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Abstract
Using a taxonomy to organize information requires classifying objects (documents, images, etc) with appropriate taxonomic
classes. The flexible nature of zero-shot learning is appealing for this task because it allows classifiers to naturally adapt to
taxonomy modifications. This work studies zero-shot multi-label document classification with fine-tuned language models
under realistic taxonomy expansion scenarios in the human resource domain. Experiments show that zero-shot learning can be
highly effective in this setting. When controlling for training data budget, zero-shot classifiers achieve a 12% relative increase
in macro-AP when compared to a traditional multi-label classifier trained on all classes. Counterintuitively, these results
suggest in some settings it would be preferable to adopt zero-shot techniques and spend resources annotating more documents
with an incomplete set of classes, rather than spreading the labeling budget uniformly over all classes and using traditional
classification techniques. Additional experiments demonstrate that adopting the well-known filter/re-rank decomposition
from the recommender systems literature can significantly reduce the computational burden of high-performance zero-shot
classifiers, empirically resulting in a 98% reduction in computational overhead for only a 2% relative decrease in performance.
The evidence presented here demonstrates that zero-shot learning has the potential to significantly increase the flexibility of
taxonomies and highlights directions for future research.
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1. Introduction
Taxonomies used to organize information must fre-
quently be adapted to reflect external changes such as the
introduction of new markets, the creation of specialized
segments, or the addition of new features. This is espe-
cially true in the human resource (HR) domain, where
new job, skill, and license categories must be created to
accommodate a constantly evolving marketplace. Un-
fortunately, the techniques commonly used to label real-
world objects (documents, images, etc) with taxonomy
classes are tightly coupled to the specific set of classes
available when the classification system is developed. In
order to add new classes, rule-based systems [1, 2] re-
quire the creation of new rules, and supervised machine
learning techniques [3, 4, 5, 6] require labeling data with
the new classes and training a new model. These re-
quirements make operationalizing modifications of the
underlying taxonomy cumbersome.

Unlike traditional supervised classification techniques,
zero-shot learning (ZSL) techniques are able to gener-
alize to new classes with minimal guidance [7, 8]. Ap-
plying ZSL to taxonomic classification has the potential
to increase the flexibility of organizational data struc-
tures while retaining the performance benefits of ma-
chine learning techniques.

Within this context, this work empirically studies the
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performance of ZSL techniques for document classifica-
tion in the HR domain. Experiments designed to simulate
realistic taxonomy expansion scenarios show that ZSL
is highly effective, outperforming standard supervised
classifiers in low-resource settings. Further experiments
demonstrate that adopting well-known techniques can
significantly reduce the computational overhead of high-
performance zero-shot classifiers.

2. Related Work
There is a large body of previous work on ZSL [7, 8, 9, 10].
Early work in the computer vision domain [11] repre-
sented classes with pre-trained word embeddings [12]
and trained models to align themwith image embeddings
in a shared vector space. Much of the subsequent work
in ZSL has followed a similar embedding-based approach
[13, 14, 15, 16].

A common assumption in ZSL is that the set train and
test classes are disjoint. Noting that this is somewhat
unrealistic, [17] proposed generalized zero-shot learn-
ing (GZSL), which assumes training classes are a strict
subset of test classes [18, 19]. As this work is primarily
concerned with classifiers that can adapt to a changing
taxonomy, experiments are conducted within the GZSL
framework.

While there has been less explicit research on ZSL for
NLP, as noted by [20], most techniques for ad-hoc doc-
ument retrieval [21, 22] can be leveraged for zero-shot
document classification by treating the labels as queries.
In [23], a standard classifier was applied to a combined
representation of a document and label, produced with
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Figure 1: Graphical representation of models used in experiments. Traditional multi-label classifiers (left) output a probability
for each class. Zero-shot classifiers (right) model compatibility between an input and class description.

word embeddings or LSTMs [24]. [20] apply convolution
neural networks [25] over features derived from interac-
tions between token and class embeddings.

Following the rise of transfer learning via fine-tuning
for NLP [26, 27], recent approaches to zero-shot docu-
ment class classification have adopted similar techniques.
In [28] zero-shot document classification was formulated
as an entailment task. Pre-trained language models were
either fine-tuned on a dataset containing a subset of
classes, or datasets for natural language inference (NLI)
[29]. An identical entailment formulation was used in
[30], which studied zero-shot transfer between datasets.
Pre-trained language models were also used for zero-
shot document classification in [31], which explored the
use of cloze-style templates for zero-shot and few-shot
document classification.
Autoregressive neural language models have been

shown to possess some ZSL capabilities with proper
prompting [32]. Significantly larger models have im-
proved these results [33]. However, the computational
demands of such large models make them unsuitable for
most practical applications.
The benefit of fine-tuning for entailment-based ZSL

was studied in [34]. Their experiments showed fine-
tuning on generic NLI datasets often results in worse
ZSL performance and hypothesize this is due to models
exploiting lexical patterns and other spurious statisti-
cal cues [35, 36]. Experimental results presented here
complement those in [34], suggesting their observations
do not apply when even a small amount of task-specific
training data is available.
The closely related work of [37] also studied GZSL

for multi-label text classification. Their focus was on
understanding the role of incorporating knowledge of
the hierarchical label structure into models in both the
few-shot and zero-shot settings. Instead, the work pre-
sented here specifically designs experiments to better
understand the ability of standard GZSL techniques to

generalize in realistic zero-shot settings when orders of
magnitude less background training data are available.

3. Problem Formulation
Taxonomy classification is formulated in terms of a multi-
label text classification problem. Let 𝑌 be a set of classes,
𝑥𝑖 ∈ 𝑋 a document, and y𝑖 ∈ {0, 1}|𝑌 | a corresponding
binary label vector where 𝑦𝑖𝑗 = 1 if document 𝑥𝑖 is labeled
with class 𝑗 and 0 otherwise. A common probabilistic ap-
proach to multi-label text classification [38] is to assume
conditional independence among labels,

𝑝(y𝑖 ∣ 𝑥𝑖) = ∏
𝑗
𝑝(𝑦𝑖𝑗 ∣ 𝑥𝑖) = ∏

𝑗
𝑞
𝑦𝑖𝑗
𝑖𝑗 (1 − 𝑞𝑖𝑗)1−𝑦𝑖𝑗 , (1)

and approximate the parameters of the conditional
Bernoulli distributions, 0 ≤ 𝑞𝑖𝑗 ≤ 1, using some model. A
common choice is 𝑞𝑖𝑗 ≈ 𝜎(𝑟𝑖𝑗) = (1 + 𝑒−𝑟𝑖𝑗)−1, where

𝑟𝑖𝑗 = w𝑇
𝑗 𝑓𝜃(𝑥𝑖), (2)

w𝑗 ∈ ℝ𝑑 is a vector of parameters, and 𝑓𝜃∶ 𝑋 → ℝ𝑑 is a
function with parameters 𝜃, e.g., a transformer neural net-
work [39]. In the remainder, the above is simply referred
to as the standard multi-label model.

Because each class 𝑗 is associated with a distinct vector
of parameters w𝑗 in (2), the multi-label model is unable
to generalize to classes not observed during training. To
side-step this issue, ZSL assumes the existence of textual
class descriptions 𝑧𝑗 ∈ 𝑋 for each class 𝑗 ∈ 𝑌 which can
be leveraged to break the explicit dependency between
model parameters and classes. This work considers two
standard architectures from the literature [40], described
below and depicted graphically in Figure 1, which can
incorporate class descriptions. Models are designed to
be relatively simple, reflective of common best practices,
and as similar as possible to avoid confounding and draw
clear inferences about general performance patterns.



Bi-Encoder: This model replaces the vector w𝑗 with
the output of an additional parameterized function taking
class descriptions as input,

𝑟𝑖𝑗 = 𝑓𝜃1(𝑧𝑗)
𝑇𝑓𝜃2(𝑥𝑖).

Cross-Encoder: A parameterized function that takes
as input a concatenated document and class description
(denoted by ⊔). The model has a single additional param-
eter vector w ∈ ℝ𝑑,

𝑟𝑖𝑗 = w𝑇𝑓𝜃(𝑥𝑖 ⊔ 𝑧𝑗).

3.1. Loss
Given a dataset 𝐷 = {(𝑥1,y1), … , (𝑥|𝐷|,y|𝐷|)}, model pa-
rameters can be optimized by minimizing negative log-
likelihood

ℒ(𝐷) = |𝐷|−1∑
𝑖
ℓ(𝑖),

where

ℓ(𝑖) = −∑
𝑗
(𝑦𝑖𝑗 log 𝜎(𝑟𝑖𝑗) + (1 − 𝑦𝑖𝑗) log (1 − 𝜎(𝑟𝑖𝑗)) (3)

Due to zero-shot approaches conditioning on class de-
scriptions, computing the sum over each class in Equation
(3) requires |𝑌 | forward passes through the model. This
results in significant computational overhead when train-
ing. To alleviate this issue, the commonly used negative
sampling [12] strategy is used to approximate the loss
ℓ(⋅),

ℓ̂(𝑖) = − log 𝑒𝑟𝑖𝑗
𝑒𝑟𝑖𝑗 +∑𝑖′ 𝑒

𝑟𝑖′𝑗 +∑𝑗′ 𝑒
𝑟𝑖𝑗′ (4)

where 𝑖′, 𝑗, 𝑗′ are uniformly sample such that 𝑦𝑖𝑗 = 1 and
𝑦𝑖′𝑗 = 𝑦𝑖𝑗′ = 0. The number of negative documents 𝑖′
and classes 𝑗′ are treated as hyper-parameters. Initial
experiments also explored a Bernoulli rather than a cate-
gorical version of ℓ̂(⋅) but found the categorical version
performed better.

4. Experiments
Experiments are designed to simulate real-world taxon-
omy expansion driven by domain experts. At a high level,
all experiments follow the same process.

1. Modify or remove classes to obtain the Source
Taxonomy. Critically, this is done in a way that
incorporates the underlying structure of the tax-
onomy to ensure coherent modifications, rather
than simply removing classes at random.

2. Train classifiers using a dataset of instances la-
beled with classes from the Source Taxonomy.

3. Expand the Source Taxonomy by undoing the
modifications from Step 1 to obtain the Target
Taxonomy.

4. Evaluate classifiers on a new dataset of instances
labeled with classes from the Target Taxonomy.

Details of the taxonomy, datasets, and expansion types
used in this work are given below.

4.1. Indeed Occupations
Indeed’s internal U.S occupation taxonomy was used as a
representative source of structured knowledge. The tax-
onomy contains over a thousand occupations arranged hi-
erarchically in a forest-like directed acyclic graph (DAG),
with root nodes being general occupations, Healthcare
Occupations, and leaf nodes being the most specific, Nurse
Practitioners. In addition to their placement within the
hierarchy, occupations are also associated with a natural
language name and definition. Data formats are given
in Table 1.

Table 1
The data representations used in this work. Jobs and occupa-
tions are converted to strings composed of multiple fields.

Object Text

Job Title: , Employer: , Description:
Occupation Name: , Definition:

Each job posted on Indeed is labeled with one or more
occupations. The number of jobs per occupation for eval-
uation data is given in Table 2. Jobs were selected using
stratified sampling by occupation. In particular, for each
occupation 𝑁 jobs labeled with that occupation were ran-
domly sampled without replacement. It should be noted
that since jobs can be labeled with multiple occupations,
this sampling strategy only guarantees datasets contain
at least 𝑁 jobs per occupation, not that there are exactly
𝑁 jobs per occupation. The same procedure was used to
sample disjoints subsets of jobs for training, validation,
and testing.

Table 2
Test jobs by numbers of labels. Five jobs were sampled for
each occupation for evaluation.

Labels Jobs Percent

1 2,527 55%
2 1,567 34%
3 393 9%
4 68 1%

Total 4,555 100%
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Figure 2: Graphical representation of Refine (top) and Ex-
tend (bottom) taxonomy expansion operations. Each node
represents a class. Models are evaluated on all classes. White
and teal classes are observed during training. Magenta classes
are not observed during training. Teal classes replace their
children during training.

4.2. Expansion Operations
The two taxonomy expansion operations considered are
described below and depicted graphically in Figure 2.
Refine: This setting simulates the scenario where

a subset of leaf classes are subdivided into more fine-
grained classes. This sort of refinement can occur when
gaps in the taxonomy surface after use, or in situations
when the set of initial classes naturally diversifies over
time. For example, an academic field of study may subdi-
vide into more specialized subfields as it matures. Zero-
shot classifiers in this setting must generalize to classes
that are more specific versions of those encountered dur-
ing training.
To construct datasets in this setting, a random leaf

class is selected. Any appearances of this class or its
siblings are replaced with the parent class. This process
is repeated until a fixed percentage of leaf classes have
been replaced.
Extend: This setting simulates the scenario where a

set of classes are added from an unrelated domain. This
situation can occur when new use cases surface that
require classes that were not previously necessary. For
example, if an e-commerce company that had historically
only sold goods like household items and clothing began
offering groceries, the previous product taxonomy would
not be useful for organizing the new items. Zero-shot
classifiers in this setting must generalize to classes that
are significantly different from those encountered during
training.
To construct datasets in this setting, a random root

class is selected. Any appearances of this class or its
descendants are removed. This process is repeated until
a fixed percentage of classes have been removed. At the
end of the process, any document that no longer has any
labels is removed from the training dataset.

4.3. Evaluation
Performance is evaluated in terms of a model’s ability
to rank relevant classes for a particular documents, and
rank documents with respect to a class. In both cases,
average precision (AP) is used to measure the quality of
a predicted ordering relative to ground truth labels. The
difference is whether AP is computed for all labels and
averaged over documents, typically referred to as label
ranking average Precision (LRAP) [41], or computed for
all documents and averaged over labels, typically referred
to as macro-AP. Formally, for matrices Y ∈ {0, 1}|𝐷|×|𝑌 | of
ground truth binary labels and R ∈ ℝ|𝐷|×|𝑌 | of predicted
scores, then

LRAP = |𝐷|−1∑
𝑖
AP (Y𝑖,∶,R𝑖,∶)

macro-AP = |𝑌 |−1∑
𝑗
AP (Y∶,𝑗,R∶,𝑗)

where for vectors y ∈ {0, 1}𝑑 and r ∈ ℝ𝑑

AP(y, r) = 1
∑𝑖 𝑦𝑖

∑
𝑖
𝑦𝑖
|{𝑘 ∣ 𝑦𝑘 = 1 ∧ 𝑟𝑘 ≥ 𝑟𝑖}|

|{𝑘 ∣ 𝑟𝑘 ≥ 𝑟𝑖}|
.

4.4. Training Details
Following modern practices in NLP, models consist of
a pre-trained transformer [39] backbone which is fine-
tuned [26, 27] along with any additional parameters.
All models use BERT-base [27] as a backbone language
model. Hyper-parameters were manually tuned on a
small subset of the training data using the multi-label
model and fixed for all models and experiments. The
Adam [42] optimizer was used with a learning rate of
2e-5 for pre-trained parameters and 2e-4 for randomly ini-
tialized parameters. Learning rate warm-up was applied
for the first 10% of the updates and then linearly decayed
to zero. The maximum gradient norm was clipped to 10
[43]. All models are trained for 20 epochs with a batch
size of 64. Models are evaluated after each epoch and the
final model is selected based on the LRAP on the valida-
tion dataset. The bi-encoder and cross-encoder models
were trained using negative sampling with 8 negative
classes and 4 negative inputs per positive training doc-
ument (Equation 4). Experiments utilized the PyTorch
[44] and Huggingface Transformers [45] libraries. All
hyper-parameters not listed explicitly above are left to
their default values. Experiments were conducted using
a single NVIDIA Tesla V100 GPU with 16GB of memory.



Table 3
LRAP and Macro-AP for by model, class coverage, minimum documents per class, and number of training documents in the
extend setting. Models denoted by † do not observe any task-specific training data.

Model Class Coverage Documents Per Class Documents LRAP macro-AP

Multi-Label 100% 3 2733 0.569 0.496
Multi-Label 50% 5 2500 0.294 0.249
Bi-Encoder 50% 5 2500 0.362 0.349
Cross-Encoder 50% 5 2500 0.645 0.553

Multi-Label 100% 4 3614 0.638 0.564
Multi-Label 75% 5 3628 0.493 0.438
Bi-Encoder 75% 5 3628 0.480 0.447
Cross-Encoder 75% 5 3628 0.654 0.590

Multi-Label 100% 5 4555 0.697 0.635
Bi-Encoder 100% 5 4555 0.570 0.521
Cross-Encoder 100% 5 4555 0.682 0.613

Cross-Encoder (NSP)† - - - 0.419 0.242
TF-IDF† - - - 0.397 0.294

5. Results

5.1. Generalizing to Novel Classes
Performance was evaluated for different percentages of
observed classes during training (coverage) for both the
refine and extend expansion operation. LRAP and macro-
AP are shown in Figure 3. The cross-encoder classifier
was robust to both taxonomy refinement and expansion.
Minimal performance degradation was observed with
decreasing coverage, even in settings where over 50% of
the classes are new and approximately 60% of the jobs
are labeled with a new occupation. The bi-encoder per-
formed significantly worse than the cross-encoder. This
observation is consistent with prior-work in the retrieval
domain [40, 46]. However, the bi-encoder also suffered
more performance degradation with decreasing coverage.
For example, the bi-encoder’s macro-AP dropped by 36%
when 50% of the classes are new (extend), whereas the
macro-AP cross-encoder’s only decreased by 5%. Perfor-
mance of the multi-label classifier degraded rapidly as
coverage deceased, as it is unable to generalize to classes
not observed during training.

5.2. Learning on a Budget
Because the extend operation omits labels rather than
relabeling them, zero-shot models had access to less train-
ing data in the previous experiments. To better under-
stand the trade-off between fine-tuning and ZSL, experi-
ments were conducted which controlled for the amount
of data available for training. In particular, multi-label
classifiers were trained on datasets where the number of
documents was similar to ZSL approaches, but fewer doc-
uments per class are observed. Full results are presented
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Figure 3: LRAP (top) and macro-AP (bottom) under different
taxonomy expansion operations. Models are identified by
color and symbol. Line styles reflect the expansion operation,
with dashed lines for refinement and solid lines for extension.

in Table 3. The ZSL cross-encoder with 50% coverage
and five documents per class resulted in a 13% relative
increase in LRAP over the multi-label classifier with 100%
coverage and three documents per class (similar training



Table 4
Zero-shot Macro-AP for novel domains in the challenging extend scenario with 50% class coverage. † Because the multi-label
classifier is not capable of zero-shot generalization, it is trained with 100% class coverage, but fewer documents per class.

Domain Classes Bi-Encoder Cross-Encoder Multi-Label†

Personal Service 28 0.273 0.642 0.590
Food & Beverage 25 0.245 0.619 0.555
Cleaning & Grounds Maintenance 25 0.277 0.584 0.563
Marketing, Advertising & Public Relations 28 0.241 0.579 0.541
Repair, Maintenance & Installation 34 0.276 0.533 0.494
Healthcare 156 0.250 0.532 0.584
Protective & Security 27 0.302 0.529 0.509
Construction & Extraction 54 0.265 0.527 0.465
Architecture & Engineering 36 0.207 0.474 0.399
Sales, Retail & Customer Support 31 0.244 0.472 0.453
Supply Chain & Logistics 32 0.243 0.457 0.435

New Classes 478 0.251 0.534 0.523
Old Classes 433 0.457 0.575 0.465
All Classes 911 0.349 0.553 0.496

Training Documents 2500 2500 2733
Documents Per Class 5 5 3
Class Coverage 50% 50% 100%

set size). This result was unexpected, as it suggests that
given a small document labeling budget (<4K here), in
some settings it would be preferable to adopt ZSL and
spend resources annotating more documents with an in-
complete set of classes, rather than spreading the labeling
budget uniformly over all classes and using traditional
classifiers.
Further analysis of zero-shot performance is given

in Table 4, which presents macro-AP by root class for
unobserved classes in the extend setting with 50% cover-
age. Despite not being previously exposed to any classes
from these domains, in all cased the cross-encoder out-
performed the multi-label classifier explicitly trained on
these classes.

5.3. Efficient Zero-Shot Inference
As noted previously, there is a significant computational
cost associated with training the transformer-based zero-
shot learners due to the need to process each label for
each document. While this cost can be amortized for
the bi-encoder at inference time by pre-computing label
embeddings, this is not possible for the cross-encoder ar-
chitecture. Several works explore the architecture space
between bi-encoders and cross-encoders to obtain a bet-
ter trade-off between performance and latency [40, 46]. A
simpler technique was explored in this work inspired by
the common decomposition of recommender systems
into separate candidate retrieval and re-ranking [47]
phases.
In the first phase, the more efficient bi-encoder was
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Figure 4: LRAP for two-phase zero-shot classification for
candidates set sizes from 2 to 64. Dashed lines depict the
performance of standalone models.

used to identify a small subset of potentially relevant
candidate classes. This smaller set of candidates was then
evaluated with the more computationally demanding, but
higher performance cross-encoder. Classes not selected
in the first phase were implicitly assumed to receive a
score of zero. Results are shown in Figure 4 for candidate
set sizes from 2 to 64. Scoring only 16 candidates resulted
in a small drop in LRAP (-2%) while resulting in a nearly
98% reduction in computational overhead.

6. Conclusion and Future Work
Taxonomies are widely used to organize knowledge and
can easily incorporate important information from do-



main experts that may be difficult to obtain in a purely
automated fashion. However, the ability to associate
classes with real-world classes can be a bottleneck for the
rapid expansion of taxonomies. Experiments presented
here demonstrate that modern zero-shot classification
techniques can sidestep this issue by classifying objects
with novel classes using only minimal human guidance.

Better understanding and overcoming the failure
modes of the bi-encoder architecture would result in
more efficient systems capable of scaling larger tax-
onomies, either as stand-alone systems or as part of a
multi-phase such as that described in Section 5.3. Related
work in the retrieval setting suggests adopting pretext
[48] tasks that are better aligned with the downstream
task of interest could alleviate these issues [49]. Alter-
natively, more elaborate negative sampling strategies
[50, 51] could improve both zero-shot techniques stud-
ied in this work, and close any observed gaps between
zero-shot learners and traditional classifiers. Future work
should explore zero-shot capabilities in more sophisti-
cated knowledge bases (ontologies, knowledge graphs,
etc), a larger variety of class types, and different domains.
Lastly, further experimentation is needed to fully explain
observed differences between the results presented here
and those in [34] in order to better understand the success
and failure modes of entailment-based ZSL.
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