
Demo: Synthesis-Enabled Live Coding on the Web

Kat Pompermayer, Catherine Ji, Hannah Macias, Mark Santolucito
Barnard College, Columbia University

3009 Broadway
NYC, NY 10027

klp2148@barnard.edu, cmj2194@barnard.edu, hcm2142@barnard.edu, msantolu@barnard.edu

Abstract

Live Coding is a performance practice characterized by the
act of programming in real-time to generate media. Live Cod-
ing allows artists to explore the intersection of their media of
choice and computational structure in a performance setting.
One of the main challenges in making Live Coding a more
inclusive and accessible artistic practice is the overhead of
learning to program, both in general, and in the language spe-
cific to the live coding environment. We present a demo of a
tool for synthesis-enabled Live Coding. Our tool allows users
to switch back and forth between a programming-centric live
coding environment as well as a graphical interface that syn-
thesizes code.

Introduction
Core to the ethos of Live Coding is to always “show your
code” (TOPLAP 2020). However, where does this leave new
prospective Live Coders with no background in program-
ming? Is the only way to practice the art of Live Coding to
first study programming independently of the Live Coding
context?

To this end, we introduce our tool, a synthesis-enabled
Live Coding environment on the web, which allows users
to gradually ease into the practice of Live Coding. Our goal
is to keep to the Live Code mantra of “show your code”,
such that the code for the generated sound is always visible -
without demanding that the user write every line of that code
themselves. To do this, we leverage program synthesis, the
process of automatic code construction from user provided
specifications.

Program synthesis is the task of the automatically generat-
ing programs based on some user provided specification. In
our tool, we specifically use programming-by-example (My-
ers 1986), where the users provides examples of the intended
behavior of the code, and we generate code that matches that
pattern. Rather than manually typing examples, we allow
users to provide examples through interactions with a graph-
ical interface. As users interact with the graphical interface,

Copyright © 2021 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

code is continuously synthesized that mirrors the functional-
ity described by the user through the interface, allowing the
user to switch to a programming-focused live code style at
any time.

In order to generate synthesized functions, our system
relies on using queries composed in the SyGuS (Syntax
Guided-Synthesis) language (Alur et al. 2013). A SyGuS
solver takes specifications in the SyGuS language and pro-
duces functions that satisfy said specifications. We use Sy-
GuS to produce our synthesized functions which project
drum patterns on the GUI. The synthesis pipeline can be
described through the following steps. First we gather user
input from the GUI or live coding interface; the user input
is then translated into array data; that array data is trans-
formed into SyGuS constraints; a SyGuS solver uses these
constraints to generate a function; and the function is then
embedded into our DSL.

The contributions of this demo paper are to:

1. Provide a user-level description of the synthesis-enabled
live coding tool;

2. Introduce a new set of features for synthesis-enabled live
coding, including a new domains-specific language, sup-
port of duration values, and in-browser recording;

3. Present our tool, open-source, with a live demo available1.

Related Work
There has been a number of efforts to make Live Coding
more accessible. Starting with Sonic Pi (Aaron 2016) and
continuing with TidalCycles (McLean and Wiggins 2010),
these performance environments support domain specific-
languages (DSLs), which is a critical part of making live
coding more accessible to new programmers (Aaron and
Blackwell 2013).

The idea of a web-based live coding environment has also
been explored (Ogborn et al. 2017; Roberts et al. 2015).
One of the major benefits noted in prior implementations of
browser-based live coding is the ability for users to explore
live coding without the need to install tools locally on their
computer.

1https://github.com/Barnard-PL-Labs/SequencerLiveCoding

https://github.com/Barnard-PL-Labs/SequencerLiveCoding


Enabling live-coding with more multimodal interfaces
than simply text-editing also appears in a number of
tools (Hempel, Lubin, and Chugh 2019; McNutt and Chugh
2021; Hashimoto 2021). However, these multimodal inter-
face capabilities (e.g. projection boxes (Lerner 2020)) have
remained largely syntactic - for example giving easier ac-
cess to manipulate constants. Synthesis of code from user-
provided specifications falls outside the scope of most exist-
ing live coding environments.

The most closely related work is that of (Santolucito
2021), off of which we build. However the prototype de-
scribed in (Santolucito 2021) lacks a DSL, which is critical
for the usability of the live coding language. It is also limited
in its expressive capacity, as it only allows specifying the
volume of a sample, but not the playback duration. There
is also no built-in recording functionality, or the ability to
switch interface modes between the live coding interface or
the drum rack GUI.

System Overview
Our live coding environment runs on the web and uses
JavaScript as the live coding language. The live coding
model takes inspiration from a pure functional language set-
ting - at each time step the state is reevaluated with the given
code. The state defines what should be played at every time
step. Time is quantized into 16 steps, following a common
subdivision value for many step-sequencers. This allows our
tool to subdivide time in sixteen indices; each index repre-
sents a 16th note in a musical measure. Given this uniform
division of time, arrays are chosen to represent the interme-
diate form between the GUI data and text-representation. Six
sample tracks are available to the user. These six tracks each
represent different drums in a drum kit. Our implementation
includes three different tom drums, one snare, one kick, and
one hi-hat.

Users can write code in the live code window from
scratch, or use the graphical interface to get started. By
clicking on buttons on the drum rack view, initial code
will be generated through program synthesis that corre-
sponds to the recorded GUI interactions. This code can
then be manually adjusted, allowing for an easier point of
entry to live coding. As the manual edits to the code are
made, the GUI will update as well - in this way, we have
a bi-directional connection between the code and the GUI.
Environments that allow for a similar interaction between
code and GUI include Threnoscope (Magnusson 2014) and
Glisp (Hashimoto 2021).

We believe the live-coding feature is useful in our tool be-
cause it allows the user to create beat-patterns in the GUI by
leveraging the expressive power of code. This is more effi-
cient than individually clicking each drum on the interface.

View Options in the Interface
Our tool supports three different ways to interact with the
interface. We plan to use these three different views in the
future to study how users leverage synthesis in a live coding
environment.

The default setting is the Synthesis View, as shown in

Figure 1: Synthesis View

Figure 2: Live Coding View

Figure 3: Drum Rack View



Fig. 1, which is the most fully featured mode. The Syn-
thesis View contains a live-coding editor, which supports
JavaScript syntax and our implemented musical library
functions. Synthesis View also contains a virtual drum rack,
which resembles a physical musical sequencer (a device that
can record, store, distort and playback sound samples). This
view allows the user to interact with both the live coding in-
terface and the drum rack interface at the same time. The
Synthesis View requires us to have implemented program
synthesis to enable and maintain a semantic connection be-
tween the state of the drum rack GUI and the coding win-
dow.

A second interaction mode is the Live Coding View
shown in Fig. 2, where the drum rack interface is not made
available to the user. In this mode, the user must solely rely
on the live coding interface to manipulate the state of the
beat. Program synthesis functionality is not required here
because the drum rack interface has no corresponding code
representation that is visible to the user.

Finally, we have the Drum Rack View shown in Fig. 3,
there is no option for live coding the beat patterns. The user
manually selects the volume and duration of each beat. Syn-
thesis is not needed in this view because there is no option
to display synthesized functions in the live coding interface.

Volume Specifications

Figure 4: Volume values on the interface, showing a silent,
half loudness, and full loudness note.

For each track in the interface, we have a length 16 array
that defines the rhythm of the that track. At each index in the
array, we can have a 0 (silence), 1 (half loudness), or 2 (full
loudness). The volume values are represented on the inter-
face using grey dots in the center of a drum beat, as shown
in Fig. 4. The state of the volume array can be manipulated
in one of two ways. First, the user can write code in the live
coding window that manipulates the volume values. Second,
the user can click directly on the drum rack GUI to change
increment the volume. In the case that the user changes the
state of the array through the GUI, we use program synthe-
sis to generate code that matches the updated array state.
The synthesis procedure is described in depth in (Santolu-
cito 2021).

Duration Specifications

Figure 5: Duration Values on the Interface, showing a Quar-
ter, Half, Dotted Quarter, and Whole Note

Figure 6: Overlapping Sounds: A Whole Note followed by a
Quarter Note

Similar to the model for volume data, our tools allows the
user to manipulate the duration of playback for each beat.
The model and interaction design follows that of the volume
data; for each track in the interface we have a length 16 ar-
ray that corresponds to duration data. Valid duration values
range from 0-4, where: 0 is silence, 1 is a quarter note, 2 is
a half note, 3 is a dotted quarter note, and 4 is a whole note
as shown in Fig. 5.

With the ability to specify durations for sample playback,
our tool supports more complex patterns, including overlap-
ping samples. For example, in Fig. 6, we show a 4 beat pat-
tern. This pattern plays back the sample (Hi-Hat in this case)
for a whole note duration at time index 0 (sounding the sam-
ple over 4 time indices), followed immediately by a quarter
note at index 1 (which produces sound for 1 time index).

Program synthesis also supports synthesis of functions
for generating duration data that matches the pattern en-
tered through the graphical interface. This is accomplished
by synthesizing two functions in a single SyGuS query. One
function represents volume data, and the second represents
duration data for a given track (Alur et al. 2013). This ap-
proach allows our program to run as time-efficiently as pos-
sible.

Slider Functions
In addition to the track rhythm editor, our tool also supports
pitch manipulation of samples with a set of sliders. As with
the track rhythms, users can manipulate pitch either through
the graphical interface (moving the sliders with the mouse),
or through code. When the sliders are changed through the
interface, corresponding code is synthesized to match the
updated state. It is important to note that the synthesis for
slider values does not yet support any “automation”. So far,
we can only generate code that corresponds to a static value
of a slider - rather than tracking the motion of a slider over
time.

Internal DSL
The core of our Live Coding model is to manipulate a
dictionary containing the state of the beat at every time
step. At every time step, the code in the live code win-
dow is re-evaluated to generate a new beat, which is played
back at that timestep. Since the dictionary containing the
beat is a JavaScript object, users can simply write plain
JavaScript code to live code in our language. However, to
make Live Coding with our tool a more pleasant experi-
ence, we provide, additionally, a series of library functions.
As these functions follow the syntax of the host language
(JavaScript), we defined them as an internal DSL (a set of
library functions). Our DSL is designed to facilitate the Live



Coding experience of the web application, and in the fu-
ture we hope leverage these functions to implement an ex-
ternal DSL (adding custom syntax). In this way, users can
still choose to only write vanilla JavaScript, or if they pre-
fer, use the library functions to make the live coding expe-
rience slightly less verbose. The following section discusses
the functions we provide and a short description. This docu-
mentation is also provided within the tool itself.

1. pattern() is a specialization of the .map() in
JavaScript syntax for our context. Instead of typing out the
complete syntax for mapping values of an array at each
index based on the equation, the user can simply type pat-
tern() and the equation within the parentheses. This is a
special DSL function as it is supported by our synthesis
algorithm. This means the user can type out this function
by hand, or it can be generated by our synthesis algorithm
as the user interacts with the graphical interface.

2. setAll() is a replacement for the array.fill()
function. It instantiates an array with the same values at
each index, checking that the input value is within the
range of [0,2].

3. p() is a function that uses dynamic typing to accept
both numeric and string values. When given a number,
the function sets the pitch of the specified instrument ac-
cordingly. As for the string inputs, accepted values are
the 7 notes within the letter notation for music (A - G),
with each letter mapping to a numeric value. This design
choice is an attempt to make the language more approach-
able for those with a background in Western music.

4. backBeat() We found that the alternating rhythm of
the beat+rest is a common beat pattern used in our own
performance practice with our tool. Thus, the backBeat
function was created to assist and expedite the users’ per-
formance. In practice, the function returns an array with
1’s at its even indices and 0’s at its odd indices.

As of now, the library functions and generated code rely on
single-letter variables b. and s., which correspond to slider
and beat control from synthesis abbreviated to increase effi-
ciency of the Live Coding experience.

Recording Functionality
In addition to music creation functionality, our tool allows
users to record their playback in-browser. When clicked, the
“Record Sound” button turns red and starts the recording. To
pause the recording, the user can click the button a second
time and the button will turn gray again. To hear the most
recently recorded sound, the user can press the “Play last
recording” button. The “Save to recordings list” button saves
the beat to the recordings list of the current web browser
session. Once on the recordings list, the audio has full con-
trols allowing for playing, pausing, and skipping through the
recording. The three dots on the right of the recording allow
the user to save the .wav file to their local disk.

The user could either choose to start recording before en-
gaging with their interface for more of a live performance
recording or they can create their beat first and then press
the blue play button in the lower right side of the screen to

play the beat before recording. The second option allows for
the user to hear the beat they created and ensure they are
satisfied before recording.

We plan to use this recording functionality to gain an un-
derstanding of which of the three interfaces (synthesis view,
drum rack view, or live code view) users prefer. We plan to
collect metadata analytics on which view yields more user
recordings as a proxy for (one type of) preference.

Conclusions
Our demo is available online and the code is
made open-source at https://github.com/Barnard-PL-
Labs/SequencerLiveCoding. Our next steps are to use this
infrastructure to begin user studies to gain an understanding
of how synthesis impacts the live coding experience. We
believe a synthesis-enabled live coding environment can
invite more performers to explore live coding, even those
without a strong programming background. We also hope
that synthesis-enabled live coding can also give experienced
live coders more freedom to explore the “the skillful
extemporisation of algorithm as an expressive/impressive
display of mental dexterity” and spend less time on “the
glorification of the typing interface” (TOPLAP 2020).

One key open question is how we can allow the program-
ming language to capture more complex musical patterns,
while maintaining the ability for synthesis to assist new pro-
grammers. A key aspect of live coding is to use the language
to explore algorithmic complexity that would not be easy to
achieve with a point-and-click interface. However, our tool
as it is currently implemented does not allow the program-
ming language to exceed the expressive capabilities of the
drum track GUI interface. Another area of exploration is the
performance experience of synthesis-guided live coding. We
are looking into ways to log the usage frequency of differ-
ent interfaces, various types of clicks, and typed characters.
Using collected info we will be able to gauge how users in-
teract with the tool and determine what users find natural
and intuitive about creating music through the practice of
Live Coding.

Acknowledgments
This material is based upon work partially supported by the
National Science Foundation under Grant CCF-2105208, as
well as partially supported the Summer Research Institute at
Barnard College.

References
Aaron, S. 2016. Sonic Pi–performance in education, tech-
nology and art. International Journal of Performance Arts
and Digital Media 12(2): 171–178.
Aaron, S.; and Blackwell, A. F. 2013. From Sonic Pi
to Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages. In Proceedings of the
First ACM SIGPLAN Workshop on Functional Art, Music,
Modeling and Design, FARM ’13. New York, NY, USA: As-
sociation for Computing Machinery. ISBN 9781450323864.
doi:10.1145/2505341.2505346. URL https://doi.org/10.
1145/2505341.2505346.

https://github.com/Barnard-PL-Labs/SequencerLiveCoding
https://github.com/Barnard-PL-Labs/SequencerLiveCoding
https://doi.org/10.1145/2505341.2505346
https://doi.org/10.1145/2505341.2505346


Alur, R.; Bodik, R.; Juniwal, G.; Martin, M. M.;
Raghothaman, M.; Seshia, S. A.; Singh, R.; Solar-Lezama,
A.; Torlak, E.; and Udupa, A. 2013. Syntax-guided synthe-
sis. In 2013 Formal Methods in Computer-Aided Design,
1–8. IEEE.
Hashimoto, B. 2021. Glisp: A Lisp-based Design
Tool Bridging Graphic Design and Computational Arts.
URL https://github.com/baku89/glisp#a-lisp-based-design-
tool-bridging-graphic-design-and-computational-arts.
Hempel, B.; Lubin, J.; and Chugh, R. 2019. Sketch-n-
Sketch: Output-Directed Programming for SVG. In Pro-
ceedings of the 32nd Annual ACM Symposium on User In-
terface Software and Technology, 281–292.
Lerner, S. 2020. Projection Boxes: On-the-Fly Reconfig-
urable Visualization for Live Programming. In Proceedings
of the 2020 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’20, 1–7. New York, NY, USA: Associa-
tion for Computing Machinery. ISBN 9781450367080. doi:
10.1145/3313831.3376494. URL https://doi.org/10.1145/
3313831.3376494.
Magnusson, T. 2014. Improvising with the Threnoscope:
Integrating Code, Hardware, GUI, Network, and Graphic
Scores. In NIME, 19–22.
McLean, A.; and Wiggins, G. 2010. Tidal–pattern language
for the live coding of music. In Proceedings of the 7th sound
and music computing conference.
McNutt, A. M.; and Chugh, R. 2021. Integrated Visualiza-
tion Editing via Parameterized Declarative Templates. In
Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems, CHI ’21. New York, NY, USA: As-
sociation for Computing Machinery. ISBN 9781450380966.
doi:10.1145/3411764.3445356. URL https://doi.org/10.
1145/3411764.3445356.
Myers, B. A. 1986. Visual programming, programming
by example, and program visualization: a taxonomy. ACM
sigchi bulletin 17(4): 59–66.
Ogborn, D.; Beverley, J.; del Angel, L. N.; Tsabary, E.; and
McLean, A. 2017. Estuary: Browser-based collaborative
projectional live coding of musical patterns. In International
Conference on Live Coding (ICLC) 2017.
Roberts, C.; Wakefield, G.; Wright, M.; and Kuchera-Morin,
J. 2015. Designing musical instruments for the browser.
Computer Music Journal 39(1): 27–40.
Santolucito, M. 2021. Human-in-the-loop Program Synthe-
sis for Live Coding. In Proceedings of the 9th ACM SIG-
PLAN International Workshop on Functional Art, Music,
Modelling and Design, FARM@ICFP 2021. ACM. To Ap-
pear.
TOPLAP. 2020. TOPLAP draft manifesto. URL https://
toplap.org/wiki/ManifestoDraft.

https://github.com/baku89/glisp#a-lisp-based-design-tool-bridging-graphic-design-and-computational-arts
https://github.com/baku89/glisp#a-lisp-based-design-tool-bridging-graphic-design-and-computational-arts
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3411764.3445356
https://doi.org/10.1145/3411764.3445356
https://toplap.org/wiki/ManifestoDraft
https://toplap.org/wiki/ManifestoDraft

	Introduction
	Related Work
	System Overview
	View Options in the Interface
	Volume Specifications
	Duration Specifications
	Slider Functions
	Internal DSL
	Recording Functionality

	Conclusions
	 Acknowledgments

