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Abstract. This short paper presents use cases to prompt consideration of the 

asynchronous and asymmetric nature of context updates when devising schemes 

and standards for managing and preserving decentralized knowledge graphs. As 

data are increasingly connected in knowledge graphs that evidence the relation-

ships among them, an open challenge is how to manage and preserve decentral-

ized data so that a graph updates, and a query returns, data that correctly evi-

dences the contextual relationship. Much of the focus on managing and preserv-

ing the evolution of data has been about preserving the internal (internal to a 

dataset or source) history, where preservation and retrieval are synchronous. But, 

as demonstrated here, in many real-world use cases the correct linkage and, there-

fore, preservation and retrieval, is neither a temporal match nor related version 

match. 
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1 Introduction 

Context tells us about the environment in which information exists. Context educates 

us as to how information is relevant, by its relation to other things - from the most 

common comparators of time and location to little known events that impact or are 

impacted by our data. From the inception of this workshop on Managing the Evolution 

and Preservation of the Data Web (“MEPDaW”), there has been a recognition of the 

importance of temporal relationships in the update, recording, storing, and retrieval of 

linked data [1][2][3].  More recent work has expanded on the abilities to work at scale 
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and with ever increasing numbers of versions [4][5].  Overwhelmingly, work has oper-

ated on the presumption that linked data should be preserved or analyzed at a moment 

in time, past or present. But decentralized data providing context in an evolving graph 

is not necessarily a temporal match nor an exact versioning match. This paper provides 

use cases in which searching for historical versions of a knowledge graph will require 

the ability to identify and retrieve data which does not share the same archival date 

and/or requires the retrieval of more than one version of some but not all nodes, and 

possibly edges, of the graph. 

2 Temporal Context & Graph Evolution 

In the initial design of a knowledge graph, the relationships are often defined based 

upon knowledge or theory of a use case as a snapshot. As graphs are deployed in pro-

duction, and the data flows, it becomes apparent that an additional sort of descriptor is 

required.  What should be defined and where – when the impact of updates to temporal 

context on the evolution of the graph is known? 

 

2.1 Simultaneous Context 

Circumstances where a simultaneous set of facts provides context are perhaps the eas-

iest to call to mind.  For example, periods of rain readily provide the context for many 

traffic accidents [6]. In such a case, a decentralized graph might tie the exact time and 

geo-perimeter of meteorologic data about a phenomenon [7], highway data about the 

number of vehicles in the vicinity at that time from EZpass or traffic cam counts [8][9], 

and law enforcement data about accidents from published police reports [10]. In this 

case, it is straight-forward to retrieve the data by querying event_date. Even if, as so 

often occurs, smaller accidents are reported and entered on later days, retrieval of all 

the graph’s data based on event_date will still be effective. 

 

 

Fig. 1. Simultaneous Temporal Context: Retaining the temporal (& geospatial) edges when one 

decentralized node is updated. 

 

 



 

   

 

2.2 Lagging Context 

There are many circumstances in which there is a time lag between one set of facts 

which provides the context for another set of facts.  A common example is the relation-

ship between national testing scores of a local school and changes in house prices in 

the district [11]. In such a case, the testing scores are typically released and ranked once 

in a year [12][13][14], while house prices, averages, etc. are updated at least monthly 

by real estate companies and governmental agencies [15].    In these cases, the relevant 

temporal nodes share neither the same name nor date. For example, the relevant score 

date is not the event_date (regardless of whether that is defined as test_date or scor-

ing_date), but the pub_date – the first date that the scores could have been known by 

others; the relevant price date is not the pub_date but arguably the offer_date – the first 

date there may be evidence of the market response; and the timing of the relationship 

begins at pub_date+N – the number of days after publication that it could have reached 

a real estate agent or a buyer. Statistics on either side of the graph can be corrected or 

updated for a particular date. For these cases, it is important to remember that, even 

though there is not an exact temporal match, the modification of either set should not 

break the graphed relationship.  And, retrieval should be of the final corrected versions 

only. 

 

 
Fig. 2. Lagging Context: Temporal updates treated as new nodes, where one decentral-

ized source provides context for later data from another source. 

 

2.3 Predictive Context 

Conversely, there are instances in which retrieval should pull all the iterations, not just 

the final.  Consider this circumstance, where data in one store has a predictive link to 

data in another store. For example, over the summer of 2021, there was a record number 

of dogs surrendered to a local animal control agency and this appeared to be a predictor 

of the number of households to be in distressed circumstances at the end of Covid-

related eviction moratoria. Figure 4 shows one possible graph in which the Surren-

dered_Dog_Count node is a separate and distinct daily report, but it causes only inter-

mittent updates to the versioning of the singular node for Updated_Evictions_Forecast.  

It is possible that the iterations of the edges (and resulting node versions) may not be 

consistently temporally spaced, for reasons ranging from testing and refining the fore-

casting model to additional forecasting when there is a significant influx of dogs. What 

then is the appropriate query to restore the history? 



 

   

 

 

Fig. 3. Predictive Context: One decentralized source creates separate nodes for each 

update to support a single updated node where another source is calculating predictions. 

 

2.4 Bi-directional Context 

Another sort of context which would require the reevaluation of the relationship based 

upon knowledge at a particular time, is when the change can be prompted by any node.  

For example, consider advances in knowledge about human reactions to substances and 

changes in grocery contents.  There may be new medical practice or research reporting 

– for example, the impact that Sucralose has on blood sugar [16] – which changes the 

graphed labels between diabetes and numerous foods.  Sucralose was recently the lead-

ing ingredient globally for new foods and beverages with sugar-related claims [17], an 

example of the constant changes to the contents of groceries [18][19] – foods, toiletries, 

cleaning supplies – which can also change the nature of the label between an item and 

a medical condition (e.g., allergy, celiac, diabetes).  

 

 

Fig. 4. Bi-directional context: Temporal updates to nodes in either decentralized source can 

change the edge between the sources. 

This particular example is complicated by the fact that, for most purposes, the 

primary users of each dataset would prefer different outcomes from the updates. The 

medical researcher more likely would wish to see the medical conclusion mapped to 

each version of a product’s ingredient list, requiring the retention of each as a separate 



 

   

 

node and a separate edge.  While the consumer would likely prefer to see the medical 

conclusion mapped only to the form of the product currently stocked on shelves, re-

quiring an overwrite that retains only one node and one edge. 

 

3 Discussion 

The provided use cases show instances in which searching for historical versions of a 

knowledge graph will require the ability to identify and retrieve data which does not 

share the same archival date and/or requires the retrieval of more than one version of 

some but not all nodes of the graph. These challenges are complicated by the data being 

owned by different parties, in different subjects, who may not even be aware of the use 

to which their data is put. Generally, these are not challenges that can be solved by 

simply using date+n_days, as the number of days and versions may be inconsistent. 

For knowledge graphs to evolve appropriately, there must be a notation to indicate, and 

a mechanism to produce, the desired impact of a contextual temporal relationship. As 

shown with the temporal context examples of simultaneity, lag, prediction, and bi-di-

rectionality, graph creators need to be able to express whether a temporal update to the 

data in a node should create a new node or overwrite the existing one, and whether it 

can result in a change to an edge or create a new one. To facilitate historical retrieval, 

there should be a standard for data owners to describe not only the data and time pro-

duced, but also versioning methodology – for example, metadata indicating whether 

data is overwritten or new date named versions produced; whether there is a marker for 

the final version of iterated data; and whether there is a graphed relationship that causes 

changes to this data. 
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