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Abstract  
Occupant-centric decision-making in buildings requires integrating occupant information with 
other building information. Semantic web technologies promise to reduce data interoperability 
issues. However, methods to discover occupants’ experiences and integrate those with linked 
building data are scarce. This paper aims to show how combining knowledge discovery in 
databases and semantic web technology could lead to an improved understanding of occupants’ 
experiences in buildings. This approach is applied to a case study using the Open Family Home. 
An occupant collected feedback on various comfort indicators using a smartwatch app. 
Building information, sensor data, weather data, and occupant information and feedback were 
integrated into a cross-domain semantic digital twin. A Python script collected all the data from 
the digital twin and ran a data analysis, after which parameters that affected the occupant’s 
experience were collected. The results were transformed into triples and integrated with the 
linked building data. This combination of knowledge discovery in databases and semantic web 
technologies results in enriched digital twins that can be used for occupant-centric decision-
making. The approach presented in this study was generalized into a four-step method that can 
be applied at a variety of use-cases in the architecture, engineering, and construction domain. 
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1. Introduction 

While buildings should be designed to meet the occupants’ expectations, research suggests that 
many buildings fail to satisfy their occupants [18]. Occupant-centric building operations require the 
understanding of occupants and their relationship with the buildings they use. This relationship is very 
multidimensional and is influenced by physiological, psychological, and environmental parameters 
[14]. These parameters are often measured by disparate sources and stored in isolated data silos. 
Standards to integrate these data and operate buildings are still lacking [18].  

Over the last decades, various research initiatives applied semantic web technologies to integrate 
building information with other (non-building) information. Pauwels et al. [19] and Boje et al. [1] 
extensively described how semantic web technologies are applied to integrate heterogeneous building 
information into so-called semantic digital twins. Integrating sensor data with building information 
enabled researchers to monitor building performance [11,21], reduce energy consumption [13,17], and 
improve comfort [5,17]. While semantic web technologies to integrate building information and sensors 
are researched extensively, the integration of occupants is relatively new.  

Earlier research initiatives presented methods to measure occupants’ feedback [14] and integrate 
this feedback with linked building data [3]. Other studies used occupant feedback to predict individual 
occupant preferences [15]. However, an integrated method that combines cross-domain semantic digital 
twins and knowledge discovery approaches to understand occupant preferences is lacking. 
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Understanding the occupants’ behavior and preferences and integrating them with linked building data 
would support occupant-centric decision-making processes during the operational phase of buildings 
and improves design feedback. 

Therefore, this study presents a method to perform knowledge discovery in cross-domain semantic 
digital twins. The method was applied in a case study, where heterogeneous data from disparate sources 
was integrated using semantic web technologies. These data were then used in a knowledge discovery 
procedure, after which the discovered knowledge was integrated with the linked building data.  

Section 2 investigates state-of-the-art research into cross-domain semantic digital twins and 
knowledge discovery using those digital twins. The research method is based on this review and is 
described in section 3. Section 4 covers the results of this study, followed by a discussion and 
conclusion. 

2. Knowledge discovery in cross-domain semantic digital twins 
2.1. Cross-domain semantic digital twins 

The development of semantic web technologies for the AEC industry [19] enabled researchers to 
expand their digital twins with data from other domains. Boje et al. [1] emphasized the opportunities of 
cross-domain data integration. Multiple research initiatives integrated sensor data with linked building 
data to reduce energy consumption [6,13,17], monitor and improve building performance [5,6,21] and 
optimize comfort levels [3,17]. Integrating system information enables controlling systems based on 
the data in the digital twin [2,8]. Semantic integration of weather data could lead to enhanced monitoring 
and control strategies of buildings [5,6,11,13].  

The increasing interest in occupant-centric building operations [18] led to the development of 
semantic web technologies for occupants and their behavior. Nolich et al. [17] semantically represented 
occupants, including health status and comfort preferences. Li et al. [16] developed an ontology that 
represents occupant behavior and comfort. Similarly, work by Degha et al. [2] enabled semantic 
representations of occupants, their states, activities, properties, and preferences. Some recent research 
initiatives created ontologies to represent occupant feedback [3,12,17,27].  

2.2. Knowledge discovery in semantic digital twins 

Knowledge discovery in databases (KDD) is defined as “the nontrivial process of identifying valid, 
novel, potentially useful, and ultimately understandable patterns in data” [9]. KDD processes are 
applied to derive higher-level knowledge from (raw) data. Fayyad et al. [9] described a five-step model 
for knowledge discovery, being 1. Selection, 2. Preprocessing, 3. Transformation, 4. Data mining, and 
5. Evaluation and interpretation.  

Ristoski and Paulheim [25] and Esnaola-Gonzalez [10] described how semantic web technologies 
could be applied to enrich multiple steps in the KDD process. First, semantic web technologies could 
help the Selection procedure by integrating data from different data silos. Petrova et al. [21], Esnaola-
Gonzalez et al. [6], and Wang et al. [26] applied semantic web technologies to integrate building 
information with various sensor data streams for this purpose. Semantic web technologies can then be 
applied in the Preprocessing and Transformation phases. Examples mentioned in literature [10,25] 
include methods for outlier detection, handling of missing data, and feature generation and selection. 
Esnaola-Gonzalez et al. [7] developed the SemOD framework to help data analysts find outliers using 
SPARQL queries and applied this in cases related to building performance.  

According to Ristoski and Paulheim [25], the Data mining algorithms themselves hardly incorporate 
linked data directly. Recent literature presents similar findings and typically performs data mining in a 
dedicated software layer. Wang et al. [26] applied graph neural networks on semantic digital twins to 
find room type classifications based on the available information in the graph. Esnaola-Gonzalez et al. 
[6] used a data mining model to predict indoor temperature to reduce energy consumption by HVAC 
systems. Petrova et al. [21] applied data mining to find patterns in operational building data.  

Esnaola-Gonzalez [10] mentions that the Interpretation phase is often carried out by humans 
interpreting the KDD results based on their domain expertise. However, semantic representations of the 



results might potentially explain KDD results without human intervention. Both Esnaola-Gonzalez [10] 
and Petrova et al. [20,21] therefore suggested storing the semantically annotated results of the KDD 
process in the graph so that the discovered knowledge could be used for design decision support.  

3. Method 
3.1. Integrating knowledge discovery results with linked building data 

Figure 1 presents a stepwise approach to enable the integration of KDD results with linked building 
data. First, metadata is queried from a graph database (using SPARQL). This data is used to find specific 
datapoints in other (time-series) databases. Second, a KDD procedure is performed, including the five 
steps as described in section 2.2. After performing the KDD procedure, the results are translated to RDF 
triples using the OPO ontology (section 4.3). Finally, the triples can be stored in the graph database 
using SPARQL INSERT queries, so that the KDD results are integrated with the original linked 
building data. Depending on the complexity of the use-case, these steps can either be performed 
separately, or integrated into a single software solution, which would enable online learning. The next 
subsections describe how this approach is tested in a case study. 

 

      
Figure 1: Stepwise approach to integrating knowledge discovery results with linked building data 

 

 
Figure 2: Graphical overview of the research method 

3.2. Data collection 

A BIM model of a semi-detached house – the Open Family Home – was created using Revit 2020 
and converted to RDF Turtle following the BOT [24] and BOP [4] ontologies based on a procedure 
explained in earlier work [5]. Comfort-related data in the energy performance certificate was manually 
added to the Turtle file.  

Various sensors were installed in the OFH:LivingRoom and OFH:Office to measure illuminance 
(Eltek LS50), relative humidity and temperature (Eltek RHT10-D), CO2 (Eltek GD47), and indoor air 
quality (Eltek GD47AC). A Gen II SRV250 receiver was used to store all sensor data on a local Eltek 
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Gateway server, after which the data (30.000 measurements per sensor) were written to an InfluxDB 
cloud database.  

A smartwatch app – Mintal [3] – was used to obtain occupant feedback. Two subjects reported 396 
feedback responses on air quality, thermal comfort, and visual comfort between January 19 and 
February 8, 2022. Fitbit’s device API provides information related to the user account. While this 
research does not focus on medical data, the API allows further research into age, metabolic rate, 
gender, height, weight, and heart rate reports. Meteorological data, including the outdoor temperature, 
weather type, wind speed and direction, humidity, and air pressure, was acquired via CustomWeather2.  

3.3. Data integration 

Based on our findings in section 2.1, semantic web technologies were deployed to integrate all the 
data. Figure 2 shows a graphical overview of the resulting data structure. The RDF representation of 
the building’s topology forms the core of the linked data. This topology is modeled following the BOT 
ontology [24] and consists of a bot:Site, a bot:Building, and multiple bot:Storeys and bot:Spaces. The 
BEO3 ontology extends bot:Element and was used to model walls, floors slabs, windows, doors, and 
sensors. 

Static properties are directly linked to topological elements using datatype properties, following the 
level 1 complexity as mentioned in earlier research [5,23]. These static properties include simple 
geometry, material characteristics, orientation, and identifiers. Dynamic properties include the sensor 
measurements and weather data. Following suggestions by previous research [8,21], these data were 
stored in a time-series database (InfluxDB). The graph only contains metadata about those 
measurements, including the bop:Sensor, bop:Property, bop:DataPoint, and bop:Database.  

The occupants and their feedback are described using the OFO ontology [3]. Static properties of an 
ofo:Person, such as birthdate and gender, are again described using datatype properties. Dynamic 
properties include sensor data generated by the smartwatch and binary comfort states of the occupant 
(comfortable/uncomfortable). This research only uses the heart rate sensor and monitors three comfort 
parameters, namely thermal comfort, visual comfort, and air quality comfort. The data are stored in 
InfluxDB and the graph contains metadata that helps finding the right data point in the time-series 
database, similar to the weather and sensor data. All metadata of the occupants and their feedback is 
automatically generated by the smartwatch app [3]. 

3.4. Data analysis 

A knowledge discovery method by Lee and Ham [15] was applied to determine the influence of 
individual parameters on various comfort indicators. The method compares the value of a single 
parameter with a binary feedback state using boxplots. Significance is assumed if the mean value of the 
parameter during positive feedback lies outside the first quartile and third quartile range of the 
parameter during negative feedback (and vice-versa). Further elements of reasoning, including a 
comparison of the central 50%, and the spread and the shift of the boxes, are applied to understand the 
results [22].  

A Python script was developed to query the data from the various databases and perform the data 
analysis. Static properties were queried directly from GraphDB using SPARQLWrapper4. To query the 
latest state of dynamic properties, we first queried metadata from GraphDB (using SPARQLWrapper) 
and directly used these results to build Flux queries in InfluxDB (using InfluxDB-Python5). Missing 
sensor readings were replaced by their previous value. After performing the data analysis, significant 
values are stored as triples using the Occupant Preference Ontology (OPO) and integrated with the 
original data in GraphDB. This procedure is described in section 4.3. 

                                                      
2 https://www.timeanddate.com/weather/   
3 https://pi.pauwel.be/voc/buildingelement 
4 https://pypi.org/project/SPARQLWrapper/ 
5 https://github.com/influxdata/influxdb-python 



4. Results 

Section 4 presents the main results of the case study. The aim of this proof-of-concept study is to 
test the feasibility of the method introduced in section 3. 

4.1. Dataset overview 

Figure 3 shows an overview of the collected sensor data during the test period. The sensor data are 
queried using SPARQL and Flux queries as explained in section 3.4. First, these data could be used to 
determine a building’s performance based on predefined criteria, as shown in earlier work [5]. 
Secondly, the data helps to understand the occupants’ experience of the indoor environment, as shown 
in the next subsections. 

Various conclusions could be drawn based on figure 3. First of all, the OFH:LivingRoom seems to 
outperform the OFH:Office in both thermal comfort and air quality. The OFH:Office is relatively cold 
and humid, while also facing higher CO2 levels and air pollution. This could lead to sick building 
symptoms. However, the illuminance in the OFH:Office is significantly better than the illuminance in 
the OFH:LivingRoom. This observation is consistent with the fact that office spaces generally achieve 
a higher illuminance than living rooms.  

Based on those measurements, negative feedback is expected on thermal comfort, visual comfort, 
and air quality. Since the OFH:Office is likely to produce the most complaints, the remainder of this 
result section will focus on measurements in the OFH:Office. 

 

 

 
Figure 3: Comparison of IEQ parameters in the living room and the office 

4.2. Feature impact 

This subsection shows the results of the knowledge discovery method explained in section 3.4. Three 
analyses were performed to find significant parameters influencing thermal comfort (figure 4), visual 
comfort (figure 5), and air quality (figure 6), respectively. 

Figure 4 shows the parameters that are expected to influence OFH:Subject1’s thermal comfort. 
Remarkably, the data does not show a significant influence of the temperature and relative humidity on 
the thermal comfort feedback, while standards generally include those parameters in thermal comfort 
models [15].  
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The occupant’s heart rate, the outdoor temperature, and the time of the day were found to 
significantly influence the thermal comfort feedback of OFH:Subject1. The low outdoor temperature 
might cause radiant temperature asymmetry, while higher heart rates often relate to higher metabolic 
rates (increasing thermal comfort at low temperatures) [15]. Thermal adaptation and outdoor heat gains 
during the day might cause the correlation between time and comfort feedback. 

 

 

 
Figure 4: Influence of various parameters on thermal comfort of OFH:Subject1 

 
Figure 5 shows parameters that were expected to influence the visual comfort of OFH:Subject1. 

Higher illuminance is found to significantly improve the visual comfort. Interestingly, the outdoor 
visibility (which is lower during foggy weather) strongly influences the visual comfort, as almost all 
positive feedback was given during non-foggy weather.   

 

 
Figure 5: Influence of various parameters on visual comfort of OFH:Subject1 

 
The influence of parameters on OFH:Subject1’s feedback on air quality is shown in figure 6. The 

mean value for uncomfortable indoor air quality lies above the highest observed IAQ value during 
comfortable feedback, indicating that higher IAQ values (implying higher air pollution) negatively 
influence OFH:Subject1’s feedback on air quality. The CO2 concentration and relative humidity seem 
to have no significant influence on the experience of air quality.   

 



 
Figure 6: Influence of various parameters on air quality comfort of OFH:Subject1 

4.3. Knowledge integration 

To be able to use the results of our knowledge discovery method, the Python script that queries all 
the data and runs the knowledge discovery algorithms ends with translating the significant parameters 
to RDF triples. A SPARQL INSERT query is used to insert those triples in the GraphDB repository to 
integrate them with the existing linked building data. The triples are created using string concatenation 
in Python. This process is automated as it makes use of the metadata that is available in the GraphDB 
repository. This includes the person, the significant properties, and the comfort property.  

The resulting set of triples is shown in figure 7. The purple blocks represent the occupant 
preferences. Results of the knowledge discovery method are stored as literals and connected to an 
instance of opo:Preference using datatype properties. The opo:Preference class represents the latest set 
of preferences on a property. A timestamp is added to the opo:Preference class to enable querying the 
latest values. The pattern is based on the property state pattern in OPM [23]. The opo:Preference is 
linked to an ofo:Property using opo:onProperty. It is also linked to an ofo:Person and to the comfort 
property of this person.  

Listing 1 shows how a simple SPARQL query could return the first and third quartile values from 
the graph in figure 7. The result could be used to assess if the current state of the building fulfills the 
expectations of the user, and automatically trigger HVAC systems if parameters lie outside the 
acceptable range. 
 

 
Figure 7: Integrating occupant preferences using linked data 
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PREFIX OFH: <https://github.com/AlexDonkers/OpenFamilyHome#> 
PREFIX opo: <https://alexdonkers.github.io/opo#> 
PREFIX prov: <http://www.w3.org/ns/prov#> 
SELECT ?firstQuartile ?thirdQuartile  
WHERE { OFH:Subject1 opo:hasPreference ?preference . 
?preference opo:onProperty OFH:IndoorAirQuality . 
?preference prov:generatedAtTime ?time . 
?preference opo:firstQuartile ?firstQuartile . 
?preference opo:thirdQuartile ?thirdQuartile . } 
ORDER BY DESC(?time) LIMIT 1  
Listing 1: SPARQL query that finds OFH:Subject1's preferences on OFH:IndoorAirQuality 

5. Discussion 

This paper aimed to show how combining KDD and semantic web technologies could lead to an 
improved understanding of occupants’ experiences in buildings. The combination of KDD and semantic 
web technologies enables data scientists to perform cross-domain knowledge discovery procedures that 
justify the holistic nature of the AEC industry. 

The method presented in this paper can be generalized so that it can be used in a wide variety of use-
cases. The stepwise approach in figure 1 enables performing KDD on data in semantic digital twins and 
integrating the results into that digital twin. The approach can be executed using a single script for quick 
(online) knowledge integration. Step 2 can also consist of a more extensive KDD process. The 
flexibility of this approach makes it useful for knowledge discovery in relevant research domains, such 
as energy performance, indoor environmental quality monitoring, and system automation. 

 The application of KDD in the domain of occupant preferences and behavior is expected to be 
a recurring process. Not only will occupant preferences and behavior differ per person, but they are also 
expected to change over time. This includes seasonal changes and aging effects. Building improvements 
and other building innovations might also influence future occupant preferences. The flexibility of our 
stepwise approach allows for a quick update of the occupant preference module so that the building 
could adapt systems based on the latest occupant feedback without significant delays. 

 This research is a proof-of-concept of the introduced method. To unlock statistically significant 
results, more data needs to be generated. More in-depth statistical analyses should be used to research 
the influence of buildings’ attributes, environmental parameters, and personal characteristics on 
occupants’ preferences. 

6. Conclusion 

While buildings can contribute to occupants’ wellbeing, there is a lack of knowledge to operate 
buildings according to occupants’ expectations. Integrating heterogeneous data from various sources is 
necessary to enable occupant-centric decision-making. Semantic web technologies proved to 
successfully integrate such data into cross-domain semantic digital twins. However, methods to 
discover deeper insights of occupants’ preferences and experiences, and integrate those insights into 
the graph, are scarce. 

Therefore, this paper presents an approach to combine KDD procedures with semantic digital twins. 
A case study was performed using the Open Family Home. A subject collected feedback on various 
comfort indicators using the smartwatch app Mintal. Building information, sensor data, weather data, 
and occupant information and feedback were integrated using semantic web technologies. These data 
are analyzed using boxplots. 

The data analysis presents insights into the influence of individual parameters on the subject’s 
experience of comfort. Significant parameters were translated to RDF Turtle format and stored in the 
graph. Future work should demonstrate the validity of the KDD results with larger sample sizes of 
occupants and buildings. 

https://github.com/AlexDonkers/OpenFamilyHome
https://alexdonkers.github.io/opo
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