. Nonetheless, CTPs suffer from similar computational constraints, as
they still have to consider multiple proof paths while reasoning. We propose Adaptive CTPs (ACTPs),
where CTPs are augmented with a learned policy to dynamically select the most promising proof paths.
This allows the model designer to specify the number of proof paths to consider, to conform to the
computational constraints of their use case, while retaining all of the benefits of CTPs. By evaluating on
the CLUTRR dataset, we provide evidence for the computational issues in existing CTP models, show
that ACTPs alleviate these issues, and demonstrate that, in certain scenarios, the accuracy achieved by
ACTPs is higher than CTPs while retaining the same computational complexity.
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1. Introduction

Promising work has been done around integrating neural models and symbolic reasoning, as
their complementary strengths and weaknesses make for powerful models when combined
[1, 2, 3, 4, 5]. In this paper, we consider such a technique: Neural Theorem Provers [6].

Neuro-symbolic Reasoning The approach of Rocktäschel and Riedel [6] is to keep variable
binding symbolic, but compare predicates and constants using their sub-symbolic represen-
tations. They introduce Neural Theorem Provers (NTPs): end-to-end differentiable provers
for theorems formulated as queries to a knowledge base (KB). Prolog’s backward chaining
algorithm [7] is used as a blueprint for constructing neural networks in a recursive manner,
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which can prove queries to a KB using vector representations of symbols. These proofs are
given success scores, which are differentiable with respect to the sub-symbolic representations,
allowing the model to learn representations that maximise the proof scores. Using the same
process, rules of pre-defined structures are also learnt.

NTPs can learn representations of symbols in a KB like neural link prediction models and
learn rules which hold in the KB. They also allow one to incorporate already known rules
into the reasoning process, as one simply needs to include them in the knowledge base. NTPs
are also naturally interpretable, since they induce sub-symbolic rules that can be decoded to
human-readable symbolic rules. Finally, Minervini et al. [8] demonstrate that NTPs have the
ability to perform systematic generalisation, learning how to solve complex reasoning tasks
while only being trained on simpler examples. In contrast, many neural models appear not to
generalise robustly on tasks requiring systematic generalisation [9, 10, 11, 12].

However, NTPs have a significant computational footprint, as they consider all possible rules
for proving a goal or sub-goal. This means they cannot scale to settings with a large number
or rules or reasoning steps. To solve this problem, Minervini et al. [8] propose Conditional
Theorem Provers (CTPs), an extension of NTPs that learn to dynamically generate a set of rules
for proving the current goal or sub-goal. This is implemented by a select module which, given
a goal, returns multiple rules that can be used to prove that goal. It consists of multiple neural
networks, which we refer to as reformulators, each of which can represent several rules in a
knowledge base. This module is end-to-end differentiable, and can be trained end-to-end via
backpropagation.

However, CTPs can end up suffering from computational issues in a similar fashion to NTPs,
since they still need to consider multiple proof paths during the reasoning process. For complex
datasets in which there are many ways to prove a given goal, more proof paths need to be
checked. This, in conjunction with the high reasoning depth often required for such datasets,
causes CTPs to become infeasibly slow. This is especially problematic when CTPs are applied
in settings where the inference time is critical.

Objectives In this paper, we aim to address the computational shortcomings of CTPs by
extending them to ACTPs (Adaptive CTPs). Specifically, we augment CTPs with a policy
trained to select the proof paths that are most likely to succeed. This allows one to control
the amount of exploration in the space of proof paths for a given goal, depending on the
computational requirements of the task. An alternative to addressing the computational issues
of CTPs is to simply reduce the number of reformulators trained, leading to fewer proof paths
being considered. However, this makes the model less expressive, meaning it will likely be
unable to capture all of the rules in a knowledge base. Thus, for ACTPs to be useful, an ACTP
model expanding only 𝑘 proof paths should achieve higher accuracy than a CTP model with
only 𝑘 reformulators. In the following, we 1) motivate for CTP models sometimes requiring a
large number of reformulators and reasoning depth; 2) concretely establish the computational
issues that CTPs suffer from, using both empirical results and a theoretical analysis; 3) define a
framework for ACTPs using policy gradient descent; 4) empirically demonstrate on the CLUTRR
dataset that ACTPs are an improvement upon CTPs, in both their respective accuracies and
evaluation times.



2. Neural Theorem Proving

Backward Chaining Prolog [7] is a logic programming language that finds use in contem-
porary work. It has been used for a variety of tasks, including automated theorem proving
[13], expert systems [14], and natural language processing [15]. A Prolog KB consists of rules
and facts. Queries are passed to the KB, with Prolog returning whether or not the queries
are entailed by the KB. The restrictive syntax of Prolog allows one to answer queries using
Prolog’s backward chaining algorithm [7]. Given a goal, such as sister(Joshua, Cindy), which
is constructed from a query, Prolog tries to find substitutions for the goal by using the rules
in the KB. The process of checking if the head of a rule matches a goal is called unification. If
unification succeeds, then the goal is replaced with the atoms from the body of the rule, giving
a new set of sub-goals. The same process is then applied to each of these sub-goals, continuing
recursively until all sub-goals are found as facts in the KB or there are no more rules to apply.

Neural Theorem Provers Neural Theorem Provers (NTPs), proposed by Rocktäschel and
Riedel [6], are a continuous relaxation of the backward chaining algorithm. NTPs can be trained
end-to-end, by calculating the gradient of proof successes with respect to vector representations
of symbols, and are defined in terms of modules [16]. The recursive expansion upon the goal
is kept track of in proof states, which each contain a neural network that outputs the success
score of the proof so far, and the substitution set. The network is recursively built upon, with
new nodes being added as rules are applied. Every different proof path will have a different
associated proof state. However, as noted by Rocktäschel and Riedel [6], NTPs suffer from
severe computational limitations. In standard backward chaining, a proof path can be aborted
when unification with a rule fails, but this happens far less in neural backward chaining, since
unification only fails when predicates do not have matching arities. Given a goal such as
sister(Joshua, Cindy), the prover should only consider rules such as the first one below, and
not the second.

sister(𝑋 , 𝑌 ) ← father(𝑋 , 𝑍) ∧ daughter(𝑍 , 𝑌 )
father(𝑌 , 𝑍) ← son(𝑌 , 𝑋) ∧ grandfather(𝑋 , 𝑍)

Conditional Theorem Provers To address the computational limitations of NTPs, Minervini
et al. [8] propose introducing a new module into the system, select, to reduce the number of
rules being considered when expanding upon a goal. In the or module, instead of considering
every rule 𝐻 ← 𝐵 ∈ 𝒦 in the KB 𝒦, they only consider each 𝐻 ← 𝐵 ∈ select𝜃(𝐺). This
select module can be implemented by a sequence of differentiable parameterized functions
select1𝜃 (𝐺), select
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𝜃 (𝐺), ..., select

𝑛
𝜃(𝐺) that each, given a goal, produces a sequence of sub-

goals. We refer to each of these functions as a goal reformulation module, or simply a reformulator.
In summary, a CTP is composed of 𝑛 reformulators, each of which can represent multiple

rules, and it learns representations for predicates and constants. All model parameters are
initialised randomly, and trained end-to-end via backpropagation. During inference, a CTP
model starts with a goal 𝑝(𝑐1, 𝑐2), and initialises 𝐺 = {𝑝(𝑐1, 𝑐2)} as the set of sub-goals. Then,
recursively up to the given reasoning depth 𝑑, the model applies each reformulator to each



Table 1
CTP Test Accuracy for a Varying Number of Reformulators

Number 1.4 AVG 1.4 MAX 1.10 AVG 1.10 MAX

1 35.5 41.6 42.7 54.1
2 51.8 74.0 49.6 58.2
3 69.1 81.8 66.6 83.6
4 72.6 83.1 75.9 90.2
5 73.5 87.0 74.8 86.1
6 77.2 88.3 73.8 86.1
7 76.6 84.4 76.1 86.9
8 79.9 89.6 77.9 86.9

of the sub-goals in 𝐺, generating a new set of sub-goals from the output of the reformulators
with each recursive step. At each recursive step, the model produces a new proof path for each
reformulator. The model maximises scores over proof paths. At every depth up to the reasoning
depth 𝑑, the model unifies every sub-goal from the proof path with the knowledge base of facts,
given in the dataset task. These similarity values are propagated up, with the score of the atom
in the head of a reformulator being set to the minimum similarity of all the atoms in its body.

Evaluation Dataset CLUTRR [12] is a system for constructing artificial datasets modelling
family relationships. Given a set of family relations, the task is to infer the relationship between
two family members whose relationship is not explicit in the set. To solve this, an agent ought
to be able to induce the logical rules that govern family relationships, and use those rules to
infer the relationship of the query members from the given relations. In particular, CLUTRR
allows for testing an agent’s ability to perform systematic generalization [17, 12, 18]. Sinha
et al. [12] published several generated dataset groups alongside the CLUTRR system, which
we make use of for training and evaluation in this paper. We refer to the training dataset as
1.2,1.3,1.4_train and the testing datasets as 1.2_test, 1.3_test, ..., 1.10_test.

3. Expressivity and Complexity

The expressivity of a relational learning model is an important consideration for its viability
[19, 20]. A more expressive model can capture more types of data and relations than a less
expressive one, meaning it can be applied to more complex datasets. Due to the restrictive
nature of the syntax of Prolog, CTPs are already quite limited when it comes to the structure of
expressions upon which they can reason. However, these limitations go further, as the rules that
a CTP model can capture depend on the structure and number of reformulators in the model.

Number of Reformulators A single reformulator can capture any number of rules, provided
that for each rule, the positions of the variables in the rule correspond to the positions of
their representations in the reformulator. In addition, given an atom for the head of a rule, a



Table 2
CTP Test Accuracy for a Varying Reasoning Depth

Depth 1.4 AVG 1.4 MAX 1.10 AVG 1.10 MAX

1 18.61 22.08 15.57 16.39
2 31.17 41.56 22.95 26.23
3 71.00 84.42 45.90 51.64
4 71.00 84.42 68.31 76.23
5 71.86 84.42 75.96 86.89

reformulator can only capture one rule with the given head. For example, a single reformulator
would be unable to capture both of the following rules, even though the positions of the variables
are the same in both:

sister(𝑋 , 𝑌 ) ← father(𝑋 , 𝑍) ∧ daughter(𝑍 , 𝑌 )
sister(𝑋 , 𝑌 ) ← sister(𝑋 , 𝑍) ∧ sister(𝑍 , 𝑌 )

This is because a reformulator is a function that maps from 𝐴 ∈ ℝ𝑘 × (ℝ𝑘 ∪ 𝑉 ) × (ℝ𝑘 ∪ 𝑉 ),
meaning that each 𝐴 has to map to a unique output. As such, to fully capture all of the rules in
a knowledge base, we need as many reformulators as there are the maximum number of rules
with the same head atom. We refer to this number as theminimal full expressivity bound. For the
CLUTRR datasets, this number is 5. To see the effect of increasing the number of reformulators,
we fix the train and test reasoning depths, and evaluate the average/maximum test accuracy of
CTPs on on 1.4_test and 1.10_test, using a number of reformulators varying from 1 to 8. The
results are shown in Table 1.

Reasoning Depth CTPs reason up to a pre-defined reasoning depth and then unify the
existing sub-goals with the facts in the knowledge base. This means that, even if the CTP model
has perfectly learned to represent all of the rules in the knowledge base with reformulators,
it still needs a sufficient reasoning depth to prove the goal. The required reasoning depth for
a valid proof path is the minimum number of recursive steps down, such that every sub-goal
appears in the knowledge base of facts. The reasoning depth needed to solve a task is thus
the minimum required reasoning depth across all possible proof paths. For the most complex
CLUTRR instance, this number is at most 5. In Table 2, we demonstrate the effect of using
different test reasoning depths.

Computational Issues While we have demonstrated that it is rarely harmful and often
beneficial to increase the reasoning depth and number of reformulators in terms of predictive
accuracy, doing so can lead to higher computational costs. In Appendix A, we provide a
theoretical analysis of the time complexity of CTPs. We consider two base operations that we
wish to count: the number of reformulator applications (data being passed through a neural
network) and the number of sub-goals that need unifying with the knowledge base after the
reasoning depth is reached (comparisons with all fact embeddings using a RBF kernel). The



remainder of the operations in CTPs are either tied into one of these two, or take constant time.
We count these operations with respect to the number of reformulators used 𝑛, the reasoning
depth 𝑑, and the maximum number of atoms in the body of any reformulator used 𝑚. We find
that the time complexity of CTPs as a whole is 𝒪((𝑛𝑚)𝑑). We illustrate the issues resulting from
this empirically in Appendix B.

4. Optimization via REINFORCE

Outline of Solution Since the time complexity of CTPs is 𝒪((𝑛𝑚)𝑑), optimizing CTP evalua-
tion time consists of trying to keep each of these variables as low as possible. The maximum
number of atoms in the body of any reformulator used 𝑚 is almost impossible to reduce, as it is
completely determined by the rules the model is trying to capture in the knowledge base. The
depth 𝑑 is also challenging to reduce, as a certain depth is required for full expressivity on the
test datasets. Our approach is to keep the number of reformulators 𝑛 used at each expansion
step as low as possible, minimizing the number of proof paths that need to be considered.

Choosing Reformulators Given that the time complexity of CTPs is 𝒪((𝑛𝑚)𝑑), having 𝑛
reformulators and only selecting 𝑘 at each expansion step would lead to a time complexity of
𝒪((𝑘𝑚)𝑑) instead. Ideally, we would just be able to use 𝑘 = 1 and learn to select the perfect
reformulator at every expansion step. However, initial experiments demonstrated this to be
an almost impossible task since, for each goal and sub-goal in CLUTRR, we do not know in
advance which proof path will allow us to prove it. Rather, we use an hyperparameter 𝑘 ∈ ℕ,
tuned for maximising accuracy and satisfying the computational constraints of the test datasets.
This means that 𝑘 instead of 𝑛 reformulators are selected and used at every expansion step in
the reasoning. We refer to the module making these selection decisions as the selection module.

Implementation We adopt REINFORCE [21] to train the reformulation selection module.
Let us first define the corresponding deterministic Markov decision process (𝑆, 𝐴, 𝛿, 𝑅):
States. A state in the model represents which sub-goal we are currently considering for

expansion in the proof. It is thus an atom 𝐴 where 𝐴 ∈ ℝ𝑘 × (ℝ𝑘 ∪ 𝑉 ) × (ℝ𝑘 ∪ 𝑉 ). In order that the
policy estimator may be implemented by a neural network, we define 𝑆 ∶= ℝ𝑘 × ℝ𝑘 × ℝ𝑘 = ℝ3𝑘.
We fixed the value of a variable to be {0}𝑘.

Actions. The set of possible actions from any state is the reformulators that could be used to
expand upon the sub-goal. With 𝑛 reformulators, we thus have 𝐴 = {1, ..., 𝑛}. Note that as we
are choosing 𝑘 reformulators for expansion, multiple actions are chosen for a given state by
sampling without repetition from the probability distribution 𝜋𝜃(𝑠).

Transition Function. After some subset of reformulators is chosen, the CTP model proceeds
as normal, expanding out into a different proof path for each reformulator. Thus, we have a
deterministic transition function 𝛿 defined by this process.
Rewards. The proof score is an obvious choice for reward signal, as higher proof scores

correspond to the model performing better on positive tasks. However, rather than discounting
future rewards, we can use the fact that proof scores are propagated back up through the CTP
model to have access to the exact score that choosing a reformulator leads to. The reward given



for choosing a reformulator is thus the maximum proof score across all proof paths originating
from the reformulator applied to the current sub-goal.

The policy network is implemented by a neural network with a single hidden layer, containing
30 hidden nodes. We use a Rectified Linear Unit (ReLU) activation function before the hidden
layer: ReLU(𝑥) ∶= max(0, 𝑥). The output of the policy network is thus

𝜋𝜃(𝑠) ∶= softmax(𝑊2 × ReLU(𝑊1 × 𝑠))

while the loss is given by 𝐿(𝜃) = − 1
𝐵 ∑𝐵

𝑏=1 𝑅𝑏 × ln(𝜋𝜃(𝑠𝑏)𝑎𝑏), where 𝐵 is the batch size, 𝑎𝑏 is the
action chosen in a particular task in the batch, 𝑅𝑏 is the proof score that resulted from the action,
and 𝜋𝜃(𝑠𝑏)𝑎𝑏 is the probability that action 𝑎𝑏 has in the distribution 𝜋𝜃(𝑠𝑏). The loss is applied
separately for each of the 𝑘 actions (reformulators) chosen. Rather than having episodes, we
simply execute the CTP model as usual, applying the policy and calculating the loss at every
expansion step in the reasoning. We refer to this model as ACTP and the original baseline CTP
model as CTP.

ACTP Speedup We see that if ACTPs are used, there is at least a theoretical speedup from
the baseline of CTPs. Ideally this would translate into a speedup in wall-clock time as well, but
this is not guaranteed for all datasets and values of 𝑚 and 𝑑. The larger the values of 𝑚 and 𝑑,
the greater the effect of choosing 𝑘 from 𝑛 reformulators will have; this follows directly from
the computational complexity 𝒪((𝑘𝑚)𝑑). Furthermore, larger and more complex datasets will
also see this effect being more pronounced, as they contain more facts that need to be unified
with the 𝒪((𝑘𝑚)𝑑) sub-goals once the test depth is reached.

Counteracting this is the overhead that comes from having to do the selection at each
reasoning step, instead of just applying every reformulator. If the overhead is high enough, then
better wall-clock times might not present themselves for the evaluations we do on CLUTRR.
However, even if this is not the case, we argue that the theoretical speedup of this method
proves its usefulness regardless: eventually the dataset complexity and reasoning depths will
be high enough that the resulting theoretical speedup overcomes the overhead that comes
with the method. Serious computational concerns for CTPs will occur more often for complex
datasets and high reasoning depths, which is exactly when the theoretical speedup becomes an
advantage.

5. Related Work

Other works have already explored models that learn to traverse a knowledge base. Das et al.
[22], Xiong et al. [23] use reinforcement learning to learn inference paths in large knowledge
bases. Both of these works are based upon the path ranking algorithm [24], which uses random
walks with restarts to perform several upper-bounded depth-first searches to find paths along
relations. When combined with elastic-net based learning, the algorithm can learn to choose
paths which are more likely to complete the inference.

Das et al. [22] propose MINERVA, a method for searching a knowledge graph for answer-
providing paths using reinforcement learning, conditioned on the query. Given a knowledge
graph, it attempts to learn a policy which, given a query of the form predicate(c, 𝑋 ), starts



from c and walks over relations (edges in the knowledge graph), choosing a relation at each
step, conditioned upon the query predicate and the walk so far. This is done with reinforcement
learning by trying to maximize the reward: reaching the correct answer constant. Xiong et al.
[23] adopt a similar but slightly simpler approach with DeepPath, which also uses reinforcement
learning to find paths between pairs of constants. However, in contrast to Das et al. [22], they
also condition upon the answer constant while traversing the graph.

While our proposed method is not exactly what MINERVA and DeepPath do, their existence
and success at least indicate that the problem of learning which reasoning steps to take in a
knowledge base is a solvable one. Our work also runs parallel to that of Asgharbeygi et al.
[25], Crouse et al. [26], both of which use reinforcement learning as a search heuristic to optimise
reasoning, albeit in different settings. Finally, we also draw inspiration for our method from the
work of Li et al. [27], who provide motivation for training large transformer models and then
heavily compressing them before testing. In a similar manner, our method aims to utilize a large
number of reformulators when training, and then only use the selected ones during evaluation.

6. Experiments

Experiment Design We adopt the the hyperparameters in Minervini et al. [8] to train our
CTP models. We adopt the procedure of first training the reformulators, and then training the
selection module. This means the selection module is learning to select proof paths over actual
rules in the knowledge base, and we can independently control how long the reformulators and
selection module are trained for. For optimizing hyperparameters, we adopt the same approach
to evaluation and test sets as Minervini et al. [8]. We perform two different optimizations:
the first has hyperparameters tuned on an evaluation set of 1.3_test and is tested on all other
datasets, and the second is tuned on an evaluation set of 1.9_test.

Reformulator Strength Since all reformulators have different random initializations, they
all converge to different local optima. Thus, it is clear that some reformulators will capture more
rules than others, and that some will learn a particular rule better than the others. Moreover,
certain subsets of reformulators are likely to contribute more to proofs than others, with subsets
of the reformulators that better cover the range of rules in the knowledge base giving higher
accuracies when used for evaluation. We demonstrate this empirically by training 5 and 8
reformulators respectively, across 10 different seeds and then using 4 random subsets of 3
reformulators each for evaluation. The average accuracies of the highest and lowest scoring
subsets are 17% and 51% for 5 reformulators, and 11% and 31% for 8 reformulators.

We see that there is a large discrepancy between the performance of different subsets, indi-
cating that when it comes to maximizing accuracy during evaluation, there are reformulators
whose inclusion in the model is far more important.We also present the following hypothesis: as
the number of reformulators increases, individual reformulators become weaker. More formally:
as we use more reformulators during training, the expected accuracy when using a fixed-size
subset of the reformulators during evaluation decreases. This is an important hypothesis to
note and prove, as it means that the task of selecting the best reformulators for a proof becomes
harder as the total number of reformulators increases. This hypothesis is supported empirically



Table 3
CTP accuracy across all datasets, using 8 and 5 reformulators during training, evaluating using 4 random
subsets of 3 reformulators each

Dataset 8 Ref. 5 Ref.

1.2_test 31.3 48.8
1.3_test 22.3 41.0
1.4_test 20.4 33.6
1.5_test 26.1 43.5
1.6_test 23.0 40.8
1.7_test 21.8 36.7
1.8_test 19.3 32.9
1.9_test 18.0 31.5
1.10_test 17.1 30.1

by the results in Table 3: we trained CTP models with 5 and 8 reformulators respectively, report-
ing the average accuracy when 4 random subsets of 3 reformulators were used for evaluation.

Adaptive CTP Evaluation Let 𝑛 be the number of reformulators trained and 𝑘 the number
of proof paths expanded during evaluation. We chose to evaluate ACTPs with 𝑛 ∈ {5, 8} to
measure their effectiveness when more (and individually weaker) reformulators are used and
with 𝑘 ∈ {2, 3} to measure the effectiveness of ACTPs when they are allowed to expand fewer
proof paths. We refer to such an ACTP model as ACTP-𝑛C𝑘. This yielded 4 different scenarios
for evaluation.

Only when using 𝑛 ∶= 5 and 𝑘 ∶= 3 were ACTPs an improvement upon CTPs, the results of
which are shown in Table 4. Further to this, we see that ACTPs perform significantly worse when
only 2 reformulators are chosen instead of 3. ACTP models that only choose 2 reformulators
are outperformed by the baseline across every dataset. We hypothesise that, for CLUTRR, the
task of learning which two reformulators are the most promising is one that is just too difficult
for the model to find a solution to.

As shown in Section 6, as the number of reformulators increases, individual reformulators
become weaker. Thus, the task of choosing the optimal reformulators for expansion becomes
more difficult as the number of reformulators increases. This means that, all else being constant,
the accuracy of ACTP models will drop as more reformulators are trained. This effect is offset
by the increasing expressivity of the model as more reformulators are used. Hence, as expected,
ACTPs consistently perform worse when more reformulators are trained. This is confirmed by
our experimental findings, where ACTP-5C𝑘 models outperform ACTP-8C𝑘 models in every
scenario and across every dataset.

We also note that tuning hyperparameters on 1.9_test instead of 1.3_test causes baseline CTP
performance to decrease for the simpler datasets but increase for the more complex datasets.
For ACTPs however, this effect appears far less pronounced, with the accuracy of ACTP-5C3
models even dropping slightly for the more complex test datasets, when tuning on 1.9_test
instead of 1.3_test. This indicates that ACTPs are not learning the reasoning patterns needed for



Table 4
One-tailed unpaired t-test between the baseline of CTPs with 3 reformulators and ACTPs with 5 choosing
3 reformulators. Hyperparameters tuned on 1.3_test

CTP ACTP

𝜇 ± 𝜎 𝜇 ± 𝜎 P-Value

1.2 80.00 24.49 78.95 25.84 0.525
1.3 90.65 7.24 94.58 1.09 0.147
1.4 76.10 4.97 81.82 4.57 0.048
1.5 87.03 3.31 89.73 5.34 0.185
1.6 83.81 3.41 89.52 4.82 0.033
1.7 78.71 1.82 86.06 5.01 0.014
1.8 73.93 5.20 78.82 6.50 0.114
1.9 68.87 7.58 73.87 5.94 0.140
1.10 67.05 4.96 69.67 6.43 0.246

the more complex datasets, even when tuned on such a dataset. It is also possible that ACTPs
could be overfitting to the evaluation set when tuned on 1.9_test. However, since the accuracy
of ACTPs on 1.9_test does not even increase that much when tuning on the dataset, we find the
former explanation to be more likely. As a final point, we note that ACTPs do not appear to
exhibit higher instability in their accuracies than CTPs, with the models showing comparable
levels of variance.

7. Conclusions

In this paper, we provided motivation for cases in which CTP models would be required to
have a large number of reformulators and a high reasoning depth, as well as demonstrating
how this leads to computational complexity concerns both theoretically and empirically. We
defined a framework for ACTPs as an extension to CTPs, in which reinforcement learning is
used to learn to select optimal reformulators for expansion during a proof. This allows the
model designer to scale down the number of selected reformulators, such that the computational
constraints of the use case may be met. We noted that certain subsets of reformulators perform
significantly better than others, and that individual reformulators tend to become weaker as the
number of reformulators used in a CTP model increases. This means that the task of selecting
reformulators becomes more difficult as the number of reformulators increases. We evaluated
ACTPs in 4 separate scenarios, which vary in regard to the number of reformulators trained
and the number of reformulators selected. In 1 of these 4 scenarios, we found that ACTPs
outperformed CTPs on 8 out of 9 test datasets. The results demonstrate the usefulness of ACTPs
over CTPs in certain situations, but also highlight their failing to be a categorical improvement
upon CTPs.
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A. Computational Complexity of CTPs

We provide a theoretical analysis of the time complexity of CTPs. We consider two base
operations that we wish to count: the number of reformulator applications (data being passed
through a neural network) and the number of sub-goals that need unifying with the knowledge
base after the reasoning depth is reached (comparisons with all fact embeddings using a RBF
kernel). The remainder of the operations in CTPs are either tied into one of these two, or take
constant time. We count these operations with respect to the number of reformulators used
𝑛, the reasoning depth 𝑑, and the maximum number of atoms in the body of any reformulator
used 𝑚. We find that the time complexity of CTPs as a whole is 𝒪((𝑛𝑚)𝑑).

Let 𝑠𝑖 be the number of sub-goals after the model has applied 𝑖 recursive expansions upon the
goal. With each recursive step down, 𝑛 reformulators are applied to every sub-goal, with each
reformulator generating 𝒪(𝑚) new sub-goals to be proved. This means 𝒪(𝑛𝑚) new sub-goals
for each existing sub-goal, so 𝑠𝑖+1 = 𝒪(𝑠𝑖 × 𝑛𝑚). Noting that 𝑠0 = 1, representing the query
passed to the model, we see that the number of sub-goals after the test reasoning depth has
been reached is: 𝑠𝑑 = 𝑠0 × 𝒪((𝑛𝑚)𝑑) = 𝒪((𝑛𝑚)𝑑). Furthermore, at depth 𝑖 with 𝑠𝑖 sub-goals, there
are 𝑛𝑠𝑖 reformulator applications. Thus, the total number of reformulator applications until the
reasoning depth has been reached is:

𝑟𝑑 = 𝑛𝑠0 + 𝑛𝑠1 + 𝑛𝑠2 + ... + 𝑛𝑠𝑑−1 = 𝒪(𝑛) + 𝒪((𝑛𝑚)1𝑛) + ... + 𝒪((𝑛𝑚)𝑑−1𝑛) = 𝒪((𝑛𝑚)𝑑𝑑)

Then since 𝑛 > 1 and 𝑚 > 1 for any CTP model of non-trivial complexity, 𝑟𝑑 = 𝒪((𝑛𝑚)𝑑).
Thus, as 𝑠𝑑 = 𝑟𝑑, we state that the time complexity for CTPs as a whole is 𝒪((𝑛𝑚)𝑑). The main
issue with this time complexity is the raising to the power of 𝑑. For a fixed depth 𝑑, the time
complexity is a 𝑑-degree polynomial in 𝑛 and 𝑚, which can also cause difficulties for a suitably
large value of 𝑑. We have already provided motivation for using a test reasoning depth of 5 on
CLUTRR, meaning that this would become degree 5 polynomial.

B. Computational Issues of CTPs

To demonstrate the computational issues of CTPs in practice, we compute the average evaluation
time across all CLUTRR datasets, noting that the results are not entirely stable due to them
being evaluated and aggregated across a variety of machines. We show this with respect to the
number of reformulators in Fig. 1, and with respect to the test reasoning depth in Fig. 2. For
reference, the longest evaluation time was for a test reasoning depth of 5, with 5 reformulators,
on the 1.10_test dataset. It took 16.7 hours to evaluate.

C. ACTP Speedup

Wall-clock Speedup In Fig. 3, we compare the evaluation times of ACTPs and baseline CTPs,
with the baseline operating on 3 and 8 reformulators respectively. As expected, the overhead
caused by the copying, masking, and other operations needed in an ACTP model led to it
taking significantly longer to evaluate than CTP-3. However, the overhead was low enough
for ACTP-8C3 to take less time to evaluate than CTP-8 across all datasets. The effect becomes



Figure 1: CTP average evaluation time across all datasets for a varying number of reformulators

more pronounced as the complexity of the dataset increases, since the number of facts in the
knowledge base to unify the sub-goals with increases, which has a significant effect on the
computational complexity of the model.

As the dataset complexity continues to increase. the overhead will become more negligible,
leading the evaluation time of ACTP-𝑛C𝑘 models to tend to those of CTP-𝑘 models. The
increasing gap between the evaluation time of ACTP-8C3 and CTP-8 in Fig. 3 is a clear visual
illustration of this trend. Datasets always taking longer to evaluate on than others is explained
by the size of the datasets. For example, despite 1.6_test being a more complex dataset than
1.5_test, it only contains 104 tasks, compared to the 184 of 1.5_test.



Figure 2: CTP average evaluation time across all datasets for a varying test reasoning depth, using a
logarithmic scale

Figure 3: Comparison across all datasets of evaluation time when using CTPs with 3 reformulators,
CTPs with 8 reformulators, and ACTPs with 8 choosing 3 reformulators



D. Model Hyperparameters

In this appendix, for reproducibility, we provide the hyperparameters used for each of our
evaluations.

D.1. Fixed CTP Hyperparameters

Name Value

batch-size 16

embedding-size 50

epochs 20

evaluate-every 100

init random

init-size 1

k-max 5

learning-rate 0.1

max-depth 2

nb-rules 512

optimizer adagrad

ref-init random

reformulator attentive

scoring-type concat

slope 1

test ALL TEST DATASETS

test-batch-size 1

tnorm min

train TRAIN DATASET



D.2. Number of Reformulators

Name Values

hops 1-8 reformulators, each with 2
atoms in the body. For example,
4 reformulators is denoted by: “2
2 2 2”

seed 1-30

test-max-depth 4

D.3. Reasoning Depth

Name Values

hops 5 reformulators, each with 2
atoms in the body, denoted by:
“2 2 2 2 2”

seed 1-3

test-max-depth 1-5

D.4. Reformulator Subsets

Name Values

hops 5, 8 reformulators, each with 2
atoms in the body, denoted by:
“2 2 2 2 2” and “2 2 2 2 2 2 2 2”
respectively

seed 1-10

test-max-depth 4

subset Use reformulators with the fol-
lowing indices for evaluation: {
[0 1 2], [2 3 4], [0 3 4], [1 2 4] }



D.5. ACTPs 5 Reformulators

Name Values

hops 5 reformulators, each with 2
atoms in the body, denoted by:
“2 2 2 2 2”

seed 1-30

test-max-depth 4

rl-actions-selected 2, 3

rl-epochs 3

rl-learning-rate 0.001, 0.01

D.6. ACTPs 8 Reformulators

Name Values

hops 8 reformulators, each with 2
atoms in the body, denoted by:
“2 2 2 2 2 2 2 2”

seed 1-30

test-max-depth 4

rl-actions-selected 2, 3

rl-epochs 3

rl-learning-rate 0.005, 0.01

E. Algorithm Pseudocode

Here follows the pseudocode for some of the algorithms used in this paper.



Algorithm 1: Backward chaining
In the code, 𝐾 is the knowledge base containing the rules and facts, sets are denoted with

curly brackets, lists are denoted with square brackets, an underscore matches any
argument, 𝐺 refers to a goal, 𝐺̂ to a set of sub-goals, 𝑆 to a substitution set, 𝐵 to the body
of a rule, and 𝐻 to the head of a rule. To check if a goal 𝐺1 holds true, one needs to get
the output of or(𝐺1, []). If the output contains a substitution set, then the query is true,

otherwise it will only contain the value FAIL and the query cannot be proven.

1: or(𝐺, 𝑆) = {𝑆′ ∣ 𝑆′ ∈ and(𝐵, unify(𝐻 , 𝐺, 𝑆)) for each 𝐻 ← 𝐵 ∈ 𝐾}
2: and(_, FAIL) = FAIL
3: and([], 𝑆) = 𝑆
4: and(𝐺 ∶ 𝐺̂, 𝑆) = {𝑆″ ∣ 𝑆″ ∈ and(𝐺̂, 𝑆″) ∀𝑆′ ∈ or(substitute(𝐺, 𝑆), 𝑆)}
5: unify(_, _, FAIL) = FAIL
6: unify([], [], 𝑆) = 𝑆
7: unify([], _, _) = FAIL
8: unify(_, [], _) = FAIL
9:

unify(ℎ ∶ 𝐻 , 𝑔 ∶ 𝐺, 𝑆)

= unify(𝐻 , 𝐺

⎧
⎪

⎨
⎪
⎩

𝑆 ∪ {ℎ/𝑔} if ℎ ∈ 𝑉
𝑆 ∪ {𝑔/ℎ} if 𝑔 ∈ 𝑉 , ℎ ∉ 𝑉

𝑆 if 𝑔 = ℎ
FAIL otherwise

⎫
⎪

⎬
⎪
⎭

)

10: substitute([], _) = []
11:

substitute(𝑔 ∶ 𝐺, 𝑆) = {
𝑥 if 𝑔/𝑥 ∈ 𝑆
𝑔 otherwise

}



Algorithm 2: Neural backward chaining
The code is based on the summary by Minervini et al. [8]. 𝐺 is a goal, 𝑑 is the reasoning
depth, 𝐻 is the head of a rule, 𝐵 is the body, 𝒦 is a knowledge base containing rules and
facts, 𝐾 is the RBF kernel, 𝑆 is a proof state, 𝑆𝜓 is a substitution set, 𝑆𝜌 is a proof score,
and 𝑉 is a set of variables.

def or(𝐺, 𝑑, 𝑆)
for 𝐻 ← 𝐵 ∈ 𝒦 /* Try use any rule in KB to prove */
do

for 𝑆 ∈ and(𝐵, 𝑑, unify(𝐻 , 𝐺, 𝑆)) do
yield 𝑆

end
end

end

def and(𝐵, 𝑑, 𝑆)
if 𝐵 = [] or 𝑑 = 0 /* Empty body or reasoning depth reached */
then

yield 𝑆
else

for 𝑆′ ∈ or(sub(𝐵0, 𝑆𝜓), 𝑑 − 1, 𝑆) /* Apply substitution to body, then try

to prove each atom within */
do

for 𝑆″ ∈ and(𝐵1∶, 𝑑, 𝑆′) do
yield 𝑆″

end
end

end
end

def unify(𝐻, 𝐺, 𝑆 = (𝑆𝜓, 𝑆𝜌))

𝑇𝑖 =
⎧⎪
⎨⎪
⎩

{𝐻𝑖/𝐺𝑖} if 𝐻𝑖 ∈ 𝑉
{𝐺𝑖/𝐻𝑖} if 𝐺𝑖 ∈ 𝑉 , 𝐻𝑖 ∉ 𝑉

∅ otherwise

⎫⎪
⎬⎪
⎭

𝑆′𝜓 = 𝑆𝜓⋃𝑇𝑖 /* Extend the substitution set */

𝑆′𝜌 = min{𝑆𝜌}⋃𝐻𝑖,𝐺𝑖∉𝑉{𝐾(𝜃𝐻𝑖 , 𝜃𝐺𝑖)}} /* Similarity value is the minimum

similarity across all representations */

return 𝑆′ = (𝑆′𝜓, 𝑆
′
𝜌)

end



Algorithm 3: REINFORCE
In this algorithm: 𝜃 represents the model parameters, 𝑁 is the number of episodes, 𝐾 is
the number of episodes per batch, 𝑇 is the number of steps in an episode, 𝛾 is the discount
factor used to make further away rewards worth less, 𝜋𝜃(𝑠)𝑎 gives the probability of
action 𝑎 from the distribution produced by 𝜋𝜃 applied to 𝑠, and 𝛼 is the learning rate.

n = 0
while 𝑛 < 𝑁 do

for 𝐾 episodes in batch do
Generate episode 𝑠0, 𝑎0, 𝑅0, ..., 𝑠𝑇, 𝑎𝑇, 𝑟𝑇 using the policy 𝜋𝜃 to output probability
distributions which are then sampled from to get actions
for 𝑡 ∈ 1, ..., 𝑇 do

Calculate discounted rewards from each state: 𝐺𝑡 ∶= ∑𝑇
𝑖=𝑡 𝛾 𝑖𝑅𝑖

end
𝑛 ∶= 𝑛 + 1

end
Calculate policy loss for entire batch: 𝐿(𝜃) ∶= − 1

𝐾 ∑𝐾
𝑡=1 ln(𝐺𝑡𝜋𝜃(𝑠)𝑎𝑡)

Update policy: 𝜃 ∶= 𝜃 + 𝛼∇𝐿(𝜃)
end



Algorithm 4: Model training procedure

def get_best_model(model, train_set, hyperparameter_grid, evaluation_set)
best_model = None
best_accuracy = -1
for hyperparameter_set ∈ hyperparameter_grid do

train_model(model, train_set)
accuracy_value = accuracy(model, evaluation_set)
if accuracy_value > best_accuracy then

best_accuracy = accuracy_value
best_model = model

end
end
return best_model

end

def get_best_seeded_model(model, train_set, hyperparameter_grid, evaluation_set)
pick 6 seeds 𝑆 = {𝑠0, ..., 𝑠5} at random
include seeds 𝑆 in hyperparameter_grid
return get_best_model(model, train_set, hyperparameter_grid, evaluation_set)

end

def get_model_accuracy(model, train_set, evaluation_set, test_sets)
initialize hyperparameter_grid
total_accuracy = 0
for 5 iterations do

best_model = get_best_seeded_model(model, train_set, hyperparameter_grid,
evaluation_set)

test_accuracies = accuracy(best_model, test_sets)
total_accuracy += test_accuracies

end
return total_accuracy / 5

end

get_model_accuracy(model, train_set, 1.3_test, test_sets)
get_model_accuracy(model, train_set, 1.9_test, test_sets)



Algorithm 5: ACTP selection module
𝑆 is a batch of states, 𝐴 is a batch of actions, and 𝑅 a batch of rewards. 𝜋 denotes the
policy estimator and 𝑘 is the number of reformulators the module ought to select.
sample_with_replacement(𝑆, 𝑝, 𝑘) draws 𝑘 samples from 𝑆 with replacement, using the
probability distribution 𝑝.

def get_actions(𝑆)
𝑃 ∶= e𝜋(𝑆) /* A batch of probability distributions */
selected_reformulators = []
reformulator_counts = []

for each probability distribution 𝑝 ∈ 𝑃 do
indices = []
if n_positive_entries(p) < 𝑘 then

indices = indices of the positive entries in 𝑝
else

indices = sample_with_replacement({0, ..., 𝑛 − 1}, 𝑝, 𝑘)
end

selected_reformulators.append(indices)
update reformulator_counts using indices

end

return selected_reformulators, reformulator_counts
end

def apply_reward(𝑆, 𝐴, 𝑅)
𝐿 ∶= get_loss(𝑆, 𝐴, 𝑅)
optimizer.apply_loss(𝐿, retain_graph = True)

end
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