
Knowledge Graph (R)Evolution and the Web of Data

Katja Hose

Aalborg University, Denmark
khose@cs.aau.dk

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Abstract. When querying knowledge over the Web we typically consider the
Web of Data to be a static point of reference that is always available and that never
changes. However, when actually running queries "in the wild", we encounter a
broad range of problems; spanning from the (un)availability of entire knowledge
graphs (and their SPARQL endpoints) to outdated references between knowledge
graphs and beyond that, we are almost entirely missing out on the availability of
previous versions of knowledge graphs and provenance metadata about them. This
position paper discusses these issues in context and sketches some of the solu-
tions to mitigate them. In particular, this paper first discusses approaches to keep
knowledge graphs available for continuous and scalable querying and afterwards
presents an approach that enables community-driven updates so that mistakes can
be corrected or missing information can be added. Then, the paper highlights what
we can learn from RDF archiving solutions to better support evolving knowledge
graphs. And finally, the paper puts these aspects into perspective and provides an
outlook to open challenges and future work.

1 Introduction and motivation

The Web of Data provides access to vast amounts of (semi-)structured data. Building
upon Semantic Web standards and Linked Open Data principles [6], the Linked Open
Data Cloud1 is continuously growing and consists of a multitude of sources providing
access to knowledge graphs (encoded in RDF) from very diverse domains spanning
government, geography, life sciences, linguistics, media, cross-domain, publications,
social networking, and user-generated data. To enable efficient query answering over
these sources, providers maintain SPARQL endpoints (typically one per knowledge
graph), which receive SPARQL queries as input, evaluate them over the local knowledge
graph, and return answers to the queries as output. To exploit the full potential of this
wealth of publicly available information, it is often necessary to answer queries over the
combined data of multiple sources while exploiting the links between them (federated
query processing).
However, an essential shortcoming of state-of-the-art approaches and solutions is

that knowledge graphs, and alongwith them theWeb ofData, are considered to bemostly
static, always available, and rarely evolving. In reality though, the knowledge is subject
to constant and continuous evolution; more information becomes available (advances

1 https://lod-cloud.net/



in science, improved information extraction, new domains, etc.), some knowledge dis-
appears (outdated information, knowledge provider no longer offers the service, etc.),
erroneous information is corrected (or not), links and identifiers are changing, systems
crash or become temporarily overloaded and unavailable, etc.
Obviously, there are plenty of different aspects, research questions, and proposed

solutions in this context that are worth pursuing. This paper focuses on a subset of them
and briefly highlights a few particular fundamental research questions and solutions that
we have been working on in my lab. These questions are:

– How canwe reduce the query load at an endpoint to keep it responsive and available?
(Section 2)

– How can we keep knowledge graphs available despite the original sources becoming
unavailable? (Section 3)

– How canwe correct erroneous information in a community-driven and decentralized
way? (Section 4)

– How can we support an evolving Web of Data? (Section 5)
These are the same questions that I discussed in my keynote titled “How can we fix
the Web of Data?” at the MEPDaWWorkshop 2021. To conclude, Section 6 puts these
questions into perspective and provides an outlook to open challenges and future work.

2 Load balancing and endpoint availability

One of the frequently encountered issues that we experience when processing queries
on the Web of Data is that response times heavily depend on the resources currently
available at the source that hosts the queried knowledge graph. Typically, the source
offers access via a SPARQL endpoint that is capable of executing complex and arbitrary
SPARQL queries. Obviously, this can easily become a bottleneck; when expensive
queries are running concurrently, there are only little resources left to answer other
queries. As a consequence, response time and throughput suffer – and in the worst case
– the endpoint might become so overloaded that it crashes and becomes unavailable
until the provider notices and fixes the issue.
One way to counteract this issue is to reduce the load at the server and instead push

some of it to the client that issued the query. Over the years, several approaches have
been proposed that are trying to find a trade-off between the extremes of (a) having only
downloadable dumps and doing everything on the client and (b) SPARQL endpoints
doing everything on the server. Key methods cover (i) partitioning and compression of
the data on the server so that smaller amounts of data have to be accessed and transferred,
(ii) preemption [12] so that not all the results for a query are computed but only a subset
unless the client asks for more results, and (iii) restricting the range of supported queries
on the server to those that can be executed efficiently, e.g., triple patterns [21] or star
patterns [1].
WiseKG [5] is the latest approach in this field, builds upon these key methods, and is

able to dynamically allocate query processing tasks to server or client depending on the
current query load on the server, i.e., if the server is overloaded, more tasks are pushed
to the clients that issued the queries, which then have to download portions of the data
and compute joins locally. For this purpose, the server partitions the data into smaller



partitions based on star patterns and similar predicates so that all subgraphs matching
similar star patterns are grouped together and compressed using HDT [7]. The server
optimizes a query by decomposing it into star-pattern-based subqueries, optimizes the
join order, and decides which subqueries should be executed at the server and which
ones at the client. While there is still room for optimization, e.g., cost model, query
decomposition, data partitioning, statistics, etc., experimental results have shown that
especially the dynamic workload-aware shifting of tasks from server to client increases
WiseKG’s throughput in comparison to other approaches.
Until just a few years ago, the standard approach for querying remote knowledge

graphs used to be a SPARQL endpoint. Today, the landscape has broadened up; we
no longer have only endpoints but also other approaches including TPF [21] and
WiseKG [5]. All of these have different strengths and weaknesses that also depend
on the type of query that we want to execute [14]. To optimize and efficiently process
queries in this heterogeneous landscape [13], future work needs to develop efficient
query processing strategies over these heterogeneous interfaces that can exploit their
strengths and avoid their weakness.

3 Keeping knowledge graphs available despite failing original
sources

Another reason why query processing on the Web of Data is often not a reliable service
is that it totally relies on the services offered by the data providers: Web interfaces with
downloadable dumps, SPARQL endpoints, dereferenceable URIs/IRIs, etc. Studies [20]
and monitoring services2 have shown that these Web interfaces, especially SPARQL
endpoints, are often not available, i.e., there is no guarantee that the data or query
interface necessary to answer a query is actually available when needed. The reasons for
this are manifold; for instance, as discussed in the previous section, an endpoint might
be overloaded and become unresponsive. Sometimes endpoint crashes are not detected
for longer periods of time and sometimes endpoints are permanently taken offline, e.g.,
when the grant that funded an academic project ended. The underlying issue is that
maintaining a SPARQL endpoint requires considerable resources in terms of hardware
and computing power but also in terms of human resources and server administration
and maintenance. And since knowledge graphs on the Web typically come as (Linked)
Open Data providing the service for the public does not generate any financial income.
To keep the information available, we can rely on file sharing principles and P2P

systems. In particular, unstructured P2P systems are an interesting foundation where –
instead of servers representing endpoints – we have servers representing independent
clients (aka peers or nodes), each sharing some own data as well as copies of data from
other peers. One such system designed for sharing knowledge graphs, PIQNIC [2], first
splits a large dataset into smaller fragments, for example by predicates of the triples, that
are easier to share and process. To ensure that the data remains available, the fragments
are replicated at multiple peers so that a certain number of copies of each dataset are
available in the network. Since there is no global knowledge in P2P systems, each peer
only knows a couple of other peers (neighbors); to keep such a network of peers stable

2 http://www.lodhub.aau.dk/



and connected in the presence of peers joining and leaving the network, peers regularly
exchange information about their neighbors and update their connections. It might, for
instance, be advantageous to have a direct connection to a peer that has related data, e.g.,
in the sense of “joinability” so that the datasets of the peers can be joined in a query to
produce results.
For query processing and optimization, it is of course beneficial to have access to

statistics about datasets and information about which datasets are available at which peer.
Each peer then maintains an index containing such information about its neighbors, i.e.,
it captures which fragments (predicates) of a dataset are stored at which neighbors and
what URIs/IRIs these fragments contain [3]. Such indexes can, for instance, be based
on Bloom Filters and used to estimate the size of a join result based on the degree
of overlapping bits representing URIs/IRIs in the fragments. They can also be used to
decide whether a pair of fragments can produce join results at all so that the join can be
entirely pruned from the query execution plan.
Evaluation results show that such kind of indexes capturing not only fragments but

also contained URIs/IRIs substantially increase query performance. And if we replicate
all fragments at ca. 5% of the peers in the network, then we can lose more than 50%
of the peers until we start even noticing the effect in result completeness. Of course,
query execution time and throughput also benefit from a higher degree of replication
and locality.
There are still many challenges to explore in future work, incl. complex queries,

alternative types of index structures, and forms of partitioning and allocation. In par-
ticular, workload-aware approaches that can help tune the system for a particular query
workload are interesting and promising areas of future work.

4 Facilitating community-driven updates

Another fundamental issue we encounter often is that some knowledge graphs are not
up-to-date; they (i) contain erroneous information, e.g., due to an error in the information
extraction pipeline, (ii) contain outdated information, e.g., the president of a country
changes once in a while or links to other knowledge graphs might no longer be accurate
if the other side changed the URIs/IRIs, or (iii) lack important information, e.g., links
to other sources or the nickname, nationality, etc. of a person.
With the current architecture of the Web of Data, there is no way for consumers to

update a knowledge graph other than contacting the provider hoping that the feedback
will be taken into account. This, however, is a difficult and tedious endeavor. Hence, we
proposed a community-driven architecture and methods giving communities of users
the opportunity to maintain and update knowledge graphs: ColChain [4] is a system that
builds upon P2P architectures (as mentioned above) and exploits blockchain technology
to facilitate community-driven updates while keeping track of and enabling query access
to older versions of a knowledge graph.
So, the core idea is to define communities of users and peers that can propose updates

to a knowledge graph and together decide, e.g., by voting using a majority consensus
protocol, whether to accept an update or not. If an update is accepted, it needs to be
propagated throughout the network to update all other copies. During query processing,



an older copy of a knowledge graph can be recovered by going through the materialized
version of the knowledge graph and the change sets of the updates. In this sense, it is
possible to support “time-travel queries” by computing the result for a given query based
on the state of a set of knowledge graphs at a particular point in time.
Our experimental results show that there is not much overhead for query processing

that is caused by extending the basic P2P approach with the blockchain and community
functionality. Since only the latest version of a knowledge graph is materialized, answer-
ing queries accessing older versions takes a bit longer since the required versions of the
knowledge graph are created on the fly.
Future work will consider alternative ways of defining communities and voting

strategies, e.g., not giving all peers/users an equal weight in the voting process. In
particular, individual update regimes per knowledge graph might be required since
some publishers might wish to retain some special rights, such as a veto for updates.
Of course, another important area of future work is to consider materializing multiple
versions of a knowledge graph to improve query performance (see also Section 5).

5 Supporting an evolving Web of Data

Current approaches for managing and processing RDF knowledge graphs typically
optimize for one of two extremes: either the data is considered to be entirely static or it
comes in a stream setting. There is not much work on use cases in between that could
support evolving knowledge graphs with arbitrary (slow) rates of updates. Well-known
examples of such evolving knowledge graphs are DBpedia, YAGO, and Wikidata; over
the years, they grew by capturing more knowledge, there were changes to the schemas
and ontologies, URI/IRI naming schemes have changed, etc.
One of the basic challenges is to define objective measures that capture the character-

istics of the evolution over time [8, 16]. Proposed measures compare consecutive pairs
of revisions and analyze the differences between them. Such measures range from low-
level measures (incl. growth, additions, deletions of triples and vocabulary elements) to
high-level measures (incl. affected entities, types, literals, ontologies) trying to capture
the semantics and provide deeper insights of what the changes mean.
Another challenge is to support multiple versions of a knowledge graph, which is the

goal of so-called RDF archiving systems [16]. These systems are not necessarily part
of the Web of Data (although they could be used as backends for SPARQL endpoints)
but approach the problem from a different angle and support functionalities that stan-
dard approaches for knowledge graph management and querying do not consider. The
straightforward case are queries against a single (current, past) version of a knowledge
graph. But there are other types of interesting queries, e.g., in which revisions of a
knowledge graph does a query produce results, in which revisions were certain entities
added or deleted, or in which version was there a relationship between two entities or
was there ever. These types of queries obviously require comparisons between multiple
revisions, which the research community has not yet much paid much attention to.
Existing RDF archiving systems make some basic design choices, e.g., storing

independent copies per revision, storing snapshots and delta chains, or tagging triples
with timestamps. Some systems then make use of metadata encoding to capture which



triples belong to which revision – this ranges from reification to using provenance
ontologies (PROV-O) to capture arbitrary types of metadata. Another common way is
to repurpose named graphs to model the revisions so that triples become quads where
the fourth column can be used to tag the revision without “breaking” the triple format.
Other approaches simply extend the layout and add more columns. There are also other
important design choices, which involve whether multiple graphs are supported within
the same system, or whether concurrent updates are important.
To truly support (slowly) evolving knowledge graphs on the Web, future work has

to design systems that can serve as backends to access the Web of Data by combining
the obtained insights from triple stores and RDF archives. As a first step, the evolution
measures can be used to identify evolution patterns that can then be used as guidance to
choose and design an appropriate data layout and data structures [15, 18, 19]. Afterwards,
we need to develop query optimizers and efficient query processing strategies for the
special types of queries in this setup.

6 Conclusion

This position paper is centered around the question of how to mitigate the current chal-
lenges of the Web of Data and in particular those caused by its evolving knowledge
graphs. Several challenges in this context have been discussed in more detail: (i) im-
proving the availability of endpoints by better sharing load between server and client,
(ii) lowering the burden of and the dependence on the data provider by introducing
a P2P-style system using replication, (iii) supporting community-driven updates in a
decentralized setup and enabling knowledge graph evolution by introducing blockchain
principles, and (iv) enabling a broader range of functionality over evolving knowledge
graphs by fusing advances in RDF archiving systems and efficient data management and
query processing in triple stores.
To truly support knowledge graph evolution, there are plenty of open research

challenges within these areas that researchers are only just beginning to explore, e.g.,
supporting different types of time-travel queries, scalable query processing and optimiza-
tion over heterogeneous RDF interfaces, incorporating different standards of encoding
knowledge graphs and queries (property graphs vs. RDF, Cypher vs. SPARQL) but also
recent developments on SHACL/SheX constraints and shapes in general [17]. Moreover,
to help users understand and exploit the information contained in complex knowledge
graphs, we need to develop efficient ways for graph exploration [11] and extend them to
support evolving graphs. And then, there is also the issue of trust and how to reassure a
user that systems and answers to queries can be trusted. A foundation of trust in this sense
is provenance and metadata management, which covers not only approaches to capture
metadata about triples and knowledge graphs, such as reification and RDF-star [9], but
also approaches to capture workflow provenance and lineage to explain how knowledge
graphs were generated, processed, and integrated, and finally also approaches to provide
explanations on how the system arrived at a certain answer to a query [10].

Acknowledgements. This research was partially funded by the Danish Council for
Independent Research (DFF) under grant agreement no. DFF-8048-00051B and the
Poul Due Jensen Foundation.



References

1. Aebeloe, C., Keles, I., Montoya, G., Hose, K.: Star Pattern Fragments: Accessing Knowledge
Graphs through Star Patterns. CoRR abs/2002.09172 (2020)

2. Aebeloe, C., Montoya, G., Hose, K.: A Decentralized Architecture for Sharing and Querying
SemanticData. In: ESWC. LectureNotes in Computer Science, vol. 11503, pp. 3–18. Springer
(2019)

3. Aebeloe, C., Montoya, G., Hose, K.: Decentralized Indexing over a Network of RDF Peers.
In: ISWC. Lecture Notes in Computer Science, vol. 11778, pp. 3–20. Springer (2019)

4. Aebeloe, C., Montoya, G., Hose, K.: ColChain: Collaborative Linked Data Networks. In:
WWW. pp. 1385–1396. ACM / IW3C2 (2021)

5. Azzam, A., Aebeloe, C., Montoya, G., Keles, I., Polleres, A., Hose, K.: WiseKG: Balanced
Access to Web Knowledge Graphs. In: WWW. pp. 1422–1434 (2021)

6. Berners-Lee, T.: LinkedDataDesign Issues, http://www.w3.org/DesignIssues/LinkedData.html
7. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF
representation for publication and exchange (HDT). J. Web Semant. 19, 22–41 (2013)

8. Fernández, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating query and storage strategies
for RDF archives. Semantic Web 10(2), 247–291 (2019)

9. Hartig, O.: Foundations of RDF★ and SPARQL★: An Alternative Approach to Statement-
Level Metadata in RDF. In: AMW (2017)

10. Hernández, D., Galárraga, L., Hose, K.: Computing How-Provenance for SPARQL Queries
via Query Rewriting. Proc. VLDB Endow. 14(13), 3389–3401 (2021)

11. Lissandrini,M.,Mottin, D., Hose,K., Pedersen, T.B.: KnowledgeGraphExploration Systems:
are we lost? In: CIDR (2022)

12. Minier, T., Skaf-Molli, H., Molli, P.: SaGe: Web Preemption for Public SPARQL Query
Services. In: WWW. pp. 1268–1278. ACM (2019)

13. Montoya, G., Aebeloe, C., Hose, K.: Towards Efficient Query Processing over Heterogeneous
RDF Interfaces. In: ISWC (Best Workshop Papers). Studies on the Semantic Web, vol. 36,
pp. 39–53. IOS Press (2018)

14. Montoya, G., Keles, I., Hose, K.: Analysis of the Effect of Query Shapes on Performance over
LDF Interfaces. In: QuWeDa@ISWC. CEUR Workshop Proceedings, vol. 2496, pp. 51–66.
CEUR-WS.org (2019)

15. Pelgrin, O., Galárraga, L., Hose, K.: Efficient In-memory Indexing for Metadata-augmented
RDF. In: MEPDaW@ISWC. CEUR Workshop Proceedings, CEUR-WS.org (2021)

16. Pelgrin, O., Galárraga, L., Hose, K.: Towards fully-fledged archiving for RDF datasets.
Semantic Web 12(6), 903–925 (2021)

17. Rabbani, K., Lissandrini, M., Hose, K.: Optimizing SPARQL Queries using Shape Statistics.
In: EDBT. pp. 505–510. OpenProceedings.org (2021)

18. Sagi, T., Lissandrini, M., Pedersen, T.B., Hose, K.: A Design Space for RDF Data Represen-
tations. The VLDB Journal (2022)

19. Taelman, R., Mahieu, T., Vanbrabant, M., Verborgh, R.: Optimizing storage of RDF archives
using bidirectional delta chains. Semantic Web (2021)

20. Vandenbussche, P., Umbrich, J., Matteis, L., Hogan, A., Aranda, C.B.: SPARQLES: Moni-
toring public SPARQL endpoints. Semantic Web 8(6), 1049–1065 (2017)

21. Verborgh, R., Sande, M.V., Hartig, O., Herwegen, J.V., Vocht, L.D., Meester, B.D., Hae-
sendonck, G., Colpaert, P.: Triple Pattern Fragments: A low-cost knowledge graph interface
for the Web. J. Web Semant. 37-38, 184–206 (2016)


