CEUR-WS.org/Vol-3217/paper26.pdf

Pathfinding and Map Feature Learning in RTS Games with Partial Observability

Hao Pan
QOMPLX, Inc.
1775 Tysons Boulevard
McLean, Virginia, 22102
hao.pan@qomplx.com

Abstract

In this paper we deal with the pathfinding problem in Real
Time Strategy (RTS) games with partial observability for Ar-
tificial Intelligence (AI) agents. We first propose a Bootstrap
JPS algorithm to perform pathfinding efficiently alongside a
routine to preprocess terrain features. We then establish a grid
system to learn map features systematically considering both
mobile and immobile units. Utilizing the learned map fea-
tures, we employ a waypoint-based pathfinding technique to
navigate pathfinding agents away from threats efficiently. Us-
ing maps from a few established RTS games, we demonstrate
the performance of our pathfinding framework and compare
it with a few alternative approaches.

1 Introduction

Pathfinding is the process of searching a graph and finding
a path between the start and the destination nodes. There
can be map features such as obstacles along the way, mak-
ing the process potentially challenging to solve. Pathfind-
ing is not a new topic, and various algorithms have already
been developed. There are mainly two schools of such algo-
rithms. Breadth-first search and depth-first search approach
this problem by examining all possible paths exhaustively.
The other school of algorithms focus more on finding the op-
timal path. Dijkstra’s algorithm (Dijkstra 1959) maintains an
“open set” and examines the node in the set with the short-
est distance from the start. Once the destination is marked
as visited, the shortest path is determined by tracing back all
the visited nodes. (Wagner, Willhalm, and Zaroliagis 2005)
reduced the search space of Dijkstra’s algorithm by extract-
ing geometric information from a given layout of the graph
and by encapsulating precomputed shortest-path informa-
tion in the so-called geometric containers. A* (Doran and
Michie 1966) is an extension of Dijkstra’s algorithm. The
main difference is that A* assigns a weight to each node in
the open set equal to the cost from the starting node to that
node plus the approximate cost between that node and the
destination. The approximate distance is found by heuris-
tic. (Bjornsson and Halldérsson 2006) used the dead-end
heuristic to eliminate certain map areas that are provably ir-
relevant, and the so-called gateways to improve estimates

Copyright (©) 2021 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

for the current query. The authors further demonstrated that
both heuristics reduced the exploration and time complex-
ity of A* search significantly over a standard distance met-
ric. Jump Point Search (JPS) (Harabor and Grastien 2011)
is considered an improvement over the A* algorithm as it
facilitates the search procedure by means of graph prun-
ing, eliminating certain nodes in the grid based on assump-
tions that can be made about the current node’s neighbors.
This means the algorithm can consider long jumps from the
current node, while traditional A* only considers adjacent
nodes. In the following years, the authors further optimized
JPS by considering a preprocessing grid and stronger jump
rules (Harabor and Grastien 2012, 2014).

It can be demanding when applying pathfinding in games,
as one has to consider extra factors such as map proper-
ties and algorithm efficiency. (Bjornsson and Halldérsson
2006; Sturtevant and Buro 2005) used maps from differ-
ent games and of different sizes. They evaluated the per-
formance of pathfinding methods based on multiple criteria
such as the number of nodes expanded, path-length, and run-
time. (Zarembo and Kodors 2015) studied pathfinding algo-
rithms including A*, BFS, Dijkstra’s algorithm, HPA* and
LPA* (Koenig, Likhachev, and Furcy 2004), and compared
them based on execution time and the number of traversed
nodes. (Sturtevant et al. 2019) improved pathfinding effi-
ciency by planning in an abstract space and then refining
abstract paths to traversable paths. The authors took into ac-
count terrain costs and dynamic terrain, and achieved a good
balance between memory usage, path quality, and pathfind-
ing speed. (Hatem, Stern, and Ruml 2013) studied the sub-
optimal search algorithms and proposed a linear space ana-
logue of Explicit Estimation Search (EES) to alleviate the
problem of the memory being overrun on large problems.

Additional considerations were needed when applying
pathfinding in Real Time Strategy (RTS) games such as
StarCraft. On a general level, the prevalent approach is to
couple terrain learning/analysis methods and pathfinding.
(Hagelbick 2015) coupled pathfinding with two techniques:
1) Potential Field (PF); and 2) Flocking. They discovered
that PF techniques require much more computational re-
sources than the counterpart which is relatively simpler.
(Amador and Gomes 2019) combined Influence Maps and
pathfinding in a way that the influence costs replaced the
traditional distance-based costs. Utilizing repulsors and at-

tractors in the game world, the authors constructed bounded-
search pathfinders that avoid obstacles (repulsors) and fol-
low check points (attractors). (Ninomiya et al. 2014) intro-
duced hybrid environment representations that balance com-
putational efficiency and search space density to provide a
minimal, yet sufficient, discretization of the search graph for
constraint-aware navigation.

There are still challenges present for pathfinding in RTS
games with partial observability. Even for a well established
algorithm such as the A¥*, it can be improved much fur-
ther. An Al agent with poorly performing pathfinding rou-
tines slows down the game and hurts a human’s experience
of playing against it. Additionally, in tournaments there are
limits on how much time an agent can spend within each
logical step (also known as frame) for doing everything in-
cluding pathfinding. For example, a bot will be given a game
loss if it spends more than one second in at least ten game
frames in the AIIDE StarCraft AI competition'. Last but not
least, the Fog of War (FoW) obscures the position informa-
tion of opponent units, making pathfinding difficult. FoW is
the common way partial observability presents itself in RTS
games. (Hagelback and Johansson 2008) illustrated that a
bot using potential fields can deal with imperfect informa-
tion equally well as one with the perfect information, while
being computationally more efficient, using the game Open
Real Time Strategy (ORTS). However, ORTS is a much sim-
pler game than StarCraft and these authors did not consider
unit movement under the FoW. Furthermore, potential field
based methods are prone to get stuck in local minima.

In this paper, we propose a pathfinding framework to
tackle the aforementioned challenges by means of: 1) per-
forming preprocessing to eliminate nodes deemed unnec-
essary to explore; 2) devising the Bootstrap JPS to further
improve the efficiency of the exploration; 3) establishing a
grid system which is capable of both efficiently storing the
learned position of immobile units and predicting the po-
tential position a mobile unit may move to under the FoW;
and 4) employing a waypoint-based pathfinding technique
to navigate the pathfinding agents out of danger efficiently.

2 Methodology
2.1 Problem Definition and Assumptions

First we describe some details of the pathfinding problem we
are dealing with here. The input of the pathfinding problem
is a map where some parts are covered by the FoW which
can be lifted once the influenced area is explored. The pres-
ence of the FOW conceals certain information such as the
position of an enemy unit and the shape of the terrain. Even
with perfect information, the built-in pathfinding algorithm
can sometimes fail to find a valid path, causing units to get
stuck indefinitely when being issued a move command. Fur-
thermore, certain information such as the start and destina-
tion nodes can be potentially changing. We utilize the 8-
connected grid map representation. We further assume there
is no traveling cost (e.g., it is equally easy to traverse grass-
lands and deserts, and there is no extra difficulty when mov-

'AIIDE StarCraft Al tournament has rules on frame times:
https://www.cs.mun.ca/ dchurchill/starcraftaicomp/rules.shtml

ing downbhill or uphill). We deal with single-agent pathfind-
ing problems and the pathfinding agent does not have size.
We also assume that the unit collision does not exist. The
solution to the problem is expected to yield an optimal path
safe for pathfinding agents to travel on from enemy threats
which can damage or even kill the agents.

2.2 Terrain Preprocessing

We believe terrain preprocessing is a necessary step to per-
form before the actual pathfinding process begins. More
specifically, this is about performing obstacle filling which
is achieved by completing the following sub-tasks:

¢ Identify U-/L- shaped islands which are adjacent obstacle
nodes connected to each other either horizontally or ver-
tically. We do not consider diagonally connected nodes as
doing so could potentially identify two different islands
as a single one.

12 Mark the nodes bounded by those islands identified pre-
viously as obstacles.

The motivation here is that the U-/L-shaped islands could
lead to the exploration of nodes which are not on the optimal
path and cause an algorithm to get stuck. Subtask ¢ can be ac-
complished by sweeping through every node on the map and
conducting a depth-first search (DFS). In each DFS traver-
sal we recursively call for the 4 neighbours. We keep track of
the visited nodes so that they are not visited again. Subtask
it is fulfilled by examining every node on the map to see if
they are bounded by the obstacles in at least three out of the
four directions (up, down, left, right). We only care about
the L-shaped islands when at least one of the ends touches
the boundary of the map. If that is the case, the map bound-
ary effectively acts as an obstacle, and combined with the
L-shaped island, they together form a U-shaped island. To
ease the understanding, one can consider the map boundary
as an artificially added obstacle which is to be welded to the
L-shaped island (see fig. 1 for a visual demonstration). Note
that for cases where the destination node or nodes from an-
other island are bounded by the U-/L-shaped islands, obsta-
cle filling is not to be performed, otherwise one runs the risk
of blocking the agent from finding the destination by adding
obstacles unnecessarily. All the procedures discussed here
are summarized in algorithm 1.

In algorithm 1, grid is a matrix storing the status of each
node. A value of 0 means the current node is not an ob-
stacle, 1 means it is an obstacle, and 2 means the current
node is already visited for island counting purposes. count
is the number of the islands identified. The size of a par-
ticular island, Islandy, is the number of nodes constituting
this island. There are three blocks of code in algorithm 1.
The first defines the M arklIsland() function which is to be
recursively called by the second block of code. The execu-
tion of the first two blocks of code identifies all the islands if
they exist. The last block of code examines if a node is sur-
rounded by a U-/L-shaped island and artificially marks the
node as an obstacle if so.

Added
Obstacle

Figure 1: Illustration of filling an L-shaped island

2.3 Bootstrap Jump Point Search

Jump Point Search (JPS) speeds up pathfinding on uniform-
cost grid maps by “jumping over”” many locations that would
otherwise need to be explicitly considered. Here we aim at
expediting the exploration further by using JPS itself (hence
the term bootstrap) to compute the cost function between a
node and the destination instead of calculating the heuristics
using traditional means such as the Euclidean or Manhat-
tan distance. Depending on the complexity of the terrain,
Euclidean or Manhattan distance may sometimes provide
an overly optimistic estimation because neither metric con-
siders obstacles along the way. The Bootstrap JPS is to be
used after the completion of the terrain preprocessing as dis-
cussed previously. The time complexity associated with the
bootstrap JPS is O(n?) considering the worst case scenario
where every possible (source, destination) pairing must be
evaluated. However, this process is easily parallelizable.

Memoization routine for Bootstrap JPS We store the
path found and its length for each node, hoping to further
speed up the search process. At each iteration of Bootstrap
JPS, a few sub-pathfinding problems are solved and poten-
tially the solution to one of them is a part of the optimal
path. The solution to each of these sub problems consists of
a series of nodes leading to the destination from the current
node. Storing such nodes can potentially allow us to termi-
nate the Bootstrap JPS at a much earlier point and further
improve the efficiency.

To determine when to terminate the Bootstrap JPS, we
rely on two simple conditions:

¢ Terminate the Bootstrap JPS when an optimal path from
the current node to the destination is found.

1t Terminate the Bootstrap JPS when an optimal path from
the next node (a jump point) to the destination is found.

Optimality of Bootstrap JPS Often in a pathfinding pro-
cess, a heuristic is used to estimate the cost of reaching the
goal state. A heuristic function is said to be admissible if it
never overestimates the cost of reaching the goal. That is,

Algorithm 1 Obstacle Filling

MarkIsland(grid, p, g, ROWS, COLS)

if Node(p, q) is within the map boundaries then
Mark current cell as visited: grid[p][q] =2
MarklIsland(grid, p, g-1, ROWS, COLS)
MarklIsland(grid, p, g+1, ROWS, COLS)
MarklIsland(grid, p-1, q, ROWS, COLS)
MarklIsland(grid, p+1, g, ROWS, COLS)

end if

for i’ in 1:ROWS do
for ;' in 1:COLS do
if grid[7'][7'] == 1 then
count++
MarkIsland(grid, i’, j', ROWS, COLS)
end if
end for
end for

for i in 1:ROWS do
for j in 1:COLS do
if Node(z, j) is surrounded by an island or a map
boundary in any three of the four directions (left,
right, top, bottom) then
Mark Node(z, j) as an obstacle
end if
end for
end for

the cost it estimates to reach the goal is not higher than the
lowest possible cost from the current point in the path.

An algorithm will terminate on the shortest path if an ad-
missible heuristic is used and the algorithm progresses per
iteration only along the path that has the lowest total ex-
pected cost of several candidate paths and terminates the
moment any path reaches the goal. In short, using an admis-
sible heuristic guarantees the optimality of the path found if
such a path exists.

Our proposed approach computes the heuristic by cal-
culating the lengths of the paths found by JPS and mem-
orizes them for all following intermediate calculations. It
is already proven that the JPS yields optimal paths (Hara-
bor and Grastien 2011, 2012). This means our heuristic can
never overestimate the cost and consequently the heuristic
is indeed admissible. At this point we can say our proposed
approach also guarantees the optimality of the paths.

2.4 Unit movement estimation under the FoW

When one applies pathfinding methods in an RTS game en-
vironment where the Fog of War is present, the optimal path
may sometimes backfire, as the obstacles/threats may have
changed their position without being detected, and as a re-
sult hinder/damage the pathfinding agent(s). The corrrect es-
timation of unit movement under the FOW becomes vital to
solving the pathfinding problem in this setting.

The core of the solution to address the estimation of unit
movement with partial observability is the velocity of the

unit. Such quantity is available via BWAPI? which enables
an Al bot to interact with the game StarCraft. BWAPI pro-
vides the kind of information a human player would have
access to. The velocity information is not always available,
as it would become inaccessible if the unit in question is un-
der the FoW.

In order to estimate the unit movement, the question to
consider is, how far into the future would we like to perform
the forecast? Our approach is to set the time window to be
the duration ¢4, it takes for a unit to cover its sight range
dgigne While traveling at its speed v:

dsi
by = —290L (1)
v

In StarCraft, a unit has both a sight range and an attack
range, with the sight range being oftentimes greater than the
attack range. If an enemy unit were to attack ours, it needs to
travel to a point where the target is within the attack range.
By having it to cover the entire sight range, we ensure that
the estimation serves as the upper ceiling.

What happens when we do not have access to a unit’s
velocity (i.e., the unit is covered by the FoW)? We turn to
heuristics by first acquiring the last known position and the
velocity of the unit. Using such information, the velocity is
then modeled as one that decays over time. This means that
as time goes by, we grow more and more uncertain about the
velocity, and as a result, the magnitude of the velocity will
gradually reach zero, indicating that any obscured area in
the contiguous FoW is possible for the unit to travel to. The
interpretation in this context is that, given enough time, if a
unit is still under the FoW, it becomes reasonable to assume
that it is not actively trying to come out of FoW/chasing our
unit(s). As a result, it would be safe to assume that the mag-
nitude of its velocity is zero as the unit can be traveling in
any direction. This approach is similar to the particle model
(Weber, Mateas, and Jhala 2011). However, our decay model
has the advantage of being flexible to account for the threat
level perceived, and this is controlled by the power parame-
ter p in the decay model:

v=1vy — 55— -t 2

Here v is the last known velocity of the unit before it
entered the FoW and became inaccessible. The model is fur-
ther illustrated in fig. 2.

2.5 Map Feature Learning

Having the correct unit movement estimation alone is not
enough to solve the pathfinding problem in an RTS game
environment. There are not only the usual terrain obstacles
we see, but also enemy units and buildings which can spawn
or move throughout the game, and affect the traversability of
nodes. We deemed the following features necessary to learn
to facilitate the pathfinding process.

>The GitHub page of BWAPI: https://github.com/bwapi/bwapi

last known
velocity vo

12

10

Velocity (pixelframe)
6

Time (second)

Figure 2: [llustration of the decay model with varying decay
rate

Terrain Features (Altitudes) Here we identify terrain
features such as a plateau which cannot be moved/destroyed
at all times. The identification of such features needs to be
done only once. Depending on the destination, ground units
will have to find either the way around the plateau, or the
ramp leading up to the plateau, thus posing a challenge for
pathfinding.

Enemy Units’ Position It is easy to mark a unit’s position

if we can see the unit, but otherwise this matter becomes

difficult, as a unit can move, and under the FoW, we would

not be able to know the direction of the movement. This is

exactly the place where section 2.4 can become useful.
Next, we categorize all mobile units as follows:

1 Workers: these units are the primary targets for us to ha-
rass as much as possible, so that we can disrupt the oppo-
nent’s economy. After all, “having more units” remains a
fundamental winning condition in many RTS games.

¢ Units that can attack ground targets
41¢ Units that can attack air targets

Separating items i¢ and ¢%¢ is essential because pathfind-
ing for ground units and pathfinding for air units are very dif-
ferent: they depend on the opponent’s ground and air threats.

Having the position of the units is not enough. We also
care about the attack range a unit has. This means the attack
range of both the opponent’s units and our own. This kind
of information together with the position information would
help a pathfinding routine to discover the position that would
allow us to fire on the opponent’s units at our maximum at-
tack range while staying out of theirs.

Enemy Buildings’ Position We learn only the opponent’s
defensive buildings here. An immobile defensive structure
has its own attack range. Together with its position, all the
areas under the influence of such buildings are marked as
red grids (as in fig. 3) indicating positions to avoid. Unlike
a unit, a building cannot move, so what we once discovered
remains there unless the building gets destroyed. There are

opponent’s workers alongside the defensive buildings, com-
plicating the learning process. However, we were still able
to find the few green grids which are safe places for the at-
tackers to harass the workers.

Figure 3: Marking the optimal positions to harass the en-
emy’s worker line while avoiding defensive buildings

2.6 Waypoint-based Pathfinding Technique

Waypoint-based pathfinding techniques (Zhu et al. 2015) of-
fer an easy way to specify the space and handle obstacles.
The motivation of us employing it here is to establish way-
points around any identified threat, and in turn facilitate the
pathfinding process. The simplest way to do so is to set up a
few corner points around the threat. fig. 4 illustrates a simple
example. The pathfinding agent first identifies a threat which
was previously unknown (potentially due to the Fog of War).
At the time of the discovery, the agent is already within the
radius of the effect exerted by the threat. The agent must
choose a set of waypoints in order to return to safety. First
path #1 is chosen because waypoint D is the closest to the
agent. It is desirable to evade the threat as soon as possi-
ble. Then path #2 is chosen because waypoint C is closer to
the destination than waypoint B. Waypoint A is out of ques-
tion as an agent is only allowed to travel between adjacent
waypoints. Finally path #3 is chosen since it leads to the
destination directly and is deemed safe to travel upon.

Compared to conventional pathfinding techniques such as
A*, the waypoint-based one has the advantage of exploring
much fewer nodes at the cost of the optimality of the path.
This is an acceptable tradeoff in an RTS game environment
where speedy reactions are important.

There are a few small caveats here: 1) the agent is forbid-
den from traveling through all the waypoints as that would
mean the agent is stuck travelling around the threat indefi-
nitely; 2) it is forbidden to set waypoints (illustrated as the
grey circles on fig. 4) directly on the edge of the threat ra-
dius. This would endanger the agent as it travels between
such waypoints; and 3) the number of waypoints estab-
lished around the threat can have an impact on the agent’s
evasion from the threat as well as the computation effi-
ciency. In practice we found that eight waypoints around
each threat usually suffice to ensure that there are enough
safe nodes/options for the agent to choose from while not
inducing too much additional computation burden.

We couple the waypoint-based pathfinding technique with
the proposed Bootstrap JPS based on the state of the
pathfinding agent. In the normal state where the agent has no
threat nearby, it proceeds to the destination using the Boot-
strap JPS. We switch immediately to the waypoint-based
pathfinding technique once there are threats close to the
agent, in order to minimize the potential damage dealt to
the agent. The waypoint-based technique also pairs with the
unit movement estimation smoothly as the position of the
waypoints can be readily updated based on the estimated po-
sition of the threats.

Figure 4: Demonstration of the waypoint-based pathfinding
technique

3 Case Study

The purpose of the case study is to compare the proposed
pathfinding framework with a few alternative approaches,
namely, A* and JPS. We applied all three pathfinding tech-
niques on two maps which are illustrated by figs. 5 and 6,
respectively. The maps were taken from a benchmark map
set® created by (Sturtevant 2012). The two maps are from
the RTS Game WarCraft III (published in July, 2002) and
StarCraft (published in March, 1998), respectively. On each
map we randomly chose 1000 pairs of starting and desti-
nation nodes. Throughout the case study we assumed partial
observability. For each pair of starting and destination nodes,
we insert either a static or mobile enemy unit at a random
location along the optimal path which was pre-computed by
A*. Both the static and mobile enemy units were initially
unknown to the computer-controlled pathfinding agent due
to the partial observability. We programmed a set of simple
rules to govern the behavior of the mobile enemy unit. This
enemy unit always tries to move to or stay at its starting po-
sition if the pathfinding agent is outside of its sight range.
Once the pathfinding agent is within the sight range but out-
side of its attack range, the enemy unit will begin to chase
the agent. The enemy unit will attack the agent if the agent
is within its attack range. When using A* and JPS, the en-
emy unit is handled by marking all the nodes within its sight
range as obstacles. Whenever a certain amount of nodes are

3The map set is available from here: http://movingai.com

Finish

Figure 5: Map #1 (hillsofglory.map) and a sample optimal
path

Figure 6: Map #2 (Sanctuary.map) and a sample optimal
path

newly marked as obstacles, every pathfinding technique is
going to be rerun as the map they operate on has effectively
changed. All experiments were run on a 2.2 GHz CPU com-
puter.

Due to the complexity of the environment for pathfind-
ing, we use a few criteria to evaluate the performance of
pathfinding routines quantitatively: 1) number of nodes ex-
plored/evaluated (NE); 2) runtime (RT) measured in sec-
onds; and 3) remaining hit points (RHP) of the pathfinding
agent after reaching the destination. The RHP is expressed
as a percentage of the agent’s total hit points. The results
for all the scenarios are summarized in table 1. We can see
that A* explored many more nodes than the other two tech-
niques and the RT is much longer as a result. Both the JPS
and our proposed pathfinding framework greatly reduced the
NE values. The proposed framework explored a few more
nodes on average than JPS mainly due to the additional way-

points around the threats it established. As these nodes are
easily obtained, the resulting RT is slightly lower than that
of JPS. Both the A* and JPS scored poorly in terms of RHP
as they are not dedicated to this particular pathfinding prob-
lem where partial observability is present. The matter be-
comes worse when the enemy threat is mobile. While by
design, the proposed framework handles this problem more
sophisticately and significantly reduced the amount of dam-
age received from the enemy threat. Overall, the proposed
pathfinding framework performed the best here.

Table 1: Peformance of various pathfinding routines

CRITERION A* JPS PROPOSED
MAP #1 (391 x 388, AVG PATH LENGTH = 270)
NE 17803 213 216
RT(s) 3.04 1.72 1.68
RHP 52% 51% 82%
MAP #2 (512 x 512, AVG PATH LENGTH = 446)
NE 42346 220 224
RT(s) 8.89 1.97 1.94
RHP 68% 69% 92%

4 Conclusions and Future Work

In this paper we proposed a pathfinding framework to ad-
dress the challenges encountered when performing pathfind-
ing in RTS games with partial observability by means of:
1) preprocessing terrain/map features to prevent pathfind-
ing routines to get stuck locally; 2) creating the Bootstrap
JPS to compute the cost function more accurately and in
turn further eliminate nodes deemed unnecessary to explore;
3) constructing the velocity decay model to predict unit
movement under the FoW; and 4) employing a waypoint-
based pathfinding technique to help pathfinding agents to
maneuver around threats efficiently. We demonstrated that
the proposed framework was superior than a few mainstream
pathfinding routines such as A* and JPS.

In the future we would like to augment this work by: 1) so-
lidifying an effective way to learn the decay rate used in the
decay model either in-game on the fly or from past data; 2)
considering other possibilities of velocity development un-
der the FoW. Currently we assume the worst case where an
enemy unit would immediately begin to chase our units at
all costs. This can be highly situational and depends on sev-
eral things such as the opponent’s stance (defensive or of-
fensive); 3) optimizing the resolution of the grid system. We
have noticed that occasionally units can still catch enemy’s
fire while maneuvering around using Bootstrap JPS and the
grid system. This was mainly caused by a grid falsefully be-
ing marked as safe due to the relatively coarse resolution and
not accounting for unit sizes; 4) parallelizing the preprocess-
ing procedure to further speed up pathfinding; and 5) com-
paring results with those from D* (Stentz 1994) and/or D*
Lite (Koenig and Likhachev 2005), especially for scenarios
where the obstacles are changing their position.

5 Acknowledgment

The authors would like to specifically thank Nathan Roth
(MSc) for his dedicated effort in helping to construct our
own StarCraft bot. The authors would also like to thank the
SSCAIT community for their kind support. The authors are
equally thankful for Dennis Waldherr and his BASIL lad-
der, as it provided an invaluable test-bed like environment to
see replays in a timely fashion, ensuring our StarCraft bot is
performant and bug-free.

References

Amador, G.; and Gomes, A. J. 2019. Bounded-Search
Pathfinders Based on Influence Maps Generated by Attrac-
tors and Repulsors. IEEE Transactions on Games 99.

Bjornsson, Y.; and Halldérsson, K. 2006. Improved Heuris-
tics for Optimal Pathfinding on Game Maps. In Artificial
Intelligence and Interactive Digital Entertainment Confer-
ence, 9-14.

Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1: 269-271. doi:10.
1007/BF01386390.

Doran, J. E.; and Michie, D. 1966. Experiments with the
Graph Traverser program. In Lockwood, M., ed., Proceed-
ings of the Royal Society A, 235-259. London, United King-
dom: Royal Society.

Hagelback, J.; and Johansson, S. J. 2008. Dealing with
Fog of War in a Real Time Strategy game environment. In

2008 IEEE Symposium On Computational Intelligence and
Games, 55-62. doi:10.1109/CIG.2008.5035621.

Hagelbédck, J. 2015. Hybrid Pathfinding in StarCraft.
IEEE Transactions on Computational Intelligence and Al in
Games 8: 1-1. doi:10.1109/TCIAIG.2015.2414447.

Harabor, D.; and Grastien, A. 2011. Online Graph Prun-
ing for Pathfinding on Grid Maps. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence,
1114-1119. San Francisco, CA, USA: AAAI

Harabor, D.; and Grastien, A. 2014. Improving Jump Point
Search. In Chien, S.; and Fern, A., eds., Proceedings Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS, 128-135. Portsmouth, NH, USA: AAAL

Harabor, D. D.; and Grastien, A. 2012. The JPS Pathfind-
ing System. In Proceedings of the Fifth Annual Symposium
on Combinatorial Search, 207-208. Niagara Falls, Canada:
AAAL

Hatem, M.; Stern, R.; and Ruml, W. 2013. Bounded Subop-
timal Heuristic Search in Linear Space. In Proceedings of
the Symposium on Combinatorial Search (SoCS-13).

Koenig, S.; and Likhachev, M. 2005. Fast Replanning for
Navigation in Unknown Terrain. Transactions on Robotics
21: 254-363. doi:10.1109/tro.2004.838026.

Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
Pathplanning A*. Artificial Intelligence 155: 93—146.

Ninomiya, K.; Kapadia, M.; Shoulson, A.; Garcia, F.; and
Badler, N. 2014. Planning approaches to constraint-aware

navigation in dynamic environments. Computer Animation
and Virtual Worlds .

Stentz, A. 1994. Optimal and Efficient Path Planning for
Partially-Known Environments. In Proceedings of the In-
ternational Conference on Robotics and Automation, 3310-
3317.

Sturtevant, N.; and Buro, M. 2005. Partial Pathfinding Us-
ing Map Abstraction and Refinement. In Proceedings of
the 20th National Conference on Artificial intelligence, vol-
ume 3, 1392-1397.

Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. [EEE Transactions on Computational Intel-
ligence and Al in Games 4(2): 144-148. doi:10.1109/
TCIAIG.2012.2197681.

Sturtevant, N. R.; Sigurdson, D.; Taylor, B.; and Gibson, T.
2019. Pathfinding and Abstraction with Dynamic Terrain
Costs. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 15, 80-86.

Wagner, D.; Willhalm, T.; and Zaroliagis, C. 2005. Geo-
metric Containers for Efficient Shortest-Path Computation.
ACM Journal of Experimental Algorithmics 10(1.3): 1-30.

Weber, B. G.; Mateas, M.; and Jhala, A. 2011. A Particle
Model for State Estimation in Real-Time Strategy Games.
In Proceedings of the Seventh AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment.

Zarembo, I.; and Kodors, S. 2015. Pathfinding Algorithm
Efficiency Analysis in 2D Grid. In Proceedings of the Inter-
national Scientific and Practical Conference. doi:10.17770/
etr2013vol2.868.

Zhu, W.; Jia, D.; Wan, H.; Yang, T.; Hu, C.; Qin, K.; and
Cui, X. 2015. Waypoint Graph Based Fast Pathfinding in

Dynamic Environment. International Journal of Distributed
Sensor Networks 11. doi:10.1155/2015/238727.

