
A Component-based Game Engine for the Game-O-Mat Game Generation System

Mike Treanor
American University

treanor@american.edu

Abstract

This paper describes the game engine of the forthcoming 
game generation system titled The Game-O-Mat. As under-
lying game engines strongly constrain the space of possible 
games that a generator can create, the goal of this paper is 
to fully document the design considerations and features of 
this game engine that was designed with game generation as 
a priority. This paper is aimed at helping future developers of 
game generation systems.

Introduction
The purpose of this paper is to document the features and 
design considerations that have gone into the forthcom-
ing game generation system titled The Game-O-Mat. The 
Game-O-Mat system (which is heavily inspired by Game-
O-Matic) (Treanor et al. 2012), has been designed with the 
goal of enabling the easy creation of games that represent 
ideas through gameplay metaphors built from graphical log-
ics (Wardrip-Fruin 2020). Rather than evaluate the system’s 
generator (which has been in concurrent development), this 
paper will compare and evaluate the design of the game en-
gine itself. In the game AI research field, a spects s uch a 
generator’s game engine are often only loosely described, 
and regarded as implementation details, as they do not di-
rectly describe the use of particular artificial intelligence 
techniques. While it is true that the design of a game en-
gine is arguably a matter of software engineering and game 
design, it is a mistake to not recognize that the underlying 
engine of a generation system strictly constrains what kinds 
of games a system can generate, as the generator needs to 
manipulate the engine to create games. Furthermore, the de-
sirable features of a game engine designed for generators to 
manipulate will be different than the desirable features of a 
game engine designed for human creators.

A large part of the design and development of this 
component-based engine involved determining the set of be-
havior components, and how they would interface together. 
Ivey et al. encountered a similar scenario while developing 
their physics-based parameter driven game system, Gamika

Copyright © 2021 for this paper by its authors. Use permitted 
under Creative Commons License Attribution 4.0 International 
(CC BY 4.0).

(Ivey et al. 2018). Those researchers shared many of the
same goals of this project and they presented a methodol-
ogy for designing engines targeted for game generation. Ivey
et al. describes the process of “capturing inspiring exam-
ples” by adding many parameters freely and then refining
them through consolidation. The Game-O-Mat’s engine was
likewise augmented and enhanced by implementing several
classic, yet simple, games, and features and components
were added as needed. This process was applied until it be-
came unlikely that a generator would be able to create the
game examples. This paper concludes with an advanced ex-
ample that shows the limits of what the generator might be
able to handle.

Another project very close to The Game-O-Mat in nature
is Gemini (Summerville et al. 2018), an impressive generator
that made use of computational interpretations of its games
as it generates. During development, the engine itself was
given to human developers who were tasked with creating
games. As described below, this process was lightly emu-
lated as sample games of increasing complexity were hand
created to test the engine. Other game generation systems
and game description languages exist and provide valuable
insights. For example, some incarnations of ANGELINA
(Cook, Colton, and Gow 2017) were designed with genre-
specific goals (e.g. Metroidvania), and the VGDL project
was designed around creating games that could be played
and evolved using automated players. Similarly, Duplantis
et al. similarly present an example of a genre specific game
description language for role playing games in the style of
the games made for Game Boy (Duplantis et al. ).

Game generation is arguably one of the most difficult
challenges for procedural content generation because there
are so many interrelated facets involved (Liapis et al. 2019).
There will be no solution to this challenge, and instead re-
searchers will present a set of generators that support dif-
ferent aesthetic experiences of varying levels of complexity.
This paper simply hopes to fully document what the games
of The Game-O-Mat are made out of in order to help future
creators of game generation systems.



Engine Features
At the core of The Game-O-Mat, and most component-based
game engines, are game objects and behavior components.
Game objects are typically the objects that move around on
the screen that collide with, and create other game objects.
Behavior components control what these game objects do
and how they interact. Components are modular in that they
are created to operate independently. The idea of viewing
certain games as graphically represented entities that behave
according to rules, and that react when they collide/overlap
with one another is central to what Wardip-Fruin describes
as games with graphical operational logics (Wardrip-Fruin
2020). The game engine for The Game-O-Mat is designed
to be able to represent the space of simple one-screen 2d ac-
tion games comprised of graphical logics (such as those that
were played on the Atari 2600). In addition to components,
game objects can be associated with variables that either can
be used as blackboards for inter-component communication,
or a mechanism to track an individual game object’s state.
Game object variables can also be used and displayed as part
of the game’s mechanics (see Orbital example below).

To add concrete ways for games to end, this engine also
provides mechanisms for a game to terminate (i.e. be won
or lost). These win-and-lose conditions make reference to
either a counter or a meter. Counters are numerical values
tracked by the engine, and conditions are comprised of sim-
ple equality/inequality checks on their values. Meters are vi-
sually represented counters.

Components
The set of components, their ability to adapt, and their ex-
pressivity define the range of possible games that can be
developed in a component-based game engine with prede-
fined components (as is the case with The Game-O-Mat).
The Game-O-Mat’s engine particularly strives to provide a
minimal set of components that are adaptable to many cir-
cumstances without requiring an inordinate amount of con-
figuration. The set of components of the current The Game-
O-Mat engine was arrived at through balancing the conflict-
ing priorities of generality and ease of configuration.

As a concrete example of these conflicting priorities, con-
sider a single “Tank Controller” behavior component that
would make any game object rotate when the player pressed
left and right, and move forward and backwards when the
player pressed up and down. This very common player con-
troller behavior could also be represented by two different
components that simply rotated on input, and a second that
moved forward on input. The Game-O-Mat’s engine chose
to avoid components of the “Tank Controller” variety, and
instead abstracted the conditions under which a component
would be active to allow for components to focus on one
task at a time (described below). The point of highlighting
this choice is to emphasize this unavoidable engine design
challenge, and to motivate the design of the activation sys-
tem described below.

This design decision is a departure from Game-O-Matic.
Game-O-Matic made use of less general components and
thus was able to make more use of descriptive component

tags. For example, if there were to be a “Tank Controller”
component, it could be tagged as a component that enables
movement, and the generator could know that there was a
game object to control in the game when it saw that any
game object had a component with that tag. The Game-O-
Mat’s generation engine will need determine that there is a
controllable game object using a more sophisticated method.

Component Parameters Each component has a small set
of parameters that configure the component’s behavior. Ex-
amples might include the “Rotate” component’s rotation
speed, or the amplitude of the “Movement” component’s
y axis sinusoidal movement. Each parameter is assigned a
default value, and for numerical parameters minimum and
maximum values. Furthermore, the engine is able to trans-
late terms such as “fast”, “moderate”, “very fast”, etc. into
appropriate numerical values for parameters. Additionally, a
range can be provided that will be randomly resolved when
evaluated. These details are very important, as the genera-
tor will struggle to make fine adjustments, and the ability
to coarsely and minimally specify games is essential for the
generator to operate.

Component Targets Some components control a game
object with regard to some other game object. For exam-
ple, the “Move Towards” component needs to know what it
is moving a game object towards. This engine refers to these
game objects as “targets,” and a component can target an ar-
bitrary number of other game objects, or a group of “tagged”
game objects (game objects can belong to an arbitrary num-
ber of groups by sharing a tag). When a component targets
more than one game object, it will default to targeting the
closest one. Components can also target the mouse pointer.

Component Activators By default, when a game object
is assigned a component, that component will perform its
behavior upon that game object. However, components can
be configured to only perform their behavior under certain
conditions. The mechanism that controls these conditions,
called “activators,” are shared by all components and they
drastically enhance a component’s versatility. Once an acti-
vator’s conditions are met, it will make it so the component
will apply its behavior to the game object for a specified
duration. If no activator’s conditions are met after that du-
ration, the component’s behavior will no longer be applied
to the game object. Below is an overview of the currently
available activators:

• Collision: A component is only active if it is graphically
overlapping with a targeted game object.

• Distance: A component is only active if it is within a
specified distance of a target.

• Input: Make a component active when specified mouse
or keyboard input is received.

• Timer: A component is activated after a specified amount
of time passes. This activator can optionally reset itself.

• Meters/Counters State: Activate a component when a
counter or meter reaches certain states (e.g. score ¿ 0).



Figure 1: Kaboom! is relatively easy to represent using The Game-O-Mat’s game engine.

• Component or Game Object Parameter: Activate a pa-
rameter when one of the game object or component’s pa-
rameters reach a specified state (e.g. when the game ob-
ject’s scale is greater than 2).

• Conjunction: This activator is configured with a list of
activators (such as those described above). The compo-
nent will only be active if all of the activators in the list’s
conditions are met. Note that the original list of activators
is by default a disjunction of the supplied activators.

• SRE: Make a component active when a Scored Rule En-
gine (SRE) rule evaluates to true (details below).

Component Effects Effects are external changes that a
component can make to a game when it is activated. The pri-
mary use of effects is to modify meters and counters, how-
ever they can also be used to spawn other game objects.

Development Platform
One of the primary goals of game generation systems de-
scribed in this paper are to enable non-experts to rapidly
create and share games about anything. While Game-O-
Matic partially delivered on this goal, the platform it was
developed for, Flash, is no longer supported on contempo-
rary browsers, and thus games cannot be created or shared
any longer. In response to this, The Game-O-Mat is be-
ing developed using ECMAScript 2015 (ES6) without tak-
ing advantage of libraries and development platforms that
may become defunct. The graphics engine is currently p5,
though the interface to the graphics engine is clean and The
Game-O-Mat has also used PhaserJS. This paper is aimed at
helping future developers of game generation systems, and
choosing a long lasting platform to develop for, in this case
the web browser without plugins, is strongly recommended.

Scored Rule Engine

Built into The Game-O-Mat is a rule system called the
Scored Rule Engine (SRE). SRE is able to answer a wide
range of questions about the game state by evaluating rules
and returning truth values and bindings. While primarily
used by the generator not described in this paper, these bind-
ings can be useful for providing targets and also can mod-
ify the game state is certain real-time scenarios. The set of
queries the system can make currently are:

• HasComponent: Does an game object have a specified
component assigned to it?

• HasTag: Does an game object have a specified tag as-
signed to it?

• Colliding: Are two game objects currently colliding?

• GameObjectPropertyCheck: Does a game object have
a property that meets some condition?

For an example of a SRE rule being used as an activator,
see the Orbital example below.

While SRE and the activator system duplicate some func-
tionality, SRE is able to make much more sophisticated
queries of the game state. However, because rule evaluation
requires exploring the search space of logical binding possi-
bilities, it is computationally expensive and should be used
sparingly for real-time applications (at least until perfor-
mance enhancements are made). Finally, it should be noted
that the engine does not make full use of the rule system
(particularly the ‘Scored’ part which is used by the genera-
tor while making design decisions).



Figure 2: The iOS game Orbital was able to be created in this engine, but required nuanced engine manipulation that would be
hard to a generator to perform.

Example: Kaboom!
Below is a description of how this engine implements the
classic game Kaboom! (1983). In Kaboom!, the player con-
trols the left and right movement of a graphical depiction of
buckets of water using the arrow keys. The goal of the game
is to catch the bombs that a mad bomber is hurling down at
the world below. When the player (buckets) collides with a
bomb, the score is increased, and when a bomb gets by the
buckets they lose a life (presumably because the bomb deto-
nated in the unseen world below).

The Game-O-Mat’s engine represents Kaboom! in 210
lines of expanded JSON that makes use of basic engine fea-
tures with lightly configured components. To begin with,
two counters are created for Lives and Score. Next the mad
bomber game object is created and placed at the top of the
screen, and given a random x velocity (to begin it moving
left or right). Next, it is assigned a “ModifyGameObject-
Property” component with parameters that will multiply the
game object’s x velocity by -1, as well as a timer activa-
tor that will activate the component periodically. Next, an
“EdgeWrap” component is applied. These two components
get the Mad Bomber moving left and right in unpredictable
ways. Next a “CreateOnTrigger” component is applied with
parameters specifying that is should create a bomb (details
below) at its current position, and a timer activator that will
control the rate that bombs are created.

The bombs game object description involves first applying
a ”Movement” component that constantly moves the game
object downward (no activators are needed as it is desired
for this to be constant behavior). Next, a ”Lifetime” com-
ponent is applied that will remove the game object after 6
seconds (this is done for performance reasons). Next, two

“DestroyOnTrigger” components with collision activators
are applied. One that targets the player that has the effect of
causing the Score to increase, and the other targets the world
object (described below) that has the effect of decreasing the
Lives counter by one.

Finally, the world game object is a sized to be a long rect-
angular game object at the bottom of the screen.

This example illustrates how game objects, components,
activators, and effects all work together to create a game.
Other games that this engine can represent with similar
complexity (as measured by lines of JSON and compo-
nent/activator assignments) are Pong and Breakout.

Finding the Limits of the Engine: Orbital
While The Game-O-Mat’s engine can relatively easily repre-
sent games with the complexity of many Atari 2600 games,
the same cannot be said for games with more sophisticated
game mechanics. As an example, consider the early iOS ac-
tion game, Orbital (2009). Orbital is a one-button game,
where the player controls the launch of a small projectile
from the bottom of the screen. The object that launches the
projectile is slowly rotating from left to right, making the
game primarily about choosing when to press the button in
order to control the trajectory of the projectile. A launched
projectile bounces off the side of the screen and slows down
according to a model of physical drag. When it stops, it
expands in size until it collides with either the side of the
screen, or with another stopped projectile. Stopped projec-
tiles display a number, and this number decreases when-
ever a projectile collides with it. When a stopped projectile’s
number hits zero, the stopped projectile is removed from the
screen and the player’s score increases. The goal of the game



is to earn a high score.
It is clear that Orbital is a game with considerably more

complex dynamics than Kaboom! While The Game-O-Mat’s
engine is able to represent Orbital, it takes 419 lines of ex-
panded JSON (roughly twice the size of Kaboom!), and this
JSON is considerably more nuanced than that of Kaboom!,
and it makes used of highly configured advanced features of
the engine. To illustrate this, this section will describe some
aspects of the Orbital projectile and its behavior.

First, projectiles are given a tag so that other components
can target them. They also need to have two variables: one to
represent the counter that decreases on collision (as part of
the game’s main mechanics), and another as a flag to track
whether the projectile is in its moving state or a stopped
state.

For the simple part of the component assignment, the
projectiles need to have a “Forward Movement” compo-
nent to make them shoot out from the launching turret, and
a “Bounce” component to make them bounce off of other
game objects with the projectile tag. Things start to become
more complicated because the projectiles behave differently
whether they’re moving after being launched, or expanding,
or stopped. Representing these different states required mak-
ing use of the conjunction activator, and making the conjunc-
tion conditional on a property activator that checks the value
of one of the game object’s variables. For example, we need
to make sure we only have the projectile bounce off the left
and right walls when it is moving. If we didn’t do this, when
the projectile was done expanding (and likely touching a
wall), we would be constantly activating the component that
reverses the x velocity which would cause strange movement
when the projectile should be staying still. Instead, we make
the component that modifies the velocity first target the left
and right walls, and then make use of a conjunction activator
with both property activator checks seeing if the projectile is
moving or not, and also a normal collision activator. In order
for this to work, we need to change the value of the moving
variable to false at a different area of the game description.

Orbital also necessitated the use of a Scored Rule En-
gine (SRE) type activator in order to decrease a projectile’s
counter. In English, each projectile checks the following four
conditions: Am I colliding with something (Colliding)? Is
that something another projectile (HasTag)? Is that other
thing moving (GameObjectPropertyCheck)? Am I not mov-
ing (GameObjectPropertyCheck)? If the answer is yes to all
four questions, activate the “ModifyGameObjectProperty”
component and decrement the counter variable of the game
object.

These are just two of many nuanced and interconnected
uses of the engine that were required to create Orbital. The
purpose of these examples was to demonstrate the point at
which the structure of this engine limits its expressivity.
While the generator can in principle create a game with dy-
namics like Orbital, it is unlikely.

This example also shows how more committed and spe-
cific components could be authored to enable certain sets of
mechanics (i.e. the behavior of an Orbital projectile could in
principle we a single component). Situations like these are
important to consider when creating a game engine aimed at

generation. In the case of The Game-O-Mat, it is currently
more of a priority to enable the generation of Atari 2600
style games, and no “Orbital Projectile” component will be
introduced. However, the engine does support the represen-
tation of such games.

Conclusion and Future Work
This paper presented the game engine that the forthcoming
Game-O-Mat is going to use to represent the games it gener-
ates. The goal of the paper is to document in detail some of
the considerations and design choices made in order to cre-
ate an engine that is configurable by an artificial intelligence
system. Future work will of course involve the completion
of the generator and the crafting of the user experience. In
addition to being a media artifact that stands on its own, the
goal of this project is to serve as a platform for research in
component-based game generation.

References
Cook, M.; Colton, S.; and Gow, J. 2017. The angelina
videogame design system—part i. IEEE Transactions on
Computational Intelligence and AI in Games 9(2):192–203.
Duplantis, T.; Karth, I.; Kreminski, M.; Smith, A. M.; and
Mateas, M. A genre-specific game description language for
game boy rpgs.
Ivey, P.; Ferrer, B.; Saunders, R.; Gaudl, S. E.; Powley, E.;
Nelson, M.; Colton, S.; and Cook, M. 2018. A parameter-
space design methodology for casual creators. In ICCC.
Liapis, A.; Yannakakis, G. N.; Nelson, M. J.; Preuss, M.;
and Bidarra, R. 2019. Orchestrating game generation. IEEE
Transactions on Games 11(1):48–68.
Summerville, A.; Martens, C.; Samuel, B.; Osborn, J.;
Wardrip-Fruin, N.; and Mateas, M. 2018. Gemini: Bidirec-
tional generation and analysis of games via asp. Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment 14(1):123–129.
Treanor, M.; Blackford, B.; Mateas, M.; and Bogost, I. 2012.
Game-o-matic: Generating videogames that represent ideas.
In Proceedings of the The Third Workshop on Procedural
Content Generation in Games, PCG’12, 1–8. New York,
NY, USA: Association for Computing Machinery.
Wardrip-Fruin, N. 2020. How Pac-Man Eats. MIT Press.


