
Model Threshold Optimization for Segmented
Job-Jobseeker Recommendation System
Yichao Jin, Anirudh Alampally, Dheeraj Toshniwal, Zhiming Xu and Ankush Girdhar

Indeed.com
{jinyichao, aalampally, dtoshniwal, zxu, ankush}@indeed.com

Abstract
Recently, job-jobseeker recommendation system has played an important role in helping people get more timely and suitable
jobs in the domain of HR technology. Most existing recommender systems proposed an unified model to serve all the job and
jobseekers from different backgrounds. While very limited work, if not none, had paid attention to the possible performance
gap among different segments. In this work, we use the occupation data to define the job segment, and study the segment-level
performance comparison from an existing recommendation system within our organization. We then try to identify the
possible causes, and make multiple attempts to deal with the problem. Finally, we adopt the most feasible approach to conduct
the per-segment level model threshold optimization. In particular, we properly formulate a constrained optimization problem,
and propose an efficient algorithm to speed up the threshold optimization process. Our prototype implementation enables
the online A/B tests. The experimental results from real online products indicate significant performance improvement in
terms of both recommendation quality and coverage on a list of selected segments.

Keywords
Job-jobseeker Recommendation, Segmentation, Threshold Optimization

1. Introduction
Nowadays, online job marketplaces such as Indeed.com,
CareerBuilder and LinkedIn, are serving hundreds of mil-
lions jobseekers by connecting them to the right job op-
portunities. The target jobseekers of such recommender
systems should not limit to any specific segments or
groups. Instead, we should try to help all the jobseek-
ers with a variety of profiles to get their best jobs in an
efficient and scalable manner.

The job-jobseeker recommendation platform is one of
the most important engines that we are using to help peo-
ple get jobs within our organization. There are multiple
ways that we recommend either jobs or jobseekers to the
other side throughout different surfaces. Specifically, on
the jobseeker-facing side, we sent invite-to-apply emails
or app notifications to the jobseekers. We also display
a list of recommended jobs on the homepage. On the
employer-facing side, we provide instant candidate rec-
ommendations to the employers as soon as they publish
a new job post.
Underneath the recommendation platform, we have

multiple match providers, where each provider has its
own way to retrieve and rank matches. In this paper, we
will mainly focus on the ranking stage for our longest-
lived probabilistic-based match provider using Logistic
Regression models. Specifically, we have a set of Logistic

RecSys in HR’22: The 2nd Workshop on Recommender Systems for
Human Resources, in conjunction with the 16th ACM Conference on
Recommender Systems, September 18–23, 2022, Seattle, USA.

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Regression models to predict each steps along with the
application funnel for every single job-jobseeker pair. In
particular, we have three models in a tandem. The first
model predicts the probability of receiving a response
(either positive or negative) from the jobseeker , given
the recommendation is made. The second one predicts
the probability of getting a positive response (e.g., apply
or enquiry), given receiving the jobseeker response. The
third one predicts the probability of having a positive em-
ployer response (e.g., interview schedule or hire decision),
given the application is made from the jobseeker. Each
model has its own threshold to filter out certain matches
with low scores, and the product of all the model scores
will be used to rank the remaining matches.

Currently we only have one set of models for all types
of jobs and jobseekers, while we found the performance
gap is huge across different job segments in terms of their
occupation. Although we already use a few segment-
specific data (e.g., job title, industry, etc.) as the model
features, the data didn’t seem to be good enough to repre-
sent all the explicit or implicit features that are associated
with the segment. There are certainly many ways to im-
prove the per-segment performance, including adding
more segment-specific features, and training dedicated
models for each segment. But choosing the best cut-off
threshold score per segment turned out to be the most
practicable and effective way to achieve the goal.

In this work, we propose an efficient approach to opti-
mize the segmented job-jobseeker recommendation per-
formance by tuning the per-segment model thresholds.
Specifically, we formulate a constrained optimization to
identify the potential improvement space per segment.

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Three attempts are discussed, and the most feasible one
is adopted in the production. We also apply a greedy
search algorithm to speed up the segment-specific thresh-
old tuning process. Our prototype implementation and
the corresponding AB tests on selected segments had
suggested considerable improvements in terms of bet-
ter recommendation quality and higher volume on both
applies and positive outcomes from the job applications.
In summary, the main contributions of this paper are

as follows. We hope our work can provide a reference
on similar problems in the industry.

• We report the occupation-based segment-level
investigation using the real-world data from our
organization.

• We formulate a constrained optimization problem
to facilitate our segmentation work in the job-
jobseeker recommendation system.

• We propose an effective way to optimize the per-
segment performance by tuning the thresholds
on different models.

• We implement an automated model threshold
tuning module into the pipeline, and the online
experimental results from the real products in-
dicate promising performance improvement on
both recommendation quality and coverage.

The rest of the paper is organized in the followingways.
In Section 2, we discuss and review a few related works.
In Section 3, we provide an overview of our existing
recommendation platform. In section 4, we describe the
segment-level model threshold tuning that we use to
optimize the recommendation performance. In Section
5, we illustrate the evaluation results on three selected
segments. And finally, Section 6 concludes this work.

2. Related Work
Many existing works had studied the overall framework
of efficient job recommendation systems. Kenthapadi
et al. [1] discussed the candidate selection, personal-
ized relevance model, and match redistribution, as three
main sub-systems in the job recommendation system
at Linkedin. Lu et al. [2] presented a hybrid-ranking
system by combining the interaction-based and content-
based features from both job and jobseekers, and cal-
culate a ranking score accordingly. Shalaby et al. [3]
built a graph-based job recommendation framework at
CareerBuilder.com, using a similar hybrid approach by
combining the behavior-based and content-based data
together into weighted scores for the ranking purpose.
Diaby et al. [4] proposed a taxonomy-based job recom-
mender system that segmented both job and jobseekers
into a taxonomy system using their occupation data.

There were also works focusing on jointly examining
the resumes from jobseekers and the job descriptions
from the job side, mostly for the high-tech job profiles.
Malinowski et al. [5] presented a probabilistic-based
CV and job recommender, that relied extensively on the
structured resume data from a limited number (i.e., 100)
of high-skilled jobseekers. Javad et al. [6] used named
entity recognition (NER) to explicitly extract the skills
from resume, and further used them to facilitate the rec-
ommender system. Qin et al. [7, 8] proposed a neural
network based representation to embed the skills from
resume and job descriptions, and ranking the matches
based on the vector similarities. Luo et al. [9] introduced
adversarial learning to learn more expressive represen-
tation from similar sources. However, the majority of
jobseekers in the labor market (e.g., truck driver, retail
sellers, etc.), do not have properly written resumes, if
not completely without a resume. Consequently, such
methods might not work well for these jobseekers.
While most existing job recommendation systems

[10, 11, 12] tried to have one model worked for all dif-
ferent job profiles, very limited work noticed the sig-
nificant difference among these job and jobseeker pro-
files. This work, on the contrary, attempts to identify
such differences and make operational optimization cor-
respondingly, with the objective to improve the overall
recommendation performance.

3. Overview of Our Match
Recommendation Platform

This section presents an overview of the match recom-
mendation platform, and justifies the segment-level op-
timization is needed. In particular, we first present our
probabilistic-based models that are still driving a signifi-
cant number of recommendations within our organiza-
tion. We then study the feature distribution from both
the job and jobseeker side, and identify the performance
gap across a variety of segments.

3.1. Probabilistic-based Models
Our recommendation match provider is built on top of a
series of probabilistic-based models. Each of them takes
care of a single step along the application funnel. In
particular, as depicted in figure 1, each model takes a
subset of features from job, employer, jobseekers’ con-
tents (e.g., resumes, questionnaires, etc.) and behaviors
(e.g., apply history, feedback from previous applications,
responses to previous recommendations, and inferred in-
terests, etc.) as the input features. And the model outputs
the probability for its own step.

More specifically, the first model focuses on if the job-
seeker responds to the recommendation, given that the

Figure 1: There are three models in tandem to construct
the probabilistic-based filtering and ranking module for job-
jobseeker recommendation.

recommendation had been sent out. It can be any re-
sponse, such as clicking the ”apply job” or ”not interested”
button, unsubscribing, replying, or giving out a rating.
The second model focuses on if the jobseeker actually
applied for the job, given he/she had made any kind of
responses to our recommendation. The third model deals
with the probability further on the employer side, fo-
cusing on if the employer sends any positive outcome
to the submitted application, such as follow-up conver-
sations to further understand the applicant, interview
arrangements, or even making an offer.

𝑝(𝑝𝑜𝑠𝑂𝑢𝑡|𝑠𝑒𝑛𝑡) = 𝑝(𝑗𝑠𝐶𝑙𝑖𝑐𝑘|𝑠𝑒𝑛𝑡)
∗𝑝(𝑗𝑠𝐴𝑝𝑝𝑙𝑦 |𝑗𝑠𝐶𝑙𝑖𝑐𝑘)
∗𝑝(𝑝𝑜𝑠𝑂𝑢𝑡|𝑗𝑠𝐴𝑝𝑝𝑙𝑦)

(1)

We conduct both the scoring as shown in Eq.1, and
filtering as shown in Eq.2, based on this model chain.
In particular, each logistic regression model follows the
sigmod function to generate the probability output 𝑝(𝑠|𝑔),
where 𝑔 is the ground truth, 𝑠 refers to the stage that the
model is dealing with. 𝑓 (𝑥𝑛) = ∑𝑤𝑛𝑥𝑛, and 𝑥𝑛 refers to
the input feature vector, 𝑤𝑛 refers to the weights to be
trained for each feature. At the same time, there is a
customized threshold 𝜃 for each model, to filter out the
matches having low probability at that stage. Eventually,
only thematches that pass all the three cutoff threshold at
each stage will be assigned a non-zero score to represent
the probability of having a positive outcome, given a sent
recommendation 𝑃(𝑝𝑜𝑠𝑂𝑢𝑡|𝑠𝑒𝑛𝑡). Finally, this score will
be passed into the ranking and aggregation module as
the next step. It is easy to see that the multiplication
leads to higher precision but lower recall, because it will
be filtered out as long as the job-jobseeker pair gets a low
score at any stage in the chain.

𝑝(𝑠|𝑔) = {
1/(1 + 𝑒−𝑓 (𝑥𝑛)), if 1/(1 + 𝑒−𝑓 (𝑥𝑛)) > 𝜃
0, otherwise

(2)

Figure 2: Performance difference between recommendation
and other organic channels across different segments.

3.2. Performance Gap among Segments
From our historical data, we found there are significant
performance gaps across different segments in terms of
their occupation, as we used to have one unified set of
models with the same threshold values, to serve all the
jobs and jobseekers from different backgrounds. This
observation is based on a segment-level comparison on
the recommendation performance with other organic
channels, where jobseekers search and find jobs by them-
selves. Ideally, we expected the recommender system
would consistently perform better, because it should pro-
vide better matches with higher accuracy. However, such
an assumption is not always true.

Figure 2 studies the performance gap in terms of Apply
start Rate (AR) and Positive outcome over Apply (PoA)
of the biggest 16 occupations from our real-world data.
The AR metric indicates the quality of the jobseeker en-
gagement, while the PoA metric indicates the quality of
the employer engagement. It is clear that a bunch of
segments (mostly blue-collar jobs) are with low AR but
okay PoA, indicating the model gets higher precision but
lower recall there. While a few other segments (mostly
white-collar jobs) are suffering from low PoA but okay
AR, indicating the model gets higher recall but lower pre-
cision. After all, we believe all these segments could have
considerable improvement spaces, but through different
initial locations and different directions towards the top
right corner as shown in the figure 2.
Note that, we cannot directly compare the absolute

metrics across different segments, because the perfor-
mance can be affected by the segment nature, instead of
the recommendation quality.

The examination motivates us to further check if these
segments are big enough to try the segment-level opti-
mization. And if so, we also would like to understand
the reasons that lead to such performance gaps.

Figure 3: There are multiple top-level occupations in the job
markets. Each occupation accounts for a certain percentage,
but no one clearly dominates the whole population.

3.3. Segment-level Investigation
Figure 3 shows the segment distribution in terms of the
number of active jobs based on their top-level occupation
from our organization in 2022H1. We clearly serve a full
spectrum of jobs and jobseekers from a variety of occupa-
tions, without any single occupation clearly dominating
the whole population. Every occupation-based segment
occupies a certain portion in the job market. As a result,
the segment-level optimization could have a reasonable
expectation to benefit the overall performance.

We next want to examine if the performance gap orig-
inates from the different feature distribution among dif-
ferent segments. Specifically, we look at a mixture of
blue-collar and white-collar jobs, on both the job and
jobseekers side. As expected, the blue-collar jobseekers
(e.g., delivery drivers, retail sellers, etc.) tend to have
a much shorter resume, which in turn makes the skill
and experiences extraction, or even resume embedding
less representative than the white-collar jobseekers (e.g.,
software development, technical managers, etc.). Similar
pattern can be observed on the job side too, where the
white-collar jobs tend to list more job requirements in
terms of hard skills and experiences, while blue-collar
jobs tend to focus more on licences and soft skills.
The observations lead us to reconsider if our exist-

ing approach using the same model set with the same
threshold setting is good enough to handle all these cases.
Althoughwe already use a few segment-specific data (e.g.,
job title, industry) as the model features, we suspect they
might not be representative enough to properly differen-
tiate the specific requirements. As a result, we work on a
few different approaches on the segment-level optimiza-
tion, and discuss the feasibility based on our real-world
experiences in the next section.

4. Segment-level Optimization
There are a number of possible ways to do the segment-
level optimization for our probabilistic-based recommen-
dation system. In particular, we report three different
attempts that we have tried in this section. For each at-
tempt, we evaluate not only its effectiveness, but also its
scalability in the long run.

4.1. First Attempt: dedicated models per
segment

The most intuitive solution that first came to us was to
build dedicated sets of models for each segment. We
selected a list of low-performed occupation-based seg-
ments (i.e., Security Guard, Retail Store Manager, and
Quick Service Server) according to Figure 2, and trained
a dedicated set of models for each segment. As a result,
every segment got three different models as shown in Fig-
ure 1, and they were trained by only using the historical
dataset from that specific segment.
Surprisingly, the initial experimental results did not

align well with our expectation, showing mixed signals
in terms of the recommendation quality and volume. In
particular, for all the three experimented segments, we
observed significant decreases in terms of the Applystart
Rate (AR) or Positive outcome over Apply (PoA) ranging
from -9.8% to -15.6%, while an improvement in terms of
the number of apply starts and positive outcomes ranging
from 6.0% to 13.8%. However, our expectation on the ded-
icated models was to have considerable improvements
on all the key metrics at the same time.
After a close examination on the approach and the

corresponding models, we found three major issues that
lead to the disappointing results. First, we did not setup
a formulation to properly represent the overall objec-
tive. Consequently, we even did not have a clearly de-
fined expectation and target for the optimization at the
very beginning. Second, we over-emphasized the model
training part, whereas we missed the fact that the cutoff
thresholds play even more important roles to trade-off
precision and recall. Therefore, we believe the dedicated
models still need careful threshold tuning, to maximize
its benefit. Lastly, we noticed that we were ongoingmany
other initiatives (such as an alternative way of embedding
features, or even adding new features, etc.) that kept im-
proving the baseline models from other members within
our organization, while our treatment models were kept
unchanged during the experiment. This made the ex-
perimental comparison inconsistent over time. More
importantly, we could not fix this easily, because the
large-scale model auto-updates together with the param-
eter fine-tuning could be too expensive in terms of both
the initial engineering efforts and the following infras-
tructural maintenance.

4.2. Second Attempt: online
reinforcement learning with
multi-armed bandit

By learning the lessons from our first attempt, we would
like to formulate an optimization problem to appropri-
ately capture our task and the objective. In particular,
we want to simultaneously improve both recommenda-
tion quality and volume, on all the key metrics including
applystart volume, positive outcome volume, applystart
rate, and positive outcome over apply. While we can
focus slightly more on AR for those low-AR segments,
or positive outcomes for those low-PoA segments. And
the control variables that we can operate here are the
thresholds for each model per segment.

max
𝜃

∑
𝑖∈{𝑎,𝑎𝑟 ,𝑝,𝑝𝑜𝑎}

𝜆𝑖Δ𝑖(𝜃) (3)

s.t. 0 < 𝜆𝑖 < 1, 𝑖 ∈ {𝑎, 𝑎𝑟 , 𝑝, 𝑝𝑜𝑎} (4)

∑
𝑖∈{𝑎,𝑎𝑟 ,𝑝,𝑝𝑜𝑎}

𝜆𝑖 = 1 (5)

Δ𝑖(𝜃) =
𝑛𝑒𝑤𝑖(𝜃) − 𝑏𝑎𝑠𝑒𝑖

𝑏𝑎𝑠𝑒𝑖
> 0, 𝑖 ∈ {𝑎, 𝑎𝑟 , 𝑝, 𝑝𝑜𝑎} (6)

𝑠𝑙𝑜𝑗(𝜃) < 𝑠𝑙𝑜𝑗 − 𝜖𝑗, 𝑗 ∈ {𝑢𝑛𝑠𝑢𝑏, 𝑛𝑒𝑔} (7)

As a result, we formulate a constrained optimization
problem as shown in Equation 3 to 7. Specifically, the ob-
jective function aims to maximize the weighted combina-
tion of all the key metrics, including apply start volume
𝑎, apply start rate 𝑎𝑟, positive outcome volume 𝑝, and
positive outcome over apply 𝑝𝑜𝑎. For each metric, 𝜆𝑖 rep-
resents the weight for us to shift focus between low-AR
and low-PoA segments, and Δ𝑖 indicates the correspond-
ing performance improvement. In the meanwhile, there
are a few Service Level Agreements (SLOs) that we must
meet, including the unsubscription rate must lower than
0.05%, and negative feedback ratio from jobseekers must
be lower than 25% among all the feedback. These SLOs
are hard requirements, so that we even want to add a
marginal buffer 𝜖 to the constraint. Both Δ and 𝑠𝑙𝑜metrics
can be affected by the threshold setting 𝜃. With these
definitions, our task is to find out the optimal model
thresholds for each segment that could maximize the
objective function, while fulfilling all the constraints.

With the clearly defined objective (or reward) function
and constraints, one possible way is to adopt multi-armed
bandits as a reinforcement learning approach to find out
the optimal solution in the online environment. Specif-
ically, we can setup multiple test groups in the produc-
tion, each group has different threshold settings. Then
we keep monitoring the performance on the objective
value and constraints, and adjust the traffic allocation
towards the better performing variances gradually. Some

sampling methods such as Thompson sampling could
speed up the convergence rate to some extent.

However, there were still a list of issues that prevented
us from doing efficient multi-armed bandit tests for our
segmented threshold optimization. First, the underlying
baseline models were being iterated in parallel, resulting
in the inconsistent and unreliable comparison among
different treatment groups with fixed threshold settings.
Second, the online reinforcement learning could take a
long time to get converged, especially when a few target
segments are with small sample size. Last but not least,
we also suffered from the delayed data issue from the
up-streaming data sources, considering the signals from
employer-side (e.g., interview schedule and results, etc.)
could take up to a few weeks to come back after the
application had been made. Consequently, this attempt
is unfortunately also impractical to our problem.

4.3. Third Attempt: offline threshold
tuning per segment

By learning from the previous two failed attempts, we
confirmed that fine-tuning the thresholds for each seg-
ment could be the feasible solution to optimize the per-
formance. But it was not practical to find out the optimal
solution throughout the reinforcement learning approach
over the online iterations. As a result, we came up with
our third attempt by using a proper offline evaluation
algorithm based on the historical job and jobseeker in-
teraction data from all the channels.

Algorithm 1 describes the proposed greedy searching
process to find out the optimal threshold settings per seg-
ment in an efficient manner. Specifically, the algorithm
takes a few different inputs, including the models (i.e.,
Jobseeker Response JR model, Jobseeker Apply JA model,
and Positive Outcome PO model) as discussed in Section
1, the historical data for model performance evaluation
per segment, and a default threshold setting. We select
an upper 𝑢 and a lower bound 𝑙 for each model respec-
tively, by plus-minus a range over the default value. We
then follow a greedy searching process to find out the
optimal settings, that can achieve the best performance
𝑃 = (𝑂, 𝑎, 𝑎𝑟 , 𝑝, 𝑝𝑜𝑠) in terms of the objective value 𝑂 and
the four key metrics as defined in Equation 3 to 7. The
expected outputs are the optimal threshold settings 𝜃𝑜
per segment, which can achieve no worse performance
than the default ones.

The greedy part originates from the fact that JA model
threshold correlates well with the applystart rate, and
the same pattern applies to PO model threshold and the
positive outcome over apply. On the other hand, whenwe
increase any model threshold, the applystart and positive
outcome volume can only go down or at most flat. As a
result, if we want to improve both quality and volume as

Algorithm 1 Greedy Threshold Searching Algorithm
Require: Models: JR, JA, PO
Require: Historical job-jobseeker interactions
Require: Default threshold set 𝜃𝑑

function greedySearch(𝜃, 𝑃, 𝑚1, 𝑚2)
for 𝜃𝑚1 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑚1, 𝜃𝑑(𝑚1), 𝑠𝑚1) do

𝜃𝑡 ← (𝜃𝑗𝑟, 𝜃𝑚1, 𝜃𝑑(𝑚2))
if 𝑔𝑒𝑡𝑉 𝑜𝑙(𝜃𝑡)(𝑚1) < 𝑃(𝑚1) then

break
end if
for 𝜃𝑚2 in 𝑟𝑎𝑛𝑔𝑒(𝑢𝑚2, 𝜃𝑑(𝑚2), −𝑠𝑚2) do

𝜃𝑡 ← (𝜃𝑗𝑟, 𝜃𝑚1, 𝜃𝑚2)
if 𝑔𝑒𝑡𝑅𝑎𝑡𝑖𝑜(𝜃𝑡)(𝑚2) < 𝑃(𝑚2) then

break
end if
if 𝑚𝑒𝑒𝑡𝑆𝑙𝑜(𝜃𝑡) and 𝑔𝑒𝑡𝑂𝑏𝑗(𝜃𝑡) > 𝑃(𝑂) then

𝜃 ← 𝜃𝑡
𝑃 ← 𝑔𝑒𝑡𝑃𝑒𝑟𝑓 (𝜃)

end if
end for

end for
return 𝜃, 𝑃

end function
𝜃𝑜 ← 𝜃𝑑
𝑎 ← 𝑔𝑒𝑡𝑉 𝑜𝑙(𝜃𝑑)(𝐽𝐴), 𝑎𝑟 ← 𝑔𝑒𝑡𝑅𝑎𝑡𝑖𝑜(𝜃𝑑)(𝐽𝐴)
𝑝 ← 𝑔𝑒𝑡𝑉 𝑜𝑙(𝜃𝑑)(𝑃𝑂), 𝑝𝑜𝑎 ← 𝑔𝑒𝑡𝑅𝑎𝑡𝑖𝑜(𝜃𝑑)(𝑃𝑂)
𝑂 ← 𝑔𝑒𝑡𝑂𝑏𝑗(𝜃𝑑)
𝑃 ← (𝑂, 𝑎, 𝑎𝑟 , 𝑝, 𝑝𝑜𝑎)
for 𝜃𝑗𝑟 in 𝑟𝑎𝑛𝑔𝑒(𝑙𝑗𝑟, 𝑢𝑗𝑟, 𝑠𝑗𝑟) do

𝜃𝑜, 𝑃←greedySearch(𝜃𝑜, 𝑃 , 𝐽𝐴, 𝑃𝑂)
𝜃𝑜, 𝑃←greedySearch(𝜃𝑜, 𝑃 , 𝑃𝑂, 𝐽𝐴)

end for
return optimal threshold set 𝜃𝑜 per segment

the keymetrics at the same time, we need to search the JA
and PO model threshold in different directions starting
from the default value. In addition, once we reach the
boundary, by either observing a volume that is smaller
than default when increasing the threshold, or a ratio that
is smaller than the default when decreasing threshold, we
do not need to further down the same direction. However,
the JR model does not display a clear relationship with
our targeted key metrics, therefore, we still do a full grid
search on the JR model in the outer loop.

Figure 4 illustrates an example of searching the optimal
threshold settings for Security Guard over three dimen-
sions (i.e., JA and PO model threshold serve x-axis and
y-axis, while the objective value is set along z-axis). It is
obvious that we only need to check the areas with non-
zero objective values. Whereas most of the areas with
zero value can be ignored due to the negative volume

Figure 4: A 3d illustration of the greedy threshold searching
regions on the Security Guard segment, with the JA and PO
model threshold as x and y axis, and the objective value as
the z-axis. It is clear that we can only search the region with
non-zero objective value, and skip all the non-zero regions.

or ratio change, or SLO violations. In this way, the pro-
posed algorithm can be 10x to 15x faster than the full grid
search, by skipping these regions. The speed-up factor
could be even bigger when we have limited knowledge
about a new segment, thus requiring a wider searching
boundary with smaller steps. The greedy algorithm en-
ables us to have the optimal threshold searching process
running more frequently and efficiently for every model
update, but also to scale up the optimization process to
all the segments.

5. Performance Evaluation
By following the third attempt as discussed in the previ-
ous Section, we further integrate the algorithm into our
model training pipeline as a prototype implementation.
The performance is evaluated throughout proper online
A/B testing from real recommendation products. The
experimental results demonstrate promising signals for
all the three selected segments. Moreover, the approach
is generally applicable for all the segments.

5.1. Prototype Implementation
Under our current model pipeline, the unified model set
is retrained upon either the regular daily update or a
production release on various other model improvement
initiatives. Previously, the retained models would be
put into the production model storage, thus they can be
directly invoked by the online recommendation system

Segment Positive Outcomes POs/Applies Apply Starts ASs/Sends

Security Guard +17.29% +20.61% +2.46% +14.87% ↑
Retail Store Manager +86.49% ↑ +8.16% +95.51% ↑ +38.05% ↑
Quick Service Server +1.02% +4.30% -11.54% +30.72% ↑

Table 1
Final performance evaluation via online A/B experiment on selected segments via threshold optimization, where ↑ denotes a
statistically significant increase (𝛼 = 0.05 with a two-sided t-test). Almost all segments showed promising improvements by
comparing with the baseline group, which uses a default threshold for all segments.

Figure 5: The functional workflow indicates the way we inte-
grate our segmented auto-threshold tuning module into the
model training and adaptation pipeline.

by using a fixed set of default threshold values.
Figure 5 describes the conceptual design of our pro-

totype implementation, on top of the existing pipeline.
Specifically, we introduce a new stand-alone segment
auto-threshold tuning module to host our algorithm, and
plug it into the offline stage. The module is able to gen-
erate the optimal cutoff threshold settings per segment
for the newly trained models, before the online recom-
mender system can actually use them. As a result, we
make sure the online matches are always proceeding
with the optimal thresholds for each segment. In the
experiment, we set the weight 𝜆 equally at 0.25 for all
the four key metric changes. Different 𝜆 settings could
have various impacts on the objective values, and thus
the optimal threshold settings, but due to the page lim-
itation, we are not going to dig deeper into this point.
Note that, we take the offline historical interactions for
all the job-jobseeker pairs from all other channels as the
inputs for our algorithm, because this would allow us to
not only check the potential impact if we increase the
threshold, but also enable us to see the estimated impact
if we decrease the threshold for certain models.

5.2. Online AB Test Results
We continue to focus on the same three low-performed
segments (i.e., Security Guard, Retail Store Manager, and
Quick Service Server), but with a more rigorous online
A/B testing plan. In particular, we run the online A/B
experiments for two weeks with the power analysis indi-

cating at least apply start volume or ratio should be able
to reach the statistical significance given 15% estimated
effect size within this period.
Table 1 elaborates the experimental results from the

online A/B testing, with ↑denotes the statistical change
for that metric. In particular, we find all the three seg-
ments show significant improvement in terms of positive
outcome volume, positive outcome over applies, and ap-
plystart ratio. Such observation aligns with our offline
evaluation. However, it does note us that while Secu-
rity Guard and Retail Store Manager segments also have
considerable improvements on apply start volume, the
Quick Service Server segment display a negative signal at
around -11%. Although we believe our offline evaluation
is overall reliable enough for most segments, there are
still the difference between online and offline data due
to the usage of the historical data from other sources.

While low-performed segments are more likely to have
bigger improvement spaces as we observed in the experi-
ment, the proposed approach is generally applicable to all
the segments. In particular, first, the optimization frame-
work can figure out if a specific segment can be improved
by the threshold tuning. In the worst case, the existing
threshold settings are already in the optimal range, and
our proposed algorithm can quickly confirm this. But if
there is an opportunity, we can also accurately identify
it, and further find out the optimal settings accordingly.

6. Conclusion
In this work, we presented an effective solution to im-
prove the performance of our job-jobseeker recommen-
dation system. Specifically, we started by identifying
the performance gap among different segments, followed
by segment-level investigations. We then reported three
different attempts, and came up with the most feasible ap-
proach by tuning the model thresholds per segment. The
detailed solution was presented, including a proper prob-
lem formulation as a constrained optimization problem,
an efficient algorithm to speed up the threshold optimiza-
tion process, and the prototype implementation. Finally,
online A/B tests from real products proved the perfor-
mance improvement in terms of both recommendation
quality and quantity.

Our future work will mainly follow three venues. First,
we are going to scale up the auto threshold optimization
to more segments, and also figure out the way to mini-
mize the difference between offline evaluation and the
actual online performance. Second, we will evaluate
if similar segmentation work can benefit other match
providers that are based on more sophisticated models
(e.g., neural networks, or deep collaborative filtering).
Third, we will extend our segmentation optimization
work for the same match provider into our international
markets, where the user behaviors and job requirements
can become different even for the same occupation across
different countries and markets.

References
[1] K. Kenthapadi, B. Le, G. Venkataraman, Personal-

ized job recommendation system at linkedin: Practi-
cal challenges and lessons learned, in: Proceedings
of the eleventh ACM conference on recommender
systems, 2017, pp. 346–347.

[2] Y. Lu, S. El Helou, D. Gillet, A recommender system
for job seeking and recruiting website, in: Proceed-
ings of the 22nd International Conference onWorld
Wide Web, 2013, pp. 963–966.

[3] W. Shalaby, B. AlAila, M. Korayem, L. Pournajaf,
K. AlJadda, S. Quinn, W. Zadrozny, Help me find a
job: A graph-based approach for job recommenda-
tion at scale, in: 2017 IEEE international conference
on big data (big data), IEEE, 2017, pp. 1544–1553.

[4] M. Diaby, E. Viennet, Taxonomy-based job recom-
mender systems on facebook and linkedin profiles,
in: 2014 IEEE Eighth International Conference on
Research Challenges in Information Science (RCIS),
IEEE, 2014, pp. 1–6.

[5] J. Malinowski, T. Keim, O.Wendt, T.Weitzel, Match-

ing people and jobs: A bilateral recommenda-
tion approach, in: Proceedings of the 39th An-
nual Hawaii International Conference on System
Sciences (HICSS’06), volume 6, IEEE, 2006, pp.
137–145.

[6] F. Javed, P. Hoang, T. Mahoney, M. McNair, Large-
scale occupational skills normalization for online
recruitment, in: Twenty-ninth IAAI conference,
2017, pp. 4627–4634.

[7] C. Qin, H. Zhu, T. Xu, C. Zhu, L. Jiang, E. Chen,
H. Xiong, Enhancing person-job fit for talent re-
cruitment: An ability-aware neural network ap-
proach, in: The 41st international ACM SIGIR con-
ference on research & development in information
retrieval, 2018, pp. 25–34.

[8] C. Qin, H. Zhu, T. Xu, C. Zhu, C. Ma, E. Chen,
H. Xiong, An enhanced neural network approach
to person-job fit in talent recruitment, ACM Trans-
actions on Information Systems 38 (2020) 1–33.

[9] Y. Luo, H. Zhang, Y. Wen, X. Zhang, Resumegan: an
optimized deep representation learning framework
for talent-job fit via adversarial learning, in: Pro-
ceedings of the 28th ACM international conference
on information and knowledge management, 2019,
pp. 1101–1110.

[10] T. A.-O. Shaha, Y. Mourad, A survey of job recom-
mender systems, International Journal of Physical
Sciences 7 (2012) 5127–5142.

[11] F. Abel, A. Benczúr, D. Kohlsdorf, M. Larson,
R. Pálovics, Recsys challenge 2016: Job recommen-
dations, in: Proceedings of the 10th ACM confer-
ence on recommender systems, 2016, pp. 425–426.

[12] J. Dhameliya, N. Desai, Job recommender systems:
A survey, in: 2019 innovations in power and ad-
vanced computing technologies (i-PACT), volume 1,
IEEE, 2019, pp. 1–5.

	1 Introduction
	2 Related Work
	3 Overview of Our Match Recommendation Platform
	3.1 Probabilistic-based Models
	3.2 Performance Gap among Segments
	3.3 Segment-level Investigation

	4 Segment-level Optimization
	4.1 First Attempt: dedicated models per segment
	4.2 Second Attempt: online reinforcement learning with multi-armed bandit
	4.3 Third Attempt: offline threshold tuning per segment

	5 Performance Evaluation
	5.1 Prototype Implementation
	5.2 Online AB Test Results

	6 Conclusion

