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Abstract
We present a neural machine translation (NMT) system for translating both Spanish and English to Galician
(𝐸𝑆–𝐺𝐿 and 𝐸𝑁–𝐺𝐿). Galician is a language closely related to Portuguese, with low to medium resources,
spoken in northwestern Spain. Our NMT system is trained on large-scale synthetic 𝐸𝑆 → 𝑃 𝑇 → 𝐺𝐿 and
𝐸𝑁 → 𝑃 𝑇 → 𝐺𝐿 parallel corpora created by the spelling transliteration of Portuguese to Galician from a
high-quality Spanish to Portuguese (𝐸𝑆–𝑃 𝑇 ) and English to Portuguese (𝐸𝑁–𝑃 𝑇 ) translation memories. The
NMT system is then made available via a public web interface at https://demos.citius.usc.es/nos_tradutor.
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1. Introduction
Several systems have been compared and devel-
oped to perform machine translation (MT), ranging
from rule-based systems to systems based on neural
networks [1] Traditionally, rule-based systems like
Apertium [2] are used for languages with a small
amount of parallel data. That is because MT sys-
tems backed by neural networks, or neural machine
translation (NMT) systems, require high amounts of
data, typically on the order of millions of sentences
or more [3, 4]. An interesting option for low-resource
languages is the use of zero-shot translation tech-
niques, that is, translating in multilingual settings
between language pairs for which the NMT system
has never been trained. However, as Gu et al. [5]
state, training zero-shot NMT models easily fails as
this task is very sensitive to hyper-parameter setting.
The performance of zero-shot strategies is usually
lower than that of more conventional pivot-based
approaches.

We describe and implement an approach inspired
by previous work [6] that uses the proximity of
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Portuguese and Galician to overcome the lack of
resources problem and produces corpora to build an
NMT system, similar to low-resource NMT systems
found in previous work [7, 8], for translating both
Spanish to Galician and English to Galician. Our
system first uses high-quality Spanish–Portuguese
(ES–PT) and English–Portuguese (EN–PT) parallel
corpora to translate the target-sided (Portuguese)
sentences (or segments) to Galician using translit-
eration, the conversion of text in one language to
another through spelling. Transliteration between
Portuguese and Galician works well due to the or-
thographic nearness of the two languages found
in previous work [9]. Second, NMT systems with
the transliterated Galician parallel text are created
to form a Spanish–Galician (ES–GL) and English–
Galician (EN–GL) MT system where both Spanish
and English are the source languages and Galician
is the target language. Two different neural-based
architectures were tested: Long short-term memory
(LSTM) and Transformers.

2. Method
Our translation strategy consists of two steps. The
first step uses transliteration [10] to create parallel
Galician segments from the Portuguese segments in
the aligned corpus, by making using of the translit-
eration tool port2gal1, which contains several hun-
dreds of rules on characters and sequences of charac-
ters. Both training and validation sets are translit-
erated leaving a final parallel Galician corpus. Then,
in the second step, the Galician (transliterated) cor-

1https://github.com/gamallo/port2gal
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system pair source corpus size bleu ter chrF2
lstm es-gl Europarl+CLUVI 2.35M 48.9 34.4 69.3
lstm es-gl Europarl+CLUVI+OpenSubt(part) 5M 51.1 32.8 70.8
lstm es-gl Europarl+CLUVI+OpenSubt 30M 46.0 37.2 66.5
transformer es-gl Europarl+CLUVI 2.35M 17.5 67.4 53.0
transformer es-gl Europarl+CLUVI+OpenSubt 30M 13.9 66.7 46.4
lstm en-gl Europarl+OpenSubt 27.M 26.6 50.3 45.5
transformer en-gl Europarl+OpenSubt 27.M 29.3 49.7 51.0

Table 1
Results obtained for the two language pairs (𝐸𝑆–𝐺𝐿 and 𝐸𝑁–𝐺𝐿) evaluated on two different systems, LSTM and
Transformer, by making use of three quantitative measures: BLEU, TER and ChrF2. The corpus size is quantified in
millions of sentences (M).

pus is used to train an NMT system with Spanish or
English as the source language and Galician as the
target language. For the first transliteration step,
we also tested a more complex strategy by combin-
ing PT→GL Apertium translator [2], which uses
a basic bilingual dictionary to translate word by
word, with the transliteration tool for those words
that are not in the bilingual dictionary.

The NMT system that we use for ES–GL and
EN–GL translations was created using OpenNMT
[11], a generic deep learning framework for creating
sequence-to-sequence models in machine translation.
In particular, we trained a LSTM (long short term
memory) seq2seq model as well as a Transformer
model for each language pair.

Concerning LSTM, we used the following default
neural network training parameters: two hidden lay-
ers, 500 hidden LSTM units per layer, input feeding
enabled, 13 epochs, batch size of 64. Alternatively,
we modified the default learning step parameters to
100,000 training steps and 10,000 validation steps.
Traditional tokenization was performed with Lin-
guakit [12]

The Transformer implementation, described in
Garg et al. [13], was configured with default training
parameters: 6 layers for both encoding and decoding
and batch size of 4096 tokens. We also modified the
learning step parameters to the same values as the
LSTM configuration. In this case, we used sub-word
tokenization, performed with SentencePiece [14].

3. Corpora
The main parallel sources we used to train the NMT
system come from Opus2. In particular we used the
𝐸𝑆–𝑃 𝑇 and 𝐸𝑁–𝑃 𝑇 partitions of both Europarl3,
with about 2 million sentences per language, and

2https://opus.nlpl.eu
3https://opus.nlpl.eu/Europarl.php

OpenSubtitles4, containing about 30 million sen-
tences in 𝐸𝑆–𝑃 𝑇 and 25 in 𝐸𝑁–𝑃 𝑇 . The Por-
tuguese partition was transliterated to Galician so
as to build 𝐸𝑆–𝐺𝐿 and 𝐸𝑁–𝐺𝐿 parallel corpora.
In addition, we also added the Spanish-Galician par-
tition of CLUVI5, to the 𝐸𝑆–𝐺𝐿 corpus, containing
144 thousand sentences.

4. Test results
Table 1 show the results of different experiments for
𝐸𝑆–𝐺𝐿 and 𝐸𝑁–𝐺𝐿 combining the system, LSTM
or Transformer, with the size of the corpus. We
observe that LSTM works very well for close lan-
guages (𝐸𝑆–𝐺𝐿), but for the pair (𝐸𝑁–𝐺𝐿), two
distant languages, the results are slightly better
with Transformer. In addition, we also observe
that the whole OpenSubtitles corpus hurts the per-
formance in 𝐸𝑆–𝐺𝐿. The best results in 𝐸𝑆–𝐺𝐿
combine Europarl with OpenSubtitles and are com-
parable to the state-of-the-art [15]. Let us note that
the Movie and TV subtitles of OpenSubtitles are
a highly valuable resource but the quality of the
resulting sentence alignments is often lower than for
other parallel corpora [16]. The results in Table 1
allow us to confirm that using transliteration be-
tween two closely aligned languages like Portuguese
and Galician, favorable outcomes can be achieved.

5. Demonstration
Our demonstration is made up of a public-facing
web page6 that provides Galician translations for
both Spanish and English inputs. Users will be
able to test the system via an open web interface
(see Figure 1) where they could select the language
pair (𝐸𝑆–𝐺𝐿 or 𝐸𝑁–𝐺𝐿) and translation system

4https://opus.nlpl.eu/OpenSubtitles.php
5https://repositori.upf.edu/handle/10230/20051
6https://demos.citius.usc.es/nos_tradutor
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Figure 1: A screen capture of the web interface.

(LSTM or Transformer) to then enter text and gen-
erate translations.

In our demonstration, we plan to show where our
system performs well and where it does not perform
well. As an example, the sentence translated from
Spanish to Galician using the LSTM system in Table
2 is an excellent translation despite its long length.
Additionally, our system translations perform well
with syntax and seem to generally translate better
than previous systems tested on the same domain.
Nonetheless, we have found that when comparing
our system’s performance for lexical and morpholog-
ical quality, the Portuguese transliteration affect the
performance, found to be better on other rule-based
MT systems like Apertium [2] for example.

6. Future work
We plan to perform further work with a human-in-
the-loop to increase the performance based on qual-
ity. This is outlined by a continuous improvement
plan which insinuates the inclusion of translators
for user functionality tests. For example, spelling
and lexical issues such as acidente instead of acci-
dente, formal Galician differences that need to be ad-
dressed are first to be solved using newly-developed
heuristics as part of our future contingency plan.
The aim will be to create the highest-quality sys-
tem in order expand the language pairs to other
languages such as Russian or Chinese.
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