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Abstract

In this paper, we present the project An exploration of the semantic knowledge in vector models: polysemy,
synonymy and idiomaticity, funded by the Xunta de Galicia within the program “Consolidacién e estruturaciéon
de unidades de investigacion competitivas e outras acciéns de fomento: Proxectos de Excelencia”, with a
duration of 5 years (2021-2026). The main objective of the project is the analysis of the most recent
language models regarding the representation of several aspects of lexical semantics: polysemy and homonymy,
synonymy and idiomaticity. The languages in which we are working are Galician-Portuguese (in its Galician
and Portuguese varieties, fundamentally), Spanish and English.
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1. Introduction and objectives

The use of architectures based on artificial neural
networks has become the most dominant approach
to natural language processing (NLP) in recent years
[1], producing significantly better results in numer-
ous areas than supervised models designed by se-
lecting individual features of the target tasks [2].
This paradigm shift has promoted the populariza-
tion of vector models inspired by the distributional
hypothesis [3, 4], which until then were mainly used
in research in cognitive science and computational
linguistics [5, 6, 7]. In this field, the implementa-
tion of computationally more efficient architectures,
with drastic reductions in dimensionality [8], has
sparked great interest in distributional semantics
studies, boosted also by the findings about the vari-
ous linguistic regularities encoded by these models
[9]. This area, previously dominated by linguis-
tically informed and more interpretable method-
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ologies (e.g., using vectors built through syntactic
dependencies [10]), has become one of the most
productive in NLP research [11].

In this regard, the emergence of deep learning
techniques using multilayer deep neural networks
with millions of hyperparameters (which require
large computational infrastructures) has led to the
proliferation of language models that perform NLP
tasks more accurately. Among various others, we
can highlight the public models ELMo (Embed-
dings from Language Models [12]), or the different
variants of BERT (Bidirectional Encoder Represen-
tations from Transformers [13]).

The project presented in this paper fits into this
new line of research and focuses on the analysis of
the ability of these models to solve various types of
lexical ambiguity:’

1. Polysemy and homonymy, i.e., a single or-
thographic form that has different meanings
(or senses) depending on the context. For
example, school as a building, as an organiza-
tion, or as a group of people (polysemy), or
bank as a financial institution, or as a sloping
raised land (homonymy).

2. Synonymy, i.e., different words expressing
the same meaning in certain contexts (e.g.,
coach or bus to refer to a long motor vehicle).

3. Idiomaticity, i.e., multiword expressions
(MWESs) whose meaning does not correspond
to the one of its constituent elements (e.g.,
glass ceiling as a social barrier for women).

1We broadly follow [14] for the definition of the phenom-
ena mentioned here.


mailto:marcos.garcia.gonzalez@usc.gal
mailto:pablo.gamallo@usc.gal
mailto:martin.pereira@usc.gal
mailto:iria.dedios@usc.gal
https://orcid.org/0000-0002-6557-0210
https://orcid.org/0000-0002-5819-2469
https://orcid.org/0000-0002-1982-2472
https://orcid.org/0000-0002-5941-1707
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://ceur-ws.org

Taking the above into account, our research aims
to fill a particularly important gap in the evaluation
of these computational models by investigating the
presence of various types of knowledge related to
lexical semantics in several languages. Thus, the
main goal of the project is to explore the most recent
language models concerning the representation of
polysemy and homonymy, synonymy and semantic
compositionality, as well as to compare them with
more interpretable distributional and compositional
methods.

The results of the present project will be useful,
on the one hand, to advance the understanding of
semantic information encoded both in static dis-
tributional representations and in large language
models trained with deep neural networks. In ad-
dition, and although the project is mainly focused
on the exploration of models, both the datasets
and the results of manual annotation will be an
important contribution regarding the semantic in-
terpretation of polysemy and homonymy, synonymy
and idiomaticity by native speakers of various lan-
guages.

2. Methodology and work plan

To develop this project, we will use the following
methodology and instrumental techniques, which in
general correspond to the state-of-the-art research
in NLP and computational linguistics.

Regarding the experimental design and the data
collection, we will use standard methodologies from
studies in semantics [14] and in psycholinguistics
[15, 16], aimed at generating controlled stimuli.
Likewise, to collect annotations from human in-
formants, we will use crowdsourcing methods which
will allow us to obtain data from native speakers
quickly and efficiently, with quality control of the
annotations [17].

Regarding the computational models, those based
on Transformer architectures will be implemented
using the transformers library, which includes the
latest models based on deep learning. We will even-
tually use other open source libraries that may incor-
porate additional models. To train and run static
embeddings, we will use gensim® and the official
tools released by the authors of other distributional
methods based on interpretable syntactic dependen-
cies (e.g., [18]).

Finally, to compare the representations of the
computational models with the values obtained from
the human annotations, we will use three methods:

2https://radimrehurek.com/gensim/

1. Precision scores, in evaluations with discrete
values (e.g. homonymy or synonymy, and in
the results of linear classifiers).

2. Correlation values, in graded evaluations
(polysemy or idiomaticity).

3. Representation Similarity Analysis, to see
if the models predict relative differences be-
tween examples of the same type (e.g., a word
or MWE with the same meaning in different
contexts) in a similar way to humans.

It should be noted that these methods have al-
ready been used in previous works, which we briefly
mention below.

2.1. First results

Although we are at an early stage, we already have
some published results, both from previous research
directly related to this proposal and from work car-
ried out since the beginning of the project. Thus,
we have already presented various datasets with
semantic idiomaticity annotation at token and type
levels in English and Portuguese, and used them
to evaluate several language models [19, 20]. In
addition, we have created a new dataset in Galician-
Portuguese, English and Spanish that includes ex-
amples of homonymy and synonymy in context, also
used to compare various contextualization models
and strategies [21].

More recently, we have compared Transformers
models and distributional strategies based on syn-
tactic dependencies in semantic compositionality
tasks [18, 22]. Finally, we have participated in the
co-organization of the task Multilingual Idiomatic-
ity Detection and Sentence Embedding (SemEval
2022), in which we have presented new resources
with annotation of semantic idiomaticity in context
in Galician-Portuguese and English [23].

3. Work team

The project presented in this paper is carried out at
the Centro Singular de Investigacién en Tecnoloxias
Intelixentes (CiTTIUS) of the Universidade de San-
tiago de Compostela, and belongs to its scientific
program in Natural Language Technologies. In this
sense, members of the center collaborate on differ-
ent tasks of our work plan, that are part of their
respective areas of expertise.

Besides the principal investigator, the project has
research and work teams formed by three PhDs
with specializations in Computational Linguistics,
Psycholinguistics, Logic and Computer Science. In
collaboration with a pre-doctoral researcher and
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technical staff that will be hired with the project
funds, these teams actively participate in the differ-
ent stages of the project. Finally, we also rely on
the collaboration of researchers from other univer-
sities, both Galician and international, with whom
we have already participated in joint initiatives and
projects with similar themes to the one presented
in this paper.
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