
Conversation Starter: Imagining Autotelic IDEs

Kate Compton
Department of Computer Science

Northwestern University

Abstract

We know what to expect from an IDE, right? We will type
some code, the code will be executed, we will observe the out-
put, and iterate as many times as needed. The IDE will assist
us in that goal with reliable syntax highlighting, code comple-
tion, and debugging tools, in order to be the most demure and
unobtrusive possible partner in our work. That’s exactly what
we want when we want to get work done, but are there IDEs
that are themselves autotelic1 experiences? Can we imagine
systems that extend or subvert traditional IDE abilities, creat-
ing IDEs that are playfully over-responsive, mysterious, gen-
erative, or improvisational?

We have many IDEs that are great for performing useful
work and writing good, reliable, productive code. What hap-
pens if we let an IDE break free from productivity? Can we
consider an IDE as an autotelic experience in itself, rather
than as a means to create useful code? This paper is a provo-
cation to the community to consider not only IDEs for en-
tertainment, but IDEs as entertainment:

• What does is mean to make a non-productive IDE?

• What goals could an IDE have outside of productivity?

• What are the common features of an IDE that support pro-
ductivity goals?

• How can a non-productive/autotelic framing let us imag-
ine warping those tools in ways that were unthinkable in
a productivity-focused framing?

What do we expect from an IDE?
An IDE (integrated development environment) is a bundle of
utilities that are useful for programming. Usually at a bare
minimum, there is a place to write and edit code, and a way
to run the code and view its output. They may have addi-
tional features to specify how a program is compiled or ex-
ecuted, and features that can help organize and annotate the
raw source code.

Copyright © 2021for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

1from the Greek “for its own purpose”

When compared to writing code in a non-specialized
text editor and running it in a separate program (or via
a command line), some IDEs can be more approach-
able for novice users as they provide a single entry
point to start programming. A novice user can down-
load Processing[Reas and Fry2006], type some rudimentary
Java, hit the play button, and see the results of their code,
without needing to understand what a compiler or executable
JAR files are. Processing’s interface, on starting up, contains
primarily a text editor, a play and pause button, and a console
output window, which gives the user a clear hint that their
primary activity loop will be typing code, pressing play, and
viewing the output.

Noticing that coding has an edit-execute-observe
loop allows us to examine particular moments
[Hutchins, Hollan, and Norman1985] in the loop where
there may be problems or opportunities, or even consider
the whole loop cycle as a way to ‘grok’ the possibility
space of the program, or ‘grokloop’ [Compton2019]. For
example, Hutchins, Hollan, and Norman identify the “gulf
of execution” (the moment where you must know both what
to input into your system, and how to input it) and “gulf
of evaluation” (the moment you observe what the system
has responded with, and must understand what that output
means). The faster we go around this loop, the faster we
can iterate on our programs, so many IDEs have features
that shorten one or the other of these gulfs, such as code
completion and syntax highlighting (gulf of execution)
and error logging with line numbers and variable tracking
(gulf of evaluation). REPLs (read–eval–print loop) are also
available: these IDEs (often web-based IDEs) can re-run
code each time the user edits the code. If we can sufficiently
shorten the two gulfs and the time it takes to re-execute the
code, then the core loop of the IDE can start to feel like a
continuous manipulation of the code.

Speeding up the turtle
LOGO [Papert2020] is a full programming language best re-
membered for drawing generative spirals with turtles. When
you program in LOGO (or many of its copycats) you watch
the turtle painstakingly walk through its path. Papert thought
that one could more easily understand the code by “playing



Turtle”, either watching it move or physically walking the
path yourself. But the gulf of evaluation for that paradigm is
painfully slow. Nicky Case’s “Joy.js” (https://ncase.me/joy/)
re-imagines LOGO as a continuously running REPL, but as
the user edits the code, the turtle’s path redraws itself in
an instant. Not content with bridging the gulf of evaluation,
Joy.js also shortens the gulf of execution by replacing plain-
text code with sliders for numbers. The result: a user can
continuously update the program a dozen times in a second
by sliding a slider and seeing the changes, which the side
claims makes Joy.js “more creative, more alive” and “lets
you improvize, and discover ‘happy little accidents’”.

Joy.js is one of many continuously-updating REPLs avail-
able, which also includes Tidal2 for generative audiovisual
experiences, Sonic PI3 for music and Shader.place4 for We-
bGL shader code. All these IDEs focus on emergent genera-
tive programming. One notable feature of generativity is that
the eventual pattern that will emerge from an instruction is
hard to predict from the instruction itself. By shortening the
grokloop, these IDEs allow the emergent pattern to change
simultaneously with the code, without waiting, so that the
user can playfully explore the space and enjoy the emergent
patterns, or even do so as a live performance (‘algorave’).

In the case of Shader.place, the code is also live-synced to
multiple other players in a virtual room, who can all simul-
taneously edit the shader together. Though the code often
breaks (shader code is very fragile) the code will recompile
as all the users are typing, and will continue to recompile un-
til it runs again. Continuous execution makes the chaos of a
multiperson shader-editor viable and even enjoyable, rather
than frustrating.

IDEs with agency
So far we have just talked about IDEs that assist the user
to edit and execute code. But many IDEs will also play an
active role in annotating or even writing code themselves.
Common ways that IDEs take an active role when coding
include:

• detecting the syntax of parts of the code and coloring or
formatting it (syntax highlighting, auto-indentation)

• alerting the user to malformed, nonstandard code (linting)

• tracking how identifiers or variable names are used across
code to create clickable links, indexes of identifiers, or
one-click renaming UIs

• identifying possible identifiers that could fit in the current
context (code completion)

There are systems where an advanced AI autocompletes
user’s code while the users is writing code in a productivity-
focused environment5, and systems where an advanced AI
generates emergent new code that the user can inspect in
an autotelic tool[Kreminski et al.2020]. There seems to be
potential for autotelic systems to generate not only code, but

2https://tidalcycles.org
3https://sonic-pi.net/
4https://www.shader.place/
5https://copilot.github.com/

also annotations, formatting, links and UI features. Are there
currently any systems where the IDE itself is given enough
agency to be surprising, or to have a character? Can an IDE
have enough agency to feel like it is improvising with the
user, rather than acting as a transparent tool?

IDEs with mystery
Finally, there is a potential to also experiment with IDEs that
oppose or challenge the user. An example of this in a pro-
ductive framing would be teaching IDEs that provide a set
of tests that the user must write code to pass, as in the on-
line teaching apps Check.IO6 and CodeCombat7. Normally,
the user of an IDE can program anything within the space
of the language. These IDEs subvert that by restricting what
the user can program and when, or which syntax is accessi-
ble. If we consider an IDE as a way that we feed instructions
to a computer, we can consider games with antagonistic or
mysterious UIs like “The Gostak” (Muckenhoupt, 2001) and
“Mu Cartographer” (Millet, 2017) as playful IDEs.

As we look forward towards a future filled with more
machine-learning than we might want, we can also look at
interacting with machine-learned models as a form of IDE.
To “program” with these models we must find a shared syn-
tax that both model and the humans understand, referred to
as ‘prompt engineering’ [Gwern2020] or ‘prompt hacking’8.
This trial-and-error conversational programming often re-
sembles an adventure game like “The Gostak” more than
a traditional IDE.

In conclusion, we will still need productivity-focused
IDEs with which to write games and digital entertainment.
But let us imagine also a world where we make IDEs that
are generative, playful, and even mysteriously alien.

References
[Compton2019] Compton, K. 2019. Casual creators:

Defining a genre of autotelic creativity support systems.
University of California, Santa Cruz.

[Gwern2020] Gwern, B. 2020. Gpt-3 creative fiction,
https://www.gwern.net/gpt-3prompts-as-programming.

[Hutchins, Hollan, and Norman1985] Hutchins, E. L.; Hol-
lan, J. D.; and Norman, D. A. 1985. Direct manipulation
interfaces. Human–computer interaction 1(4):311–338.

[Kreminski et al.2020] Kreminski, M.; Dickinson, M.; Os-
born, J.; Summerville, A.; Mateas, M.; and Wardrip-
Fruin, N. 2020. Germinate: A mixed-initiative casual
creator for rhetorical games. In Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Dig-
ital Entertainment, volume 16, 102–108.

[Papert2020] Papert, S. A. 2020. Mindstorms: Children,
computers, and powerful ideas. Basic books.

[Reas and Fry2006] Reas, C., and Fry, B. 2006. Processing:
programming for the media arts. Ai & Society 20(4):526–
538.

6https://checkio.org/
7https://codecombat.com/
8https://twitter.com/ArYoMo/status/1399801016669835268


