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Abstract
In this work, we propose an efficient deterministic method based on Expectation-Maximization (EM)
to solve the challenging problem of the tourist trip design or Personalized Itinerary Recommendation
(PIR) with POI categories. PIR aims to recommend a personalized tour that consists of a sequence of
Points of Interest (POIs), which maximizes user satisfaction and adheres to user time budget constraints.
Additionally, POIs are divided into categories, so that the tourist is able to provide minimum/maximum
limits on the number of POIs belonging to each category. This framework mainly focuses on the
POIs sequence selection problem exploiting the personalized POI recommendations provided by a
recommender system. The proposed method sequentially solves the PIR problem by providing in
each step the POI that is expected to maximize a suitable objective function, taking into account user
satisfaction, user time budget, POIs opening hours, POIs category constraints and spatial constraints
(e.g. start and end point, POIs locations, etc). The proposed system has been also applied in a version
with multiple collaborating instances that improves the exploration of the search space and increases
the score of the objective function. The proposed system is also integrated with a complete tourist trip
design system. Experimental results and comparisons to existing methods on a large number of synthetic
and real datasets demonstrate the high performance, robustness and the computational efficiency of the
proposed system.
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1. Introduction

Recommender Systems predict the preferences of users for specific items, based on an analysis
of previous user preferences [1, 2]. They have become increasingly popular in assisting users in
decision making problems. A large number of different techniques appear in the literature for
Recommender Systems which can be classified into two main categories namely, Collaborative
Filtering and Content-based. Collaborative filtering uses only the preferences (e.g. ratings) of
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users for items [3]. Content-based systems suggest items whose content is similar to items
that have been evaluated by a user [4]. Approaches that use a combination of these two main
categories have also been proposed [5]. Recommender systems have been successfully applied
on a variety of entities such as e-shop items, web pages, news feeds, social networks, articles,
movies, music, hotels, television shows, books, restaurants, friends, etc.

Recommender systems have been also successfully applied to an important and complex
task related to tourists that concerns the planning and scheduling of tour itineraries, which
comprise a sequence of Points-of-Interest (POIs) based on the unique preferences of each tourist
[6]. The complex task of tour itinerary recommendation may also incorporate, apart from user
preferences, various real-life constraints such as limited time for touring, traffic conditions,
spatial heterogeneity of POIs, POIs opening hours, weather conditions, group travel, POI
popularity, queuing times, pricing and crowdedness. The selection of the most valuable POIs is
not trivial due to the aforementioned constrains and parameters as well as the personalized
satisfaction criteria and limitations of each tourist.

The tourist trip design problem or personalized itinerary recommendation (PIR) problem is
an extension of the orienteering problem applied to tourism. In the orienteering problem, a
set of vertices is given, each with a score. The goal is to determine a path, limited in length,
that visits some vertices and maximises the sum of the collected scores [7]. The tourist trip
design problem consists in selecting a subset of locations to visit from among a larger set while
maximizing the benefit (user satisfaction) for the tourist. The benefit is given by the sum of
the rewards collected at each location visited with constraints such as budget, POIs opening
hours (i.e. time windows at the locations), start and end points, starting time and maximum
trip duration [6, 8].

Therefore, in this work, we study the PIR problem. In order to concentrate on the POIs
sequence selection problem, we assume that the gained user satisfaction per visited POI is
provided to the system (e.g. predicted by a Recommender System based on user preferences). So,
the main goal of this work is to provide a sequence of POIs that maximize user satisfaction under
several given constraints such as user time budget, user defined POI categories, POI opening
hours and spatial constraints (e.g. start and end user points, POIs locations, etc). An advantage
of the proposed method is that it can be easily adapted to the user preference of POIs which is
provided as an input to the proposed method, while other systems try to predict them based on
historical data of user itineraries. Additionally, although the tourist is interested in visiting as
many POIs as possible according to her/his preferences, she/he may wish to avoid visiting too
many POIs that have similar characteristics (e.g., restaurants, art galleries). Similarly to [9, 8],
this is implemented in the proposed system by enforced limits on the minimum and maximum
number of POIs that the tourist can visit from each category. Furthermore, the proposed system
offers the possibility to the tourist to select a set of mandatory POIs that should be included in
her/his itinerary, by selecting appropriate values on the user defined category constraints. The
schema of the proposed system architecture is outlined in Fig. 1(a).

Figure 1 depicts an instance of a personalized tour itinerary, where the user starts at point 2
and ends at point 8. In this example, a solution of the proposed framework is plotted with red
color, that consists of five POIs (2, 15, 5, 14, 6) which provide high user satisfaction. The category
of each POI is shown in parenthesis, while the minimum and maximum limits per category are
depicted on the bottom left of Fig. 1(b). It holds that six out of eight user defined POI category
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Figure 1: (a) The schema of the proposed framework. (b),(c) An example of a personalized itinerary
on a 2D map with 16 POIs. The proposed personalized itinerary consists of three visited POIs (2, 15,
5, 14, 6). The tour starts at point 2 at 10:00 and should end at point 8 before 14:00 (user time budget:
10:00-14:00). (b) A map of 16 POIs, where each POI is drawn by a circle. The size and the color of a POI
correspond to the duration of the visit and the gained user satisfaction, respectively. The category of
each POI is shown in parenthesis. The itinerary is indicated with a red line. (c) The timetable of the
personalized itinerary.

constraints (c2,c3,c4,c5,c6 and c7) are also satisfied. The size and the color of a POI correspond
to the duration of the visit and the gained user satisfaction, respectively. Additionally, all graph
edges are assigned a travelling time. According to the proposed timetable (see Fig. 1(c)), the
tour start at 10:00 and ends at 13:46. Therefore, it holds that the selected tour itinerary passes
from POIs that provide high user satisfaction, while it respects the user time budget (10:00 to
14:00).

The main contribution of this work concerns the problem formulation of PIR with POI
categories based on the maximization of an appropriate objective function, as well as a proposed
high performance and computationally efficient deterministic method. Another significant
contribution of the proposed system is its ability to control the trade off between the exploration
of the search space and its computational cost by changing the number of collaborating system
instances. For each visited POI, the proposed objective function takes into account the user
satisfaction, POI’s visit duration and its category constraints, as well as the number of already
visited POIs, in order to get higher values as the number of POIs increases. In our work, the
gained user satisfaction is also related to the POI visit duration making more realistic the
proposed objective function. Moreover, we show the high performance and computational
efficiency of the proposed framework that is based on an EM schema. Another contribution of the
proposed method concerns its applicability, as it can be easily combined with any recommender
system (see Figure 1(a) and the the integration of the proposed system to a tourist trip design
system of Section 4.3). An additional contribution of this work concerns the creation of a large
synthetic public dataset used to test the Personalized Itinerary Recommendation systems under
different values of the problem parameters.

The remainder of this paper is organized as follows: Section 2 reviews the related work for
the itinerary recommendation problem. In Section 3, we present the main problem formulation



of itinerary recommendation that we study in this paper. Section 4 describes the proposed
itinerary recommendation method. Section 5 describes the experimental setup along with the
obtained results. Finally, conclusions and future research directions are provided in Section 6.

2. Related work

In recent years, with the popularity and explosive growth of location-based social networks
and smartphones, demographics, user preferences, and space-time information and ratings of
itineraries for POIs visited by tourists, are easily collected providing rich datasets that can be
used to infer user interests. This huge information collection has been exploited by PIR systems,
thus improving the quality of personalized recommendations. Therefore, a large number of
different techniques appear in the literature for itinerary recommendation [6, 10]. Many prior
studies formulated the itinerary recommendation as a variant of the Orienteering Problem
(OP) [7] or the Travelling Salesman Problem (TSP) [11, 12] with multiple constraints, and
subsequently solved them using optimization techniques to obtain the recommended itineraries
[13, 14]. These methods generally failed to incorporate personalization into itineraries of
individual users. In personalization-based approaches, the main challenges are:

1. implicitly inferring the interest preferences of tourists and
2. incorporating these interests as part of the recommended tour itinerary [6].

TripBuilder [15], is an unsupervised framework for planning personalized sightseeing tours
in cities based on categorized POIs from Wikipedia and albums of geo-referenced photos from
Flickr. It aims to plan a tour comprising POIs that maximize tourists’ personal interests while
adhering to a specific visiting time budget. The PersTour algorithm [16] considers both POIs’
popularity and user preferences to recommend suitable POIs to visit and the amount of time to
spend at each POI. PersTour personalize a POI’s visit duration based on the relative interest of
individual users, instead of relying on the average visit duration of a POI for all users. PersTour
introduces two adaptive weighting methods to automatically determine the emphasis on a POI’s
popularity and the user interest preferences.

The method proposed in [17] recommends emotionally pleasing tours in a city. To quantify
the extent to which urban locations are pleasant, data from a crowd-sourcing platform have
been used. The construction of the best itinerary from source to destination is performed in
four steps:

1. Identify 𝑀 shortest paths between source and destination using Eppstein’s algorithm.
2. Compute the average rank for all locations in each of the first 𝑚 (𝑚 < 𝑀) paths. At each

exploration, the path with the lowest (best) average rank is stored.
3. Terminate when the average rank drops below a threshold.
4. Select the path with the best rank found.

In [18] a Genetic Algorithm (GA) has been proposed to provide a travel plan consisting of a
set of high-ranked tourist attractions and restaurants with respect to several constraints. GA
uses natural selection and genetic principles to solve the optimization problem of itinerary
recommendation. It uses multistage processing such as initialization, selection, crossover, and
mutation to generate and refine the candidate solution.



AGAM [19] is another genetic algorithm with crossover and mutation probabilities for this
problem. In this algorithm, different weights are allocated to every factor to generate a PIR for
better results that meets many kinds of tourists’ preferences. In the performance evaluation
section, the experimental results of the proposed method are compared to [17] and [18]. UTP
[20] recommends interesting locations in the itineraries that similar tourists have traveled to
before, based on a collaborative filtering algorithm with time preferences. The DCC-PersIRE
method [10] solves the PIR problem by integrating user-POI visits, POI textual information and
POI categories in order to predict user interests and duration of visits. Finally, an iterative local
search based algorithm has been proposed to solve the PIR problem. In a more recent work,
the PWP algorithm [21] recommends multiple itineraries based on the interests of visitors, the
popularity and the cost of itineraries. PWP effectively optimizes interest, popularity and cost
during the selection of each itinerary using the NSGA-II approach via genetic operators. An
itinerary list is generated by comparing local and global tourists.

Recently, extra practical tourism constraints have been included in the tourist trip design
problem such as mandatory visits, limits on the number of locations of each category, as well as
in which order selected locations are visited [8]. In [8], four methods are proposed based on the
branch-and-check approach to solve the classical itinerary problem with extra practical tourism
constraints and POIs categories. The master problem selects a subset of locations, verifying
all except time-related constraints. These locations define candidate solutions to the master
problem. For each candidate solution, the sub-problem checks whether a feasible trip can be
built using the given locations.

Group itinerary recommendation methods provide itineraries with a balance between group
preferences and the given temporal and spatial constraints. AMT-IRE [22] is designed to
schedule visits to POIs of interest based on the overall group preferences provided in the form
of a sequence with time constraints. The proposed AMT model jointly calculates group member
preferences and overall group preferences via the attention mechanism. The predicted overall
group preferences are used in a variant of the orienteering problem and an iterated local search-
based algorithm recommends group itineraries. Another group itinerary recommendation
methods is proposed in [23], that receives a set of must-visit and preferred points of interest from
each tourist and forms multi-day tours that cover all must-visit points. The proposed framework
attempts tomaximize fairness among groupmembers. The problem of next POI recommendation
considers the sequential information of users’ check-ins in addition to users’ preferences. In
[24], the Spatio-Temporal Gated Network has been proposed to model personalized sequential
patterns for users’ long and short term preferences in the next POI recommendation. In [25],
the proposed system, that is also based on a neural network architecture, has been applied to
recommend the next personalized travel destinations to airlines’ customers.

3. Problem definition

In this section, we set the scene of the various aspects of the problem that this paper addresses,
and simultaneously we present the stepping-stones where our developments are based on. We
start below by defining the personalised itinerary recommendation problem.

First, we define preliminaries concerning the input of our approach. We assume a graph



Symbols Definitions
𝑃 = {𝑝1, ...., 𝑝𝑛} The set of 𝑛 POIs in the given Map
𝑝1/𝑝𝑛 The starting/ending locations
𝑠𝑡 The starting time of tour
𝐵 The time budget
𝑇 Traveling times matrix (𝑛 × 𝑛) of the pair-wise distances for all pairs POIs
𝐶 Set of POIs categories
𝑁𝑚𝑖𝑛
𝑔 /𝑁𝑚𝑎𝑥

𝑔 The minimum/maximum preferable number of POIs belonging to category 𝑔
𝑑𝑖 Visit duration of POI 𝑝𝑖
𝑜𝑖 Opening time window of POI 𝑝𝑖
𝑠𝑖 Gained user satisfaction per hour by visiting POI 𝑝𝑖
𝑎𝑡𝑖 / 𝑑𝑡𝑖 The arrival/departure time at POI 𝑝𝑖
𝑐 The itinerary that consists of triples (𝑝𝑖, 𝑎𝑡𝑖, 𝑑𝑡𝑖)
𝑣(𝑐) ⊆ 𝑐 The set of visited POIs of itinerary 𝑐
𝐹 (𝑐) Objective function
𝐹(𝑐) Expected value of the objective function F(c)

Table 1
Summary of the notation used throughout this work.

(e.g. city map) with 𝑛 POIs 𝑃 = {𝑝1, ...., 𝑝𝑛}. Let 𝑇 be the traveling time matrix (𝑛 × 𝑛) of the
pair-wise distances for all POI1 pairs. Let 𝐶 be the set of POI categories (e.g. restaurant, museum,
beach, shops etc.). For each category 𝑔 ∈ 𝐶, the minimum (𝑁𝑚𝑖𝑛

𝑔 ) and the maximum (𝑁𝑚𝑎𝑥
𝑔 )

preferable number of POIs belonging to category 𝑔, according to user preferences is also given.
Additionally, for each POI 𝑝𝑖 the visit duration 𝑑𝑖 and the opening time window 𝑜𝑖 is known.
Without loss of generality, we can assume that 𝑝1 and 𝑝𝑛 are the given starting and ending
locations (POIs) of the tour. Hereafter, for simplicity reasons, we will assume that 𝑝1 ≠ 𝑝𝑛,
however, our method is able to work even if the starting and ending locations coincide (𝑝1 = 𝑝𝑛).

According to the problem definition, the user gives the starting time of the tour itinerary 𝑠𝑡
and the time budget (duration) 𝐵 of the tour. This means that the tour itinerary should end at
𝑠𝑡 + 𝐵 or earlier. 𝑠𝑖 defines the gained user satisfaction per hour by the visit of POI 𝑝𝑖. In our
framework, 𝑠𝑖 is computed offline e.g. by a recommender system based on user preferences or
other features (travel, history, etc.) as depicted in Figure 1(a).

In the definition of itinerary 𝑐, we have included the visited POIs as well as the corresponding
temporal information. Therefore, an itinerary 𝑐 is defined by a sequence of triples, where
each triple (𝑝𝑖, 𝑎𝑡𝑖, 𝑑𝑡𝑖) is comprised by the visited POI 𝑝𝑖 with the corresponding arrival 𝑎𝑡𝑖
and departure times 𝑑𝑡𝑖. The case that a user can pass from a POI without visiting it, is also
supported, which means that 𝑎𝑡𝑖 = 𝑑𝑡𝑖. Thus, we denote by 𝑣(𝑐), the sequence of visited triples
(𝑝𝑖, 𝑎𝑡𝑖, 𝑑𝑡𝑖) of itinerary 𝑐, for which it holds that 𝑑𝑡𝑖 > 𝑎𝑡𝑖. Therefore, according to the itinerary
recommendation problem definition, itinerary 𝑐 should meet the following constrains:

1. ∀𝑝𝑖 ∶ 𝑝𝑖 ∈ 𝑣(𝑐) it holds that [𝑎𝑡𝑖, 𝑑𝑡𝑖] ⊆ 𝑜𝑖. This means that the corresponding POI should
be open during the visit.

2. ∀𝑝𝑖 ∶ 𝑝𝑖 ∈ 𝑣(𝑐), 𝑐 ≥ 2 it holds that the arrival time 𝑎𝑡𝑖 is given by 𝑎𝑡𝑖 = 𝑑𝑡𝑖−1 + 𝑇𝑝𝑖−1,𝑝𝑖 .

1𝑇 can be computed by applied Johnson’s algorithm on the graph of POIs in 𝑂(𝑛2), under the assumption that
the number of graph edges is 𝑂(𝑛) which is usually true for city maps.



3. The itinerary should start at POI 𝑝1, meaning that the first triple of 𝑐 should be 𝑐(1) =
(𝑝1, 𝑎𝑡1, 𝑑𝑡1).

4. 𝑎𝑡1 = 𝑠𝑡, meaning that the tour itinerary starting time is the same with the arrival time at
𝑝1.

5. The itinerary should end at 𝑝𝑛 POI, meaning that the last triple of 𝑐 should be the 𝑐(|𝑐|) =
(𝑝𝑛, 𝑎𝑡𝑛, 𝑑𝑡𝑛).

6. 𝑑𝑡𝑛 ≤ 𝑠𝑡 + 𝐵, meaning that the tour itinerary ends at time 𝑠𝑡 + 𝐵 or earlier.

Additionally, the number of categories 𝑔 ∈ 𝐶 satisfying the following condition should be
maximized:

𝑁𝑚𝑖𝑛
𝑔 ≤ ∑

𝑐𝑎𝑡(𝑐(𝑖))=𝑔
1 ≤ 𝑁𝑚𝑎𝑥

𝑔 , (1)

where 𝑐𝑎𝑡(𝑐(𝑖)) is the category of 𝑐(𝑖). Table 1 summarizes the notation used throughout this
work.

3.1. Evaluating an itinerary

Solving the itinerary recommendation problem amounts to finding the legal (i.e. satisfying
the pre-mentioned problem constrains) itinerary 𝑐∗ that maximizes an appropriately defined
objective function 𝐹. In notation,

𝑐∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝐿𝑆 𝐹(𝑐), (2)

where 𝐿𝑆 is the set of legal itineraries according to the problem constrains.
In order to assess this itinerary, we propose an objective function 𝐹 that has the following

properties:

• The main goal of the objective function is to achieve the highest user satisfaction, while
respecting the given problem constraints.

• For each category (𝑔 ∈ 𝐶), we take into account the corresponding constraint (see Eq. 1),
so that the largest number of constraints satisfied, the more preferable an itinerary 𝑐.

• For each POI (𝑝𝑖) of 𝑐, we take into account the corresponding gained user satisfaction
per hour that is multiplied by the visit duration 𝑑𝑡𝑖 − 𝑎𝑡𝑖. Intuitively, the larger gained
satisfaction, the more preferable the itinerary 𝑐.

• The number of visited points |𝑣(𝑐)| also increases the value of the objective function.
• The value of the objective function for legal itineraries is non-negative.
• The value of the objective function for non legal itineraries is set to −∞.

The aforementioned properties are well captured by the objective function 𝐹(𝑐) ≤ 1 defined as
follows:

𝑓𝑔(𝑐) =
⎧⎪
⎨
⎪
⎩

∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1
𝑁𝑚𝑖𝑛
𝑔

, if ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 < 𝑁𝑚𝑖𝑛
𝑔

1, if 𝑁𝑚𝑖𝑛
𝑔 ≤ ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 ≤ 𝑁𝑚𝑎𝑥

𝑔
𝑁𝑚𝑎𝑥
𝑔

∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1
, if ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 > 𝑁𝑚𝑎𝑥

𝑔

(3)



𝐹𝑐(𝑐) = ∑
𝑔∈𝐶

𝑓𝑔(𝑐) (4)

𝐹𝑠(𝑐) =
(1 + 𝑙𝑜𝑔(|𝑣(𝑐)|)) ⋅ ∑(𝑝𝑖,𝑎𝑡𝑖,𝑑𝑡𝑖)∈𝑐 𝑠𝑖 ⋅ (𝑑𝑡𝑖 − 𝑎𝑡𝑖)

(1 + 𝑙𝑜𝑔(𝑛)) ⋅ 𝐵
(5)

𝐹(𝑐) = {
𝐹𝑐(𝑐)+𝐹𝑠(𝑐)

|𝐶|+1 if 𝑐 ∈ 𝐿𝑆
−∞ if 𝑐 ∉ 𝐿𝑆

(6)

When 𝑐 is a legal itinerary, 𝐹(𝑐) is defined by the sum of 𝑓 𝑠(𝑐) and 𝑓 𝑐(𝑐).

• 𝐹𝑠(𝑐) sums the gained user satisfaction multiplied by the corresponding visit duration (see
Eq. 5). The term (1+𝑙𝑜𝑔(|𝑣(𝑐)|))

1+𝑙𝑜𝑔(𝑛) ≤ 1 is used to slightly increase the value of the objective

function as the the number of visited points |𝑣(𝑐)| increases.
• 𝐹𝑐(𝑐) captures the satisfied categories’ constraints by counting the number of categories
satisfying the corresponding constraints (second branch of 𝑓𝑔(𝑐)). For those categories
that don’t satisfy the categories’ constraints, it holds that

– ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 < 𝑁𝑚𝑖𝑛
𝑔 (number of categories with POIs less than 𝑁𝑚𝑖𝑛

𝑔 ) or
– ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 > 𝑁𝑚𝑎𝑥

𝑔 (number of categories with POIs more than 𝑁𝑚𝑎𝑥
𝑔 ),

two terms are included. Both terms increase as∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 approaches the corresponding
category limit 𝑁𝑚𝑖𝑛

𝑔 or 𝑁𝑚𝑎𝑥
𝑔 (see Eq. 3).

In our implementation, an itinerary that satisfies more POIs categories constraints (𝐹𝑐(𝑐)) is more
preferable, even if it yields less gained user satisfaction (𝐹𝑠(𝑐)). Therefore, 𝐹(𝑐) is influenced by
the function 𝐹𝑐(𝑐) rather than the 𝐹𝑐(𝑐). This is also verified by the fact that 𝐹𝑐(𝑐) ≤ |𝐶| and
𝐹𝑠(𝑐) ≤ 1.

According to the proposed methodology, the following function 𝐹(𝑐) that expresses the
expected value of the objective function 𝐹(𝑐) is maximized. 𝐹(𝑐) is defined by the sum the of
the excepted values of 𝐹𝑐(𝑐) and 𝐹𝑠(𝑐) (𝐹𝑐(𝑐) + 𝐹𝑠(𝑐), see Eq. 12). 𝐹𝑠(𝑐) gives the expected value
of 𝐹𝑠(𝑐) under the assumption that the value of 𝐹𝑠(𝑐) linearly increases with the duration of
itinerary 𝑐 (see Eq. 10).
𝐹𝑐(𝑐) gives the expected value of 𝐹𝑐(𝑐). The expected value of 𝐹𝑐(𝑐) is only computed by

the categories 𝑔 ∈ 𝐶 that satisfy constraint ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 < 𝑁𝑚𝑖𝑛
𝑔 (term 𝐶1(𝑐) of Eq. 7), since

extra included POIs from these categories, are only expected to increase the value of 𝐹𝑐(.). The
expected value of 𝐶1(𝑐) is computed under the assumption that it linearly increases with the
duration of itinerary 𝑐 respecting the upper limit: 𝐶1(𝑐) ≤ 𝐶𝑚𝑎𝑥1 (𝑐) (see Eq. 10). 𝐶𝑚𝑎𝑥1 (𝑐) is equal
to the number of categories that satisfy the constraint ∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔 1 < 𝑁𝑚𝑖𝑛

𝑔 (see Eq.9).

𝐶1(𝑐) = ∑
𝑔∈𝐶∶∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔<𝑁𝑚𝑖𝑛

𝑔

𝑓𝑔(𝑐) (7)

𝐶𝑚𝑎𝑥1 (𝑐) = ∑
𝑔∈𝐶∶∑𝑐𝑎𝑡(𝑐(𝑖))=𝑔<𝑁𝑚𝑖𝑛

𝑔

1 (8)



𝐹𝑐(𝑐) = 𝐹𝑐(𝑐) −
𝐶1(𝑐)
|𝐶| + 1

+
𝑚𝑖𝑛{𝐶𝑚𝑎𝑥1 (𝑐), 𝜙 ⋅ 𝐶1(𝑐)}

|𝐶| + 1
(9)

𝐹𝑠(𝑐) = 𝜙 ⋅ 𝑓 𝑠(𝑐) (10)

𝜙 = 𝐵
𝑑𝑡𝑛 − 𝑎𝑡1

(11)

𝐹(𝑐) = 𝐹𝑐(𝑐) + 𝐹𝑠(𝑐) (12)

In this formulation, the total duration of itinerary 𝑐 is given by the difference 𝑑𝑡𝑛 − 𝑎𝑡1.
The computational cost of the exhaustive method for determining the optimal itinerary by

maximizing the objective function defined in Eq. 6 is 𝑂(𝑛 ⋅ (𝑛 − 2)! ⋅ 2𝑛−2) = 𝑂((𝑛 − 1)! ⋅ 2𝑛), since
there exist 2𝑛−2 different itineraries in a map of 𝑛 − 2 POIs (assuming the first and last POIs
are given). Factor (𝑛 − 2)! results from the number of permutations, since the order of POIs
should also be considered. The evaluation of the objective function that costs 𝑂(|𝑣(𝑐)|) = 𝑂(𝑛),
is included in term (𝑛 − 1)!. This is too costly. Hereafter, we capitalize on the properties and the
structure of the problem to propose an algorithm that provides an almost optimal solution in
polynomial time.

4. Personalized itinerary recommendation

4.1. PIREM algorithm

Based on the problem formulation and constraints presented in Section 3, we now present
PIREM algorithm, for solving the problem of PIR based on EM.
The PIREM algorithm: In this work, we propose an iterative optimization method, described
in Algorithm 1, that sub-optimally solves the problem in 𝑂(𝑛 ⋅ 𝐵3), where 𝑛 denotes the number
of given POIs, under the assumption that itinerary length increases linearly with 𝐵, as shown in
our experimental results. According to the proposed method, the itinerary recommendation
problem is solved by sequentially adding the most suitable unvisited POI in the current itinerary,
the one that maximizes the expected value of the objective function, as this is defined in Eq. (12).
Due to the proposed EM based method, a short in time duration itinerary is more promising and
it is preferred to be selected as optimal itinerary to be extended, than a long in time duration
one with similar values on the objective function.

The input to the proposed method is variables 𝑃, 𝑠𝑡 , 𝐵, 𝑇 , 𝐶, 𝑑𝑖, 𝑜𝑖, 𝑠𝑖, 𝑖 ∈ {1, ..., 𝑛}, 𝑁𝑚𝑖𝑛
𝑔 , 𝑁𝑚𝑎𝑥

𝑔 , 𝑔 ∈
𝐶 as described in Section 3. The goal of the proposed method is to compute a solution for the
PIR problem that is denoted by 𝑐∗ in Algorithm 1. The first four lines of Algorithm 1 is the
initialization phase. Variable 𝑛𝑐 that counts the number of changes in each main iteration of the
method is set to zero, as well as the current optimal value of the objective function 𝐹𝐵. The set
𝑆 of the indexes of visited POI is initialized to the empty set, while the first triplet of 𝑐∗ is set
equal to {(𝑝1, 𝑠𝑡 , 𝑠𝑡)}, according to the problem definition.

In the main loop of the proposed PIREM method (lines 5-26 of Algorithm 1), we get the set
of the indexes of all unvisited POIs 𝑈 (line 6 of algorithm 1), that will be used to find the next
visited POI. Additionally, we set 𝑛𝑐 = 0. In the computation of 𝑈, we ignore the ending POI 𝑝𝑛
(𝑈 = {1, ..., 𝑛 − 1} − 𝑆), since this is definitely inserted after the last visited POI 𝑐∗ (𝑐∗(|𝑐|)) at the



input :𝑃, 𝑠𝑡 , 𝐵, 𝑇 , 𝐶, 𝑑𝑖, 𝑜𝑖, 𝑠𝑖, 𝑖 ∈ {1, ..., 𝑛}, 𝑁 𝑚𝑖𝑛
𝑔 , 𝑁 𝑚𝑎𝑥

𝑔 , 𝑔 ∈ 𝐶 .
output : 𝑐∗.

1 𝑛𝑐 = 0
2 𝑆 = ∅
3 𝐹𝐵 = 0
4 𝑐∗ = {(𝑝1, 𝑠𝑡 , 𝑠𝑡)}
5 repeat
6 𝑈 = {1, ..., 𝑛 − 1} − 𝑆
7 𝑛𝑐 = 0
8 foreach 𝑘 ∈ 𝑈 do
9 for 𝑚 = 1 to |𝑐∗| + 1 do
10 𝑐 = 𝑐∗.𝑎𝑑𝑑𝑃𝑂𝐼 (𝑝𝑘, 𝑚)
11 if 𝑐 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 then
12 𝑓 = 𝐹(𝑐)
13 if 𝑓 > 𝐹𝐵 then
14 𝐹𝐵 = 𝑓
15 𝑐𝑏 = 𝑐
16 𝑘∗ = 𝑘
17 𝑛𝑐 = 𝑛𝑐 + 1
18 end
19 end
20 end
21 end
22 if 𝑛𝑐 > 0 then
23 𝑐∗ = 𝑐𝑏
24 𝑆 = 𝑆 ∪ 𝑘∗

25 end

26 until 𝑛𝑐 ≠ 0 ∨ 𝑈 = ∅;
27 (𝑝𝑗, 𝑎𝑡𝑗, 𝑑𝑡𝑗) = 𝑐∗(|𝑐|)
28 if 𝑑𝑡𝑗 + 𝑇(𝑗, 𝑛) + 𝑑𝑛 ≤ 𝐵 + 𝑠𝑡 then
29 𝑐∗ = 𝑐∗ ∪ {(𝑝𝑛, 𝑑𝑡𝑗 + 𝑇(𝑗, 𝑛), 𝑑𝑡𝑗 + 𝑇(𝑗, 𝑛) + 𝑑𝑛)}
30 else
31 𝑐∗ = 𝑐∗∪
32 {(𝑝𝑛, 𝑑𝑡𝑗 + 𝑇(𝑗, 𝑛), 𝑑𝑡𝑗 + 𝑇(𝑗, 𝑛))}
33 end

Algorithm 1: The proposed iterative optimization method solving the PIR problem based
on EM (PIREM ).

end of the method (lines 27-32 of algorithm 1). This loop terminates when no changes take
place in the main loop or the set 𝑈 is empty.

Subsequently, in the second loop (lines 8-21 of Algorithm 1), we evaluate whether the insertion
of each unvisited POI 𝑝𝑘, 𝑘 ∈ 𝑈 at the position 𝑚 of the current optimal itinerary 𝑐∗ (see the third
for loop of line 9) is legal according to the problem constraints and whether it improves the
current optimal value of 𝐹𝐵 (expected value of the objective function). If both of the following
statements are true, it means that the insertion the insertion of 𝑝𝑘 at position 𝑚 of 𝑐 is valid (see
lines 10-11 of Algorithm 1):

1. All visited POIs of 𝑐 are opened.
2. Tour 𝑐 ends at time 𝑠𝑡 + 𝐵 or earlier.

Finally, we check if the insertion of 𝑝𝑘 improves the current optimal value 𝐹𝐵 and we update 𝐹𝐵
(see lines 13-18). The current optimal itinerary 𝑐∗ and set 𝑆 are updated in this loop (see lines
22-25), so that the most suitable POI is inserted at the most suitable position of 𝑐∗.



4.2. M-PIREM algorithm

The resulting solution of PIREM may land on a local minima of the objective function due to the
sequential optimization. Thus, we propose an extended version with multiple (𝑀) collaborating
instances of PIREM, called M-PIREM to improve the PIREM solution via a better exploration
of the search space. Parameter 𝑀 controls the trade off between search space exploration and
computational cost, by changing the number of collaborating instances. Hereafter, theM-PIREM
algorithm is presented.

1. Let 𝐻 be the set of 𝑀 collaborating itineraries (instances of PIREM ). In the initialization
step, the set of visited POIs of the 𝑀 itinerraries 𝐻, 𝐻{𝑖}, 𝑖 ∈ {1, ..., 𝑀} is set to the empty
set, while the first triplet of each itinerary is set equal to {(𝑝1, 𝑠𝑡 , 𝑠𝑡)}, according to the
problem definition.

2. In the main loop, we derive itinerary 𝑐− from set 𝐻 with the lowest expected value 𝐹𝐵
(𝑐− = 𝑎𝑟𝑔𝑚𝑖𝑛𝑐∈𝐻𝐹𝐵(𝑐)). Then, we apply an iteration of the main loop of the PIREM method,
to get an new valid itinerary (𝑐+) that does not exist in 𝐻2.

3. Subsequently, set 𝐻 is updated by replacing itinerary (𝑐−), having the lowest expected
value, by the new one (𝑐+). This process is repeated until the expected value of the
objective function cannot be further improved.

Improving the lowest expected value (steps 2 and 3) increases the diversity of the possible
solutions in 𝐻, in order to better avoid local minima. The computational cost of this method is
𝑂(𝑀 ⋅ 𝑛 ⋅ 𝐵3). It holds that the solutions provided by M-PIREM are better or equivalent to the
corresponding solutions of PIREM. In our experiments, we used 𝑀 = 32.

4.3. Integration with a tourist trip design system

The proposed system is integrated with the Visit Planner App (Fig. 2(a)) that is a complete
tourist trip design system (mobile app). According to Visit Planner App, the tourist gives her/his
preferences by providing ratings on several POIs (Fig. 2(b)), so that a recommender system
([1]) is able to predict her/his preferences on the whole set of POIs. Then, the tourist provides
some parameters for the trip e.g. starting time, budget etc. (see Fig. 2(c)) and the system
will be able to create a trip according to the proposed objective function. For an even better
user satisfaction, the visitor is able to change/select the POIs to be included in the itinerary
among a list of the top-20 highest personally recommended POIs (Fig. 2(d)), while the proposed
system will provide the best route that passes from the selected POIs, taking also account PIR
constraints (e.g. opening hours, etc.) (Fig. 2(e)). The current beta version of Visit Planner App
has been applied on the Municipality of Agios Nikolaos, Crete. It is available online at Google
Play (https://play.google.com/store/apps/details?id=com.netmechanics.vip).

2If the case itinerary 𝑐− is not a new itinerary, that does not exist in set 𝐻, we select the itinerary from 𝐻 with
the second lowest expected value 𝐹𝐵 and so on.

https://play.google.com/store/apps/details?id=com.netmechanics.vip
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Figure 2: Screenshots of the Visit Planner App that is based on the proposed system.

5. Experimental evaluation

In this section, we describe the experiments we conducted using several frameworks and
datasets.

5.1. Synthetic and Real Datasets

For our experiments, we have created 1024 different experimental setups on 64 synthetic datasets
(16 different experiments per dataset) to study the performance and computational efficiency of
the proposed methods and other methods from the literature under several problem parameters.
Our intention is to provide a high number of random experimental setups that are realistic
concerning the default parameter values in order to be able to fairly compare all methods
under almost real conditions, different scenarios and scales. Hereafter, we present the proposed
experimental parameter settings.

Each of the 64 synthetic datasets is generated by adding 𝑛 POIs at random positions on a
2D-map, where 𝑛 ∈ {32, 64, 96, 128}. The roads (edges) of each map are generated as follows, we
sequentially connect the closest POIs according to the following rule: An edge is created if the
distance between its middle point and the rest edges exceeds a predefined threshold in order not
to create edges that are very close to each other. This is also almost true on real maps. In order
to create the 64 synthetic datasets, we have created 16 maps for every value of 𝑛, following
the aforementioned procedure. Subsequently, we set the parameters for each POI 𝑝𝑖 of each
synthetic dataset. Parameters 𝑑𝑖 and 𝑜𝑖 are selected randomly from {0.25, 0.5, 0.75, 1} and {[9:00,
24:00], [12:00, 21:00] , [9:00, 14:00], [14:00, 24:00], [9:00, 14:00] ∪ [17:00, 21:00]}, respectively.
For each synthetic dataset, we create 16 different experimental setups by randomly selecting
the starting and ending locations of the tour from the available POIs. For each setup, we set
the starting time of tour at 9:00 (𝑠𝑡 =9:00), while the time budget 𝐵 is randomly selected from
{5, 6, 7, 8, 9}. The value of parameter 𝑠𝑖 is randomly selected in [0, 1]. An example of the synthetic
datasets with 𝑛 = 16 is illustrated in Fig. 1.



Additionally, in order to test our method with real data, we used three real datasets from
Vienna, Budapest and Delhi cities presented in [16]. Vienna, Budapest and Delhi datasets
comprise a set of users and their visits to 𝑛 = 28, 𝑛 = 38 and 𝑛 = 23 POIs, respectively. The real
datasets comprise a set of users and their visits to POIs naturally clustered into 6-8 different POI
categories based on geo-tagged YFCC100M Flickr photos. For the real dataset, we create 256
different experimental setups following the same procedure applied on the synthetic datasets
(see previous paragraph). The value of parameter 𝑠𝑖 of a POI is given by the ratio of the POI
visits according to the data provided by [16].

In synthetic datasets, we used 8 different POI categories, thus, the category of each POI of
a synthetic dataset is randomly selected from a predefined set of eight values. Additionally,
we used four different strategies for the 𝑁𝑚𝑖𝑛

𝑔 and 𝑁𝑚𝑎𝑥
𝑔 parameter setting. Therefore, the

experimental setups of each synthetic and real dataset, are equally divided into the following
four classes determined by parameters 𝑁𝑚𝑖𝑛

𝑔 and 𝑁𝑚𝑎𝑥
𝑔 capturing different realistic conditions,

and extended the two different setups (Tight and Flexible) proposed in [9].

1. Tight : For each 𝑔 ∈ 𝐶, it holds that 𝑁𝑚𝑖𝑛
𝑔 is randomly selected from the set {0, 1, 2} and

𝑁𝑚𝑎𝑥
𝑔 = 𝑁𝑚𝑖𝑛

𝑔 . This class simulates tight cases, where the user want to visit a specific
number of POIs according to their categories.

2. Semi-flexible: For each 𝑔 ∈ 𝐶, it holds that 𝑁𝑚𝑖𝑛
𝑔 is randomly selected from the set {0, 1, 2}

and 𝑁𝑚𝑎𝑥
𝑔 = 𝑚𝑎𝑥{1, 𝑁𝑚𝑖𝑛

𝑔 }. This class simulates semi-flexible cases, where the user want
to visit specific number of POIs according to their categories with the flexibility that each
category can be visited 𝑁𝑚𝑎𝑥

𝑔 ≥ 1 and 0 ≤ 𝑁𝑚𝑎𝑥
𝑔 − 𝑁𝑚𝑖𝑛

𝑔 ≤ 1 times.

3. Flexible: For each 𝑔 ∈ 𝐶, it holds that 𝑁𝑚𝑖𝑛
𝑔 is randomly selected from the set {0, 1, 2} and

𝑁𝑚𝑎𝑥
𝑔 = 𝑁𝑚𝑖𝑛

𝑔 + 𝑟, where 𝑟 is randomly selected from the set {1, 2, 3}. This class simulates
flexible cases, where it holds that 1 ≤ 𝑁𝑚𝑎𝑥

𝑔 − 𝑁𝑚𝑖𝑛
𝑔 ≤ 3.

4. No Categories: 𝑁𝑚𝑖𝑛
𝑔 = 0 and𝑁𝑚𝑎𝑥

𝑔 = ∞. This class simulates cases without POIs categories
constraints.

5.2. Baseline algorithms

In our experiments, we have included the proposed methods PIREM and M-PIREM as described
in Section 4. In order to show the importance of the EM criterion, we have implemented a
variant of the proposed PIREM method that maximizes the value of objective function 𝐹(𝑐)
instead of 𝐹(𝑐). This variant is called PIRM.

Moreover, to evaluate the performance of the proposed methods, we compared it against
the following PIR methods [17, 18]. Both methods are described in Section 2. Hereafter, the
method proposed in [17] that is based on shortest paths is called SPM and the genetic algorithm
proposed in [18] is called GA. Both methods have been modified to maximize the proposed
objective function 𝐹(𝑐).

The itineraries provided by the aforementioned methods are evaluated according to the ob-
jective function 𝐹(𝑐) that measures the quality (user satisfaction and POIs categories constraints
satisfaction) of the recommended itineraries according to the problem definition (see Section 3).
Moreover, we have evaluated the computational efficiency of the various methods by measuring



n Class of POI category constraints
Method 32 64 96 128 Tight Semi-flexible Flexible No Categories Average
M-PIREM 0.889 0.910 0.910 0.908 0.891 0.899 0.897 0.929 0.904
PIREM 0.870 0.890 0.888 0.886 0.865 0.872 0.870 0.926 0.883
PIRM 0.792 0.769 0.734 0.732 0.697 0.711 0.703 0.916 0.757
SPM 0.760 0.790 0.800 0.804 0.719 0.756 0.761 0.920 0.789
GA 0.862 0.877 0.870 0.862 0.815 0.866 0.869 0.921 0.868

Table 2
The average values of objective function F for the five methods on the synthetic datasets for different
values of 𝑛 and class of POIs categories constraints.

Precision Objective Function
Dataset Method Tight Semi flexible Flexible No Cat. Average Tight Semi flexible Flexible No Cat. Average

Vienna

M-PIREM 0.828 0.922 0.891 0.969 0.902 0.664 0.701 0.708 0.917 0.748
PIREM 0.188 0.172 0.188 0.500 0.262 0.637 0.669 0.682 0.916 0.726
PIRM 0.156 0.141 0.078 0.016 0.098 0.596 0.650 0.643 0.913 0.700
SPM 0.016 0.094 0.078 0.016 0.051 0.565 0.606 0.598 0.907 0.669
GA 0.172 0.109 0.125 0.016 0.105 0.638 0.674 0.690 0.913 0.729

Budapest

M-PIREM 0.875 0.938 0.891 1.000 0.926 0.710 0.740 0.736 0.916 0.776
PIREM 0.219 0.094 0.234 0.422 0.242 0.708 0.726 0.726 0.916 0.769
PIRM 0.094 0.000 0.000 0.000 0.023 0.588 0.628 0.628 0.908 0.688
SPM 0.047 0.000 0.016 0.031 0.023 0.606 0.648 0.637 0.909 0.700
GA 0.078 0.063 0.031 0.016 0.047 0.683 0.722 0.723 0.912 0.760

Delhi

M-PIREM 0.844 0.922 0.844 0.984 0.898 0.602 0.618 0.602 0.892 0.679
PIREM 0.109 0.297 0.141 0.344 0.223 0.595 0.607 0.587 0.892 0.670
PIRM 0.203 0.125 0.078 0.219 0.156 0.533 0.531 0.519 0.892 0.619
SPM 0.328 0.344 0.375 0.313 0.340 0.588 0.594 0.579 0.892 0.663
GA 0.313 0.391 0.406 0.219 0.332 0.587 0.607 0.592 0.892 0.669

Table 3
The average values of Precision (left part) and objective function F (right part) for the five methods on
the Vienna, Budapest and Delhi datasets for different values of class of POIs categories constraints.

their execution times. All the analysis has been done using MATLAB 2020a on an Intel i7 core
3.20GHz with 32 GB RAM3.

5.3. Comparisons

Table 2 presents the average values of objective function F for the five methods presented in
Section 5.2 on the synthetic datasets for various values of 𝑛 and class of POI category constraints.
It holds that the proposed M-PIREM method clearly outperforms all methods under any map
size and class of POI category constraints. PIREM also shows high performance results since
it outperforms all other methods under any map size and class of POI category constraints.
Next, it appears that good performance results are obtained by GA. Low performance results
are obtained by SPM and PIRM. The methods’ ranking obtained for each value of 𝑛 and class of
POIs categories constraints agree with the average results of the last column of Table 2.

Figure 3 shows the average precision (𝑝𝑟) of eachmethod on the synthetic datasets for different
values of 𝑛 (Fig. 3(a)), POI category constraints classes (Fig. 3(b)) and time budget 𝐵 (Fig. 3(c)).
For each method the precision is computed by the percentage of datasets for which the method
yields the best itinerary according to the objective function 𝐹(𝑐) criterion over all methods. The

3The code implementing the proposed methods along with the synthetic datasets are publicly available online:
https://sites.google.com/site/costaspanagiotakis/research/pirem.

https://sites.google.com/site/costaspanagiotakis/research/pirem
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Figure 3: The average Precision of each method on the synthetic datasets for different values of (a) 𝑛
(b) POI category constraints classes, (c) time budget 𝐵.
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Figure 4: (a), (c) The average values of objective function F for the M-PIREM method under different
values of𝑀 for the (a) synthetic and (c) Vienna dataset. (b),(d) The average number of POIs for different
values of time budget 𝐵 for the M-PIREM method (M = 32) for the (b) synthetic and (d) Vienna dataset.

results of Fig. 3, concerning the ranking of the methods, agree in most cases with the results of
Table 2. Figure 3 shows that the proposedM-PIREM method clearly outperforms all the methods,
having average precision more than 89.5% under any value of 𝑛, POI category constraint class
and time budget. The average precision of M-PIREM and PIREM for all datasets is 94.3% and
6.9%, respectively. The average precision of any other method is less than 3%. According to the
𝑝𝑟 criterion, M-PIREM clearly outperforms all the other methods.

Table 3 presents the average values of precision Pr (left part) and objective function F (right
part) for the five methods on the three real datasets (Vienna, Budapest and Delhi) for different
values of class of POIs categories constraints. The results agree with the corresponding results
on the synthetic datasets (see Table 2 and Fig. 3). It holds that the proposed M-PIREM method
clearly outperforms all methods under dataset, criterion and class of POI category constraints.
In some cases, GA slightly outperforms PIREM, because it exhaustively searches the solution
space for simple problem instances (low values of 𝑛). Additionally, the outperformance of the
proposed method M-PIREM compared to the rest systems slightly increases for more complex
problem instances under real (see Budapest dataset on Table 3) and synthetic datasets (see
𝑛 = 128 on Table 2).



5.4. Evaluation of the proposed methods

The importance of the EM criterion of the proposed schema is clearly shown in our experiments
(see Fig. 3, Table 2 and 3). In all experiments performed,M-PIREM and PIREM clearly outperform
the PIRM method. According to the results of Table 2, it holds that on average, the user
satisfaction, as measured by the proposed objective function, is about 17% higher when the EM
criterion is used.

Figure 4 presents several results for the proposed top performing method M-PIREM on the
synthetic and Vienna datasets. Vienna dataset is selected since it better represents the real
datasets according to dataset size (complexity) criterion. In Figs. 4(a) and 4(c), the average values
of objective function F for the M-PIREM method under different values of 𝑀 are depicted on the
synthetic and Vienna datasets, respectively. As expected, the higher the value of 𝑀, the higher
the obtained user satisfaction. For the synthetic datasets, when 𝑀 > 32, the improvement
of the obtained solutions is not so critical, thus the selection of parameter 𝑀 = 32 offers a
good balance for the trade off between search space exploration and computational cost, which
increases linearly with 𝑀. The Vienna dataset is less complex (𝑛 = 28), thus when 𝑀 > 24, the
M-PIREM provides equivalent solutions. Figures 4(b) and 4(d) present the average number of
POIs for different values of time budget 𝐵 for the M-PIREM method (M = 32) for Vienna and
synthetic datasets, respectively. As expected, the itinerary length increases linearly with 𝐵.
For the synthetic datasets, the average itinerary length over all synthetic datasets is 9.9 with
standard deviation 𝜎 = 2.1. For the less complex Vienna dataset, the average itinerary length
over the 256 experiments is 6.1 with standard deviation 𝜎 = 1.2.

5.5. Computational efficiency

Due to the low computational cost of the proposed methods (𝑂(𝑛 ⋅ 𝐵3) and 𝑂(𝑀 ⋅ 𝑛 ⋅ 𝐵3)), they
have higher computational efficiency compared to SPM and GA. Over all synthetic datasets,
it holds that on average M-PIREM is about 5.5 and 140 times faster than SPM and GA, respec-
tively. Concerning PIREM, it appears to be about 322 and 8120 times faster than SPM and GA,
respectively. The average execution time over all synthetic datasets of M-PIREM with M = 32 is
3.2 sec. The corresponding average execution time of PIREM is only 0.06 sec.

6. Conclusions

In this work, the challenging problem of PIR with POI categories has been solved by a successive
selection of POIs approach based on EM. We focus on the POIs sequence selection problem
exploiting the personalized POI recommendations provided by a recommender system. More
specifically, we propose the PIREM method that sequentially selects unvisited POIs taking into
account user interests, user time budget and POI opening hours, spatial constraints and POIs
categories. The proposed M-PIREM method with multiple collaborating instances improves
the obtained results of PIREM. The number of instances parameter 𝑀 of the M-PIREM method
balances the trade of the search space exploration and the computational cost.

The proposed system has been successfully integrated with the Visit Planner App, a complete
tourist trip design system. Additionally, it has been successfully applied on synthetic and real



datasets providing high performance results by maximizing user satisfaction, respecting user
defined POIs categories constraints and adhering to user time budget. We have performed
1024 experiments on 64 different synthetic maps of POIs and 256 experiments on three real
datasets, where the problem parameters (user time budget, number of POIs, POIs opening
hours and spatial constraints, POIs categories, etc.) vary. All the experiments demonstrate the
proposed framework outperforms various state-of-the-art baselines on solution quality as well
as computational efficiency. In the future work, we focus on the further development and the
evaluation of the Visit Planner App. Additionally, we will study the problem of group itinerary
recommendation [22], that can be defined as an extension of the PIR according to the proposed
problem formulation.
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