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Abstract
Hazard and Operability Analysis (HAZOP) is a powerful safety analysis technique with a long history in industrial process
control domain. With the increasing use of Machine Learning (ML) components in cyber physical systems—so called Learning-
Enabled Systems (LESs), there is a recent trend of applying HAZOP-like analysis to LESs. While it shows a great potential to
reserve the capability of doing sufficient and systematic safety analysis, there are new technical challenges raised by the
novel characteristics of ML that require retrofit of the conventional HAZOP technique. In this regard, we present a new
Hierarchical HAZOP-Like method for LESs (HILLS). To deal with the complexity of LESs, HILLS first does “divide and conquer”
by stratifying the whole system into three levels, and then proceeds HAZOP on each level to identify (latent-)hazards, causes,
security threats and mitigation (with new nodes and guide words). Finally, HILLS attempts at linking and propagating the
causal relationship among those identified elements within and across the three levels via both qualitative and quantitative
methods. We examine and illustrate the utility of HILLS by a case study on Autonomous Underwater Vehicles, with discussions
on assumptions and extensions to real-world applications. HILLS, as a first HAZOP-like attempt on LESs that explicitly
considers ML internal behaviours and its interactions with other components, not only uncovers the inherent difficulties of
doing safety analysis for LESs, but also demonstrates a good potential to tackle them.
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1. Introduction
After initially developed to support the chemical process
industries (by Lawley [1]), Hazard and Operability Anal-
ysis (HAZOP) has been successfully and widely applied
in the past 50 years. It is generally acknowledged to be
an effective yet simple method to systematically iden-
tify safety hazards. HAZOP is a prescriptive analysis
procedure designed to study the system operability by
analysing the effects of any deviation from its design
intent [2]. A HAZOP does semi-formal, systematic, and
critical examination of the process and engineering inten-
tions of the process design. The potential for hazards or
operability problems are thus assessed, and malfunction
of individual components and associated consequences
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for the whole system can be identified [3].
In recent years, increasingly sophisticated mathemati-

cal modelling processes from Machine Learning (ML) are
being used to analyse complex data and then embedded
into cyber physical systems—so called Learning-Enabled
Systems (LESs). How to ensure the safety of LESs has
become an enormous challenge [4, 5, 6]. As LESs are dis-
ruptively novel, they require new and advanced analysis
for the complex requirements on their safe and reliable
function [7]. Such analysis needs to be tailored to fully
evaluate the new character of ML [8, 9], making con-
ventional methods including HAZOP and HAZOP-like
variants (e.g., CHAZOP [10] and PES-HAZOP [11] that
are respectively introduced for computer-based and pro-
grammable electronic systems) obsolete. Moreover, LESs
exhibit unprecedented complexity, while past experience
suggests that HAZOP should be continuously retrofitted
to accommodate more complex systems [12], consider-
ing quantitative analysis frameworks [13, 14] and human
factors [15]. To the best of our knowledge, there is no
HAZOP-like safety analysis dedicated for LESs that takes
into account ML characters while preserving the sim-
plicity and effectiveness of HAZOP (comparing to other
conventional safety analysis methods [16]), which moti-
vates this research.

In this paper, we introduce a new Hierarchical HAZOP-
Like method for LESs (HILLS). HILLS first stratifies
the complex LESs into three levels—System Level, ML-
Lifecycle Level and Inner-ML Level, then applies HAZOP
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separately on each level to identify safety elements of
interest, namely causes, mitigation, hazards (or latent-
hazards for latent levels that cannot directly lead to
mishaps) and security threats. When applying HAZOP on
the ML related levels, we revise HAZOP to cope with ML
characteristics, e.g., by introducing new ways of defining
nodes and new sets of guide words. We also identify
causes of hazards from the ML development process (mod-
elled by the ML-Lifecycle level) to reflect its data-driven
nature (e.g., how data is collected, processed, etc). Fur-
thermore, we attempt to address the challenge of how
to link and propagate those identified safety elements
within and across three levels, then propose both qualita-
tive and quantitative (an initial Bayesian Belief Network
(BN) solution) methods to model the casual relationships.
To examine the effectiveness and demonstrate the use
case of HILLS, we finally conduct a case study on Au-
tonomous Underwater Vehicles (AUVs), with discussions
on assumptions adopted and extensions to real-world
applications.

The key contributions of this work include:
a) A first HAZOP-like safety analysis for LESs that

explicitly considers ML characters (including security
threats and the data-driven nature in the development
process) and reduces the complexity by hierarchical de-
sign.

b) New considerations of dividing nodes in the system
representation and a set of new guide words that adapt
the traditional HAZOP for levels regarding ML models.

c) A first attempt at linking/propagating identified
causes, mitigation, (latent-)hazards and security threats
across ML levels.

d) Key challenges identified as research questions that
are generic to safety analysis for LESs in future research.

2. Preliminaries: HAZOP
HAZOP is an inductive hazard assessment method that
is conducted by an expert team. It systematically inves-
tigates each element in the system with the goal to find
the potential situation that could cause the element to
pose hazards or limit the system’s normal operations.

There are four basic steps to perform the HAZOP:

• Define the project scope and aims, and form an
expert team.

• Identify system elements and model the system
as a system representation.

• Consider possible deviation of operational param-
eters.

• Identify hazards, causes and mitigation solutions.

Once the four steps are completed, team members
may generate additional safety requirements if necessary
to mitigate or prevent the identified issues, leading to

improvement of the system. More details are given for
each step of HAZOP as what follows.

Form HAZOP team To perform HAZOP, a team of
specialists is formed according to the project scope and
aims. These experts have extensive experience, expert
knowledge and understand the overall procedures of the
system deeply, such as operations, maintenance and en-
gineering design.

Identify system elements The HAZOP team will for-
mally represent the system under study by identifying
the elements. Each element is called a Node, represent-
ing an operational function. Then, nodes and interactions
between nodes (e.g., data/control flows) collectively form
the system representation under analysis.

Consider deviations of operational parameters
HAZOP assumes that a problem can only arise when
there are some Deviations from the intent design. HA-
ZOP searches for deviations in the system representation.
The deviation on a node is expressed as the combination
of Guide Words and process Attributes .

Each guide word is a short word to create the imagina-
tion of a deviation of the design/process intent. The most
commonly used guide words are: no, more, less, as well
as, part of, other than, and so on. Guide words provide a
systematic and consistent means of brainstorming poten-
tial deviations to normal operations. Each guide word has
a specific meaning, e.g., no means the complete negation
of the design intention, early means something occurred
earlier than intended time. Attributes are closely related
to nodes, and are usually the subject of the action being
performed. The definition of attributes relies on expert
knowledge.

Identify hazards, causes and mitigation Where
the result of a deviation would be a danger to work-
ers or to the production process, a potential problem is
found. Hazard (H) is a source of potential damage, harm
or adverse health effects on something/someone, while
mishaps are damages or harms on something/someone.
Cause (C) is the reasons why the deviation could occur.
It is possible that several causes are identified for one de-
viation. Mitigation (M) helps to reduce the occurrence
frequency of the deviations or to mitigate their conse-
quences. Hazards, causes, and mitigation are usually
assigned with their respective IDs.

3. Problem Statement
Given HAZOP was not originally designed for LESs, in-
evitably new problems arise when attempting to apply
HAZOP on LESs. These problems are formalized as a set



of research questions (RQs) proposed in this section. We
first present the rationale behind those RQs (i.e., justifica-
tion of how we have come to the RQs) and then articulate
what would be the expected solution to each RQ.

RQ1: How to reduce the complexity of LESs so that
HAZOP can be effectively applied to? HAZOP is a
semi-formalised analytical method, used to identify the
hazard scenarios of a defined process, and it has been
successfully used on relatively simple systems. When fac-
ing a complex system, HAZOP often cannot play its role
well. LESs exhibit unprecedented complexity, rendering
directly applying HAZOP to LESs infeasible. Therefore,
we need to reduce the complexity in the system represen-
tation. A simple yet effective solution is by “divide and
conquer”, e.g., stratifying a complex system into multi-
ple levels. In this regard, a promising solution to RQ1 is
to propose a hierarchical system representation, so that
HAZOP can be effectively applied.

RQ2: How to define nodes in each level, especially
for novel levels regarding ML? We assume that HA-
ZOP can effectively handle a single level system represen-
tation, as we expect to introduce a hierarchical structure
in the RQ1 solution. The second step of HAZOP is to
divide nodes at each level (presuming we already have a
group of experts as the HAZOP team). Past experience
shows that division of nodes can be based on the func-
tionalities of components in the system [17], so we may
continue using such traditional method for those non-ML
related levels. However, when there are ML components
in the system under analysis, it is difficult for the tradi-
tional division method of nodes to be directly applied.
Therefore, RQ2 is raised to explore the novel definition
of “functionalities” at ML-related levels.

RQ3: Will there be any new guide words related to
ML? Guide word is one of the key compositions of a
deviation. The team of experts is responsible for iden-
tifying guide words that fit the scope of their analysis,
while common guide words used were No, Less/More,
Slower/Faster, Early/Late, etc. However, the existing
set of guide words is unproven for use in ML applica-
tions, so this RQ aims at determining the effectiveness
and new meanings of known guide words for ML related
levels, and checking whether there might be missing
guide words. Although we expect most of the known
guide words can still be applicable, they might miss some
deviations given the new characteristics of ML. Thus,
prospective new guide words may be introduced, they
might miss some deviations given the new characteris-
tics of ML. Thus, prospective new guide words may be
introduced.

RQ4: How to establish the relationship between
identified safety elements across levels? For sim-
plicity, HAZOP is expected to be applied separately
to each level of a hierarchical system representation.
Therefore, to get the safety analysis of the whole com-
plex system, it is necessary to study the relationship
between identified safety elements—namely causes, mit-
igation, hazards (and latent-hazards)—across different
levels. Then, based on the nature of the relationship (e.g.,
causal or not, quantitative or qualitative, probabilistic
or deterministic), proper formalism should be used to
establish and express such relationship of those hazard
analysis results collected from each level.

4. Running Example

Figure 1: Workflow diagram of the running example

We present a running example from the SOLITUDE
project1, which conducts safety analysis on an AUV that
autonomously finds a dock and performs the docking
task. The workflow of the scenario is given in Figure 1.

The robot starts when received the user’s command.
Once started, it uses sensors (e.g., cameras) to receive
data. Data is transmitted and preprocessed before feeding
into the YOLO model for object detection and localisa-
tion. The localisation result is further utilised for path
planning. In addition, the above normal workflow may
suffer from external attacks on some stages, including
data transmission, data preparation, and path planning.
We remark that, the scenario in the project is more com-
plex, including utilising deep reinforcement learning for
motion planning, but for the space limit, this paper only
focuses on the perception component.

5. Proposed Method
In this section, we present the HILLS method, and com-
pare it with HAZOP. HILLS is inheriting from HAZOP

1https://github.com/Solitude-SAMR/UWV_RAM
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the basic structure composition and definitions of ele-
ments, with extensions that are suitable for LESs. The
tables and figures presented in this section are partial for
illustrative purpose only, cf. the complete HILLS analysis
results based on the SOLITUDE project at the GitHub
repository1.

5.1. Hierarchical HAZOP
As shown in Figure 2, HILLS has a three-level structure,
including system level, ML-lifecycle level and inner-ML
level. We analyse each level individually in this subsec-
tion, and discuss their relations in Section 5.2. Note, the
HILLS structure discussed here is generic (for illustra-
tion purpose), and may be subject to adaptation when
working with specific systems.

Figure 2: The 3 level hierarchical structure of HILLS

Table 1
Nodes in each level in SOLITUDE example

Level Node Description

System level Node 1 User
System level Node 2 Hardware components
System level Node 3 Data transmission
ML-lifecycle level Node 4 Data collection
ML-lifecycle level Node 5 Labeling
ML-lifecycle level Node 6 Data preprocessing
ML-lifecycle level Node 7 Hyperparameter setting
ML-lifecycle level Node 8 Model deployment
Inner-ML level Node 9 Feature Extracting
Inner-ML level Node 10 Object Detection
ML-lifecycle level Node 11 Localisation

5.1.1. System level

HILLS at the system level largely follows HAZOP. Hard-
ware, software, and ML components of an LES represent

different functions, and they will be categorized as dif-
ferent Nodes. Consider the running example in Figure 1,
“blue blocks” represent the functional areas of the run-
ning example, which means that our nodes can be set
according to these blocks. An example of setting nodes
is provided in Table 1. We note, the setting of nodes is
specific to the system under investigation. E.g., the node
“Labeling” was not included in Figure 1.

Some guide words originated from, e.g., the chemical
industry can still be used in LESs. Attributes related to
the LES are used together with the guide words to express
deviations.

Example 1 At system level, we discovered several haz-
ards from the running example, some of them are sum-
marised in Table 2. E.g., one of the hazards is “erratic
trajectory”, suggesting that the robot moves into an unsafe
area. This hazard is associated with a deviation “no action”
where “no” is the guide word and “action” is the attribute
(when the AUV takes no actions in the water, the distur-
bance of current makes it difficult for the robot to maintain
a stable trajectory). One of the causes of the hazard is “no
data from sensor”, which can be mitigated by, e.g., the use
of an acoustic guidance system as a duplicated perception
component based on another sensor.
Example 2 Some hazards, such as “erratic trajectory”,

may appear in different nodes, which suggests that they
may occur more often, and thus may have the higher pri-
ority to be mitigated after considering the severity of con-
sequences as well.
Example 3 One hazard can be mitigated in different

ways. For example, we identified several mitigation solu-
tions for the “erratic trajectory”, most of which focus on
early prevention, such as “maximum safe distance main-
tained if uncertain” and “camera health monitor”.

HILLS aims to exhaustively cover all potential hazards.
In the running example, the possible causes of crashes
or failing to turn directions when facing obstacles may
include “no data from sensors (instantaneous or perma-
nent)”, and “misclassification”, corresponding to the er-
rors in hardware and software components, respectively.
However, the hazards, causes or mitigation may not be
fully identifiable at this level. For example, there are
other mitigation solutions for the cause “misclassifica-
tion” that need to consider how the ML component is
trained and constructed. However, the system level alone
cannot naturally include relevant nodes for this purpose.
This motivates us to consider other levels (as discussed
below).

5.1.2. ML-Lifecycle level

The key motivation for the ML-lifecycle level is to handle
the complexity arising from the integration of ML compo-
nents into an LES, considering mainly the human factors
and security threats involved in the development process



Table 2
System level analysis (partial)

Node Deviation Hazard Cause Mitigation

Data transmission (Flow from camera to classifier) No action Erratic trajectory No data from sensor (transient) Acoustic guidance system
Data transmission (Flow from camera to classifier) No action Erratic trajectory No data from sensor (transient) Situational awareness (route mapped and planned in advance)
Data transmission (Flow from camera to classifier) No action Erratic trajectory No data from sensor (transient) Maximum safe distance maintained if uncertain
Data transmission (Flow from camera to classifier) No action Insufficient energy/power No data from sensor (permanent) Camera health monitor (e.g. sanity check for blank images)
Data transmission (Data flow) Part of action Erratic trajectory Corrupted sensor data Reliable camera (robust to environment etc.)
Data transmission (Data value) Wrong value Loss of communication Hardware breakdown Hardware monitor
Data transmission (Data value) Wrong value Loss of communication Information conflict/lag Maximum safe distance maintained if uncertain

of ML models. Thus, deviations from this level cannot be
identified if analysis was only conducted at the system
level. On the other hand, the hazards at system level
may be attributed to the hazards at ML-lifecycle level,
e.g., the low prediction accuracy of ML component may
be caused by the polluted data in the data collection or
insufficient epochs of training. For the running example,
through the analysis at the ML-lifecycle level, we know
that the low accuracy of the results may be caused by
inaccurate labeling. We remark that, deviations identi-
fied at non system level are called Latent-hazards (LH),
as they pose indirect hazards from latent levels with no
hardware components being interacted and thus cannot
directly lead to mishaps.

Table 3 presents a set of guide words that are required
at this level. These guide words are redefined from the
existing guide words in HAZOP. Table 3 includes both
their original meanings (in HAZOP) and new meanings
(in HILLS). “part of” represents a qualitative modification
in the original meaning, and in HILLS it may mean the
incompleteness of the structures, definitions, or settings.
For “Less” and “More”, considering that we are concerned
about data flow and data value, their new meanings refer
to the amount of data rather than, e.g., the water volume.

Table 3
Redefined guide words in the ML-Lifecycle level

Guide word Part of
Original Meaning Qualitative modification
New Meaning Incomplete definition or setting
Guide word Less
Original Meaning Too little additive volume added
New Meaning A less amount of data
Guide word More
Original Meaning Too much additive volume added
New Meaning A large amount of data

Safety analysis at the ML-lifecycle level can exhibit
new latent-hazards, as shown in Table 4. While ML mod-
els are subject to security issues, we believe malicious
attacking behaviors should also be considered as security
Threats (T). Human factors are considered because ML
development is a human-centered process, which makes
possible some human related errors such as labelling er-
rors, part of operations were forgotten and the omission

of data preparation. Aforementioned mistakes are direct
human errors. There are also adversarial attacks that
can lead to significant drop in performance, which are
classified as security threats. Some examples are shown
in Table 4.
Example 4 On the node “data collection”, there is a

threat “data poisoning”, which occurs because the input
data is contaminated. A suggested mitigation is to deploy
a detector based on data provenance.
Example 5 For ML components, we identified mitiga-

tion, e.g., “classifier reliability for critical objects >X” [18],
to reduce misclassifications with safety impacts.

Example 6 For the latent-hazards “low prediction accu-
racy”, its causes include “users make mistakes on labelling”,
“data itself is missing”, and “data itself is incomplete”, each
of which has their suggested mitigation (cf. Table 4).

Example 7 There is a deviation “attack”, whose threats
are various attacks, e.g., evasion attack, backdoor attack,
and data poisoning attack. Their respective cause is usu-
ally that a certain entity in the training or inference of an
ML model (e.g., input instance, model structure, training,
dataset) is perturbed, modified, or contaminated. Their
respective mitigation can be very specific (cf. Table 4), e.g.,
the backdoor detector in [19] for tree ensemble classifiers.

5.1.3. Inner-ML level

ML components such as YOLO are composed of one or
more ML models, each of which is formed of a set of
functional layers. Even after a thorough analysis of all
possible deviations (with mitigation solutions) in the ML
development process modelled by our ML-lifecycle level,
the ML components may not perform as expected, e.g.,
the convolutional layers fail to extract features accurately,
and the fully connected layers fail to make reliable classi-
fications. Thus, safety analysis on the internal structure
of an ML component is required. At the inner-ML level,
HILLS takes the method of extracting basic layers of an
ML component to form a model for analysis. To cater
for different complexity of the ML component, two ex-
traction methods are proposed. The first one deals with
simple models with up to 5 layers. It follows the layer
structure and considers each layer to represent a sepa-
rate functionality. Consequently, each layer is defined
as a node in the system representation. The second one
deals with more complex, larger models by abstracting a



Table 4
ML-lifecycle level analysis (partial)

Node Deviation Latent-hazard & Threat Cause Mitigation

Labeling (Manually label data) Wrong label Low prediction accuracy Users make mistake with labeling Keep classifier accuracy/reliability for critical objects >X
Labeling (Manually label data) Wrong label Low prediction accuracy Users make mistake with labeling Sanity check for ground truth and label attribute
Labeling (Manually label data) Incapable label Low prediction accuracy Data itself is incomplete Keep classifier accuracy/reliability for critical objects >X
Labeling (Manually label data) Incapable label Low prediction accuracy Data itself is incomplete Sanity check for ground truth and label attribute
Data collection Attacked Data Poisoning Input data is contaminated Detection based on data provenance
Data preprocessing Part of data washing Incorrect data ranges Data washing incomplete Consistency Check (e.g. Value range)
Hyperparameter setting Wrong setting Inappropriate hyperparameter User make mistake with setting Sanity check to hyperparameter
Hyperparameter setting Wrong setting Inappropriate hyperparameter Unsuitable hyperparameter for setting Continuing monitor to hyperparameter
Model deployment Attacked Robustness Attacks Insert a calculated disturbance into the input data Defensive Distillation
Model deployment Attacked Backdoor Insert disturbance into the input data XAI explain to input
Localisation No Localisation Lose estimation of position Hardware (sensors) breakdown Situational awareness (route mapped and planned in advance)
Localisation No Localisation Lose estimation of position Hardware mismatch Common time to synchronise data and results
Localisation Wrong Localisation Misposition Slip rate too large Situational awareness (route mapped and planned in advance)
Localisation Wrong Localisation Misposition Combination miss between hardware and ML Common time to synchronise data and results

model into several functional blocks and every block may
contain a number of layers. Our analysis in the running
example follows the second method.

Table 5
New guide words of ML-Lifecycle and inner-ML levels

Guide words Meaning

Wrong Wrong setting or data value

Invalid
Invalid data value or data flow, possibly
conflicting with other components

Incomplete Incomplete data value

Perturbed Data was perturbed by external attackers

Incapable Part of data can not be labeled

We identified several new guide words, as shown in
Table 5, which are highly relevant to the setup of the
ML component and data flow. It is worth noting that the
“Perturbed” is a special guide word that is needed when
considering the existence of an external attacker.

Example 8 Deviations containing “perturbed” are usu-
ally proprietary attacks, e.g., we record “perturbed dataset”
as “attack” and the threat as “data poisoning” (cf. Table 4).

As shown in Table 6, HILLS performs analysis inside
an ML model, which in general is closely related to the
internal structure of the model.

Example 9 When the ML component has wrong output,
we can get from the inner-ML level analysis that this may
be related to the setting of the hyperparameter. Explainable
AI (XAI) methods may help users to, e.g., locate which layer
of neurons contribute the most to the wrong ML behaviours
[20] and detect backdoors [21].

Example 10 At the inner-ML level, we focus on the ML
model structure itself. E.g., unsuitable parameter setting
in activation functions or pooling layers also make specific
latent-hazards. It also leads to wrong outputs or losing part
of information of figures (cf. Table 6).

5.1.4. Further Considerations on Use Cases of
HILLS

HAZOP is to provide a systematic, critical examination of
the process (and engineering intent) of a new or existing
facility, and should normally be done before the system is
officially put into service [22]. Nevertheless, we believe
that HILLS can still be applied after the occurrence of
an accident, in particular the recent technologies have
enabled the recording of system executions through, e.g.,
direct observation, recorded video, or snapshot images.
HILLS may use the recordings to identify related causes
and hazards.

Moreover, we note the following points when using
HILLS. First, when dealing with an LES, we focus on the
workflow or the pipeline diagram of the entire system, to
identify nodes according to the method we explained ear-
lier. The analysis at the system level can help us identify
the hazards sourced from the ML components, to enable
the analysis at the lower levels.

Second, guide words will be combined with the at-
tributes of each node to form deviations. This will pro-
ceed sequentially following the level structure of HILLS,
i.e., the deviations at the system level will be identified
first, followed by the ML-lifecycle level, and the inner-ML
level.

Third, before looking for (latent-)hazards, causes, and
mitigation at each level, we are based on a reasonable
assumption that mitigation solutions of higher levels are
easier than lower levels. That said, HILLS may not need
to be conducted at the inner-ML level, and can stop when
all hazards are found and mitigated at other levels.

5.2. Relations Between Levels
Up to now, we have identified the nodes, attributes, guide
words, (latent-)hazards, threats, causes, and mitigation
solutions for individual levels in the HILLS framework.
We also notice that the relations between these elements
can be very complicated. This calls for a formal analysis
of the relations. While formalising the relations between
levels is a significant challenge, and there might not be



Table 6
Inner-ML level analysis (partial)

Node Deviation Latent-hazard & Threat Cause Mitigation

Feature extracting Imprecise extracting Wrong outputs Less layers Using deeper layers
Feature extracting Wrong extracting Wrong outputs Wrong hyperparameter setting Using Explainable AI (XAI) to locate
Feature extracting Wrong extracting Wrong outputs Unsuitable kernel size setting Kernel size need to match dataset size
Feature extracting Wrong extracting Dying ReLU problem Learning rate setting too large Choosing suitable learning rate for ReLU (activation function)
Feature extracting Wrong extracting Losing information of figures Unsuitable parameter setting in pooling layer Evaluate whether need pooling layer
Feature extracting Wrong extracting Losing information of figures Unsuitable parameter setting in pooling layer Choose an appropriate pooling type

one best way, we propose to study them both qualitatively
and quantitatively.

5.2.1. Qualitative Analysis

Qualitative analysis studies the connections between lev-
els, with the guide words as entry points. The guide
words and the deviations may have the following con-
nections.

First of all, the same guide words at a level have strong
associations, even if they are combined with different
attributes. Second, if a guide word is the same between
different levels, the one in the higher level may contribute
as the main reason for the latent-hazard of the lower level.
Example 11 We use “no” as an example. We can get

a deviation “no action” at the system level, and have the
deviation “no localisation” in the ML-lifecycle level. Given
they share the same guide word, we should consider whether
the “no localisation” has a causality relation with the “no
action”.

Moreover, it is assumed that there is an inclusive re-
lationship between the guide words of the higher level
and lower level, such as “no” and “part of”, or there are
similar meanings, such as “invalid” or “incompatible”.

The existence of a guide word with an inclusive rela-
tionship suggests that for the latent-hazard found in the
lower level, its cause may belong to the higher level.

Example 12 If we choose “No action” at system level and
“Part of definition” at the ML-lifecycle level (e.g., images
without defined labels), then we may establish an inclusive
relationship between “No” and “Part of”.
Example 13 We use “invalid data value” and “incom-

patible data value” as examples, “incompatible data value”
may lead to the low accuracy of output or no results, it has
a similar meaning with “invalid data value”.

Selecting guide words is arguably a quite subjective
activity that experts may use different guide words with
similar semantics to identify the same cause. To this end,
the proposed way of establishing relationships across
levels can only cope with the ideal case in which identi-
cal guide words are used. Alternative methods are still
needed for other cases, which forms our future work.

5.2.2. Quantitative Analysis

A BN is a graphical model that presents probabilistic re-
lationships between a set of variables by determining
causal relationships between them [23]. It is also a pow-
erful tool for knowledge representation and reasoning
under uncertainty, visually presenting probabilistic rela-
tionships between a set of variables [24]. Actually, BN has
already been used to study the relation between latent
features learned by a deep neural network [25]. While
using BN to express relationship of elements is not a new
idea in traditional safety analysis [26, 27, 28]. We take the
relationship between several elements at the ML-lifecycle
level and the inner-ML level as an example to explore the
possibility of using BN to represent it. This is an idea of
quantitatively expressing relationships, since the higher
level contains some abstract concepts, it is difficult to
represent in variables. Even if we assume that abstract
concepts are represented using variables, it is hard to
present Conditional Probability Tables (CPTs) as a pre-
requisite for BN to start. All parameters used to quantify
BN must be obtained based on system background and
expert knowledge.

Figure 3: A BN fragment (with illustrative probabilities)

Figure 3 shows a fragment of the BN model for the
running example, considering several security threats
between the ML-lifecycle level and the inner-ML level.

The nodes of a BN can represent threats (𝑇 𝑙.𝑖), causes
(𝐶𝑙.𝑖), or mitigation (𝑀𝑙.𝑖), where variable 𝑙 ∈ {1, 2, 3}
ranges over the levels in HILLS and 𝑖 is the index of the
threat/cause/mitigation at a level. E.g., 𝑇2.𝑖 is the 𝑖-th
threat at ML-lifecycle level.

Besides, we need to assign CPT to each non-leaf node
of the BN, and assign a prior probability to the leaf or set
the observed evidence probability node. It is noted that
the expert knowledge is needed for both the construction
of the basic structure and the assignment of CPTs. The



probabilities used in Figure 3 are for illustrative purposes,
while more enlightening examples can be found in [25].

Example 14 For threat nodes with no incoming arrows,
such as 𝑇2.𝑖 and 𝑇3.𝑖, we may set the probability of their
occurrence to 100 percent.

Once constructed, we can make probabilistic inference
on the BN to ensure that the construction is correct w.r.t.
expert knowledge. The following are two typical exam-
ples, by applying the d-separation algorithm [29] (for
determining dependencies of variables in a BN).
Example 15 There may be multiple children nodes at

different levels for a parent node. In Figure 3, the threat
𝑇2.𝑖 has two causes, 𝐶2.𝑎 and 𝐶3.𝑎, at the ML-lifecycle
level and inner-ML level, respectively. While the two causes
may be mitigated separately as they belong to different
levels, the effectiveness of their respective mitigation might
affect the probabilistic inference based on each other’s CPT
(under the condition that the probability for 𝑇2.1 is not
observable).
Example 16 There may be multiple parent nodes for

a child node. In Figure 3, the mitigation 𝑀2.𝑎, has two
causes, 𝐶2.𝑎 and 𝐶2.𝑏, representing that one mitigation
may support two causes. By observing the effectiveness of
the mitigation (i.e., the CPT of 𝑀2.𝑎), we will infer how
one cause 𝐶2.𝑎 may influence the other cause 𝐶2.𝑏 and
vice versa.

We note, the construction of the BN structure and
CPTs, as well as the above probabilistic inference, should
be discussed and accepted by domain experts and all
stakeholders. We believe BN is potentially a powerful
tool for the purpose of modelling probabilistic causality
relationship between elements of ML related levels, while
how to apply BN in practice in the context of HILLS
remains an open challenge.

6. Related Work
HAZOP HAZOP is widely used in industrial domains,
such as nuclear power [30] and chemical industry [31].
In recent years, there has been efforts on integrating
HAZOP with other methods [32, 33] to analyse com-
mon causes and system scenarios [34]. A comprehensive
review of those techniques may refer to recent survey
papers, e.g. [35]. The application of HAZOP on computer-
based systems first appears in [36]. After that, the expe-
rience gained from application of HAZOP and related
techniques to computer-based systems was summarised
in [37]. There is a recent trend of applying HAZOP-like
analysis to LESs, e.g., in autonomous car context [38].

Hierarchical structure The concept of hierarchy is
not new, but existing papers either focus on the hierarchi-
cal priority of the analysis order in the HAZOP analysis

process [39] or consider the direct application of the HA-
ZOP to the hierarchical structure of traditional systems
with no ML components [40]. A hierarchical structure is
needed for its suitability to work with ML components
(black-box in general, and inside the black-box, it is a
layer-structure with each layer being a simple mathe-
matical function). In HILLS, we innovatively consider
the interaction between humans and ML components
and the internal structure of the ML components. More-
over, inspired by [41], we investigate how to link and
propagate identified safety elements at different levels.

STPA STAMP (Systems-Theoretic Accident Model and
Processes) is also a very popular safety analysis method.
STAMP uses three fundamental concepts from sys-
tem theory: Emergence and hierarchy, communication
and control, and process models [42]. STPA (System-
Theoretic Process Analysis) uses such techniques, being
based on the STAMP model. STPA pays more attention
to the overall control loop and process analysis of the
system, and focuses on unsafe control actions and causal
factors in a control structure. It is widely used in rail-
way safety assurances [43], cyber safety and security
[44], robotics [45] and driver-vehicle interactions [46].
STPA is also used to explore a hierarchical structural
safety analysis framework in [47]. Comparing to STPA,
HAZOP is relatively easier to conduct and clearer to com-
municate, supported by structural decomposition of the
system functions [16]. We start with retrofitting HA-
ZOP for LESs, while STPA offers a new perspective to
consider the feasibility of hierarchical safety analysis on
LESs which is our planed future work.

7. Conclusion
We propose a hierarchical HAZOP-like method, HILLS,
for the safety analysis of LESs. Being different from the
traditional HAZOP, HILLS analyses LESs in a hierarchical
way, disentangling the complexity by working with three
separate levels first and then establishing their relations
via both qualitative and quantitative methods, e.g., BNs.
HILLS is applied to a practical example of AUVs, with
the discovery of new guide words as well as new causes
and mitigation related to ML.

In conclusion, HILLS complements HAZOP when
working with LESs, and is able to identify safety hazards
and security threats related to ML components through
its structural advantages.
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