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Abstract
For autonomous robots operating in an unknown environment, it is important to assess the traversability of the surrounding
terrain to improve path planning and decision-making on where to navigate next in a cost-efficient way. Specifically, in
mobile robot exploration, terrains and their traversability are unknown prior to the deployment. The robot needs to use its
limited resources to learn its terrain traversability model on the go; however, reusing a provided model is still a desirable
option. In a team of heterogeneous robots, the models assessing traversability cannot be reused directly since robots might
possess different morphology or sensory equipment and thus experience the terrain differently. In this paper, we propose a
transfer learning approach for convolutional neural networks assessing the traversability between heterogeneous robots,
where the transferred network is retrained using data available for the target robot to accommodate itself to the robot’s
traversability. The proposed method is verified in real-world experiments, where the proposed approach provides faster
learning convergence and better traversal cost predictions than the baseline.
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1. Introduction
Our work is motivated by autonomous tasks such as mo-
bile robot exploration, where robots encounter terrains
that might impede their movement but have unknown
properties due to the nature of the mission. In such de-
ployments, the robots can improve the efficiency of their
navigation by learning the terrain properties incremen-
tally during the mission. Further, we can reason about
distributing the exploration to multiple robots to finish
the mission faster. For a heterogeneous team of robots,
each robot can be assigned to a suitable part of the envi-
ronment, such as a small crawler exploring tight spaces,
while larger and faster robots can be assigned to open ar-
eas. However, robotic platforms with varying builds and
sensory equipment have different terrain perceptions;
hence, each platform needs to learn standalone terrain
assessment models. The knowledge transfer approach
can reduce the complexity of training and maintaining
multiple standalone models.
Transfer learning is a part of the machine learning

principles that aim to improve the performance in the tar-
get domain by the experience in the source domain [1]1.
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1The source domain (teacher) denotes the entity providing knowl-
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Figure 1: Assuming that the cost assessment model for the
teacher is available, the teacher’s model is transferred to the
student and modified to accept the student’s observation for-
mat indicated by the different colormaps. Then, the trans-
ferred model continues learning using the student’s observa-
tions to be informed about the student’s experiences.

In this paper, we propose to utilize transfer learning to
share terrain traversability assessment models between
heterogeneous robotic platforms, as illustrated in Fig-
ure 1. The individual models are neural networks that
predict a continuous score describing the difficulty of the
terrain traversal. The student’s neural network is initial-
ized by weights transferred from the teacher, and then
the neural network is tuned using the data obtained in
the student’s target domain. If the dimensions of obser-
vations are unequal due to different sensors being used
by the teacher and student, the input dimensionality is
reduced (or increased) by additional neural network lay-
ers. The proposed approach is compared to the baseline,
learned only in the target domain, using a robot with
heterogeneous terrain experience simulated by various

edge to the individual in the target domain (student).
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traversability assessment methods. Besides, the feasi-
bility of the approach is validated in the experimental
scenario with real heterogeneous robots.
The rest of the paper is organized as follows. The

related work on traversability assessment and transfer
learning is briefly reviewed in Section 2. In Section 3, the
problem of traversability transfer between heterogenous
robots is presented. Section 4 describes the proposed
approach for the transfer of traversability assessment
experience. The evaluation results of the proposed ap-
proach are presented in Section 5. Section 6 concludes
the paper.

2. Related work
The traversability assessment is to support path planning
and decisions, such as avoiding impassable terrain or op-
timizing the path for the specific needs of the robot [2].
Correct traversability estimation is essential for appli-
cations where the robot encounters different terrains,
including dangerous environments. Such fields are rep-
resented by extra-terrestrial exploration [3, 4, 5], search
and rescue missions [6], and agriculture or off-road driv-
ing [7]. In [2] and [8], the authors provide a thorough
overview of traversability assessment methods suitable
for mobile robots. Therefore, we focus our brief review
on recent neural network approaches, which provide
appearance-based traversability predictions and utilize
image-processing and classification methods.

In [5], a fully convolutional neural network is utilized
to locate the best possible place for the rover to land
by classifying multiple terrain types and has been used
for the Mars rover mission. An alternative architecture
is proposed in [9], where traversability predictions on
future paths are achieved using Generative Adversarial
Networks (GANs) [10] that create virtual images from
the already traversed path. However, a vast dataset is
needed to train a neural network from scratch, fully high-
lighting the need for an approach capable of enhancing
performance with a smaller dataset.
For such cases, transfer learning can be employed,

which is an approach capable of improving knowledge
in the target domain by the transfer from the source do-
main [1]. In [11], the authors utilize transfer learning
in the form of the weight transfer from remotely simi-
lar tasks to reduce the dataset size in the target domain
necessary to train the convolutional neural network and
thus shorten the training time. After transferring weights
between tasks, it is desirable to fine-tune them to suit
the task’s needs in the target domain. The classification
feature extractor output layers are reinitialized in [12]
to comply with the possibly different classes in the tar-
get domain. If the source and target tasks vary greatly,
an entire redesign of the classifier’s architecture may

be employed as in [13], where it is advocated that the
learning rate of the neural network is set lower when
applying only slight corrections to weights during the
fine-tunning. While fine-tuning, it can be beneficial to re-
frain from updating the weights in some layers (denoted
as layers freezing) [14].

The costly data collection and various tasks and robots’
bodies make robotics an interesting field for deploying
transfer learning techniques. Although testing only in
simulators, the authors of [15] utilize transfer learning
to propagate experience in different scenarios of robotic
soccer, where they propose a solution for transferring
neural networks between tasks with different inputs and
action spaces. In [16], humanoid robots observe human
gestures and motions to replicate them later. Another
method to transfer human experience to neural networks
utilized by robots is presented in [17], where humans
provide knowledge directly to the network. A robotic
arm is trained to reach a destination of a colored block
in [18]. The transfer is carried out between robotic arms
with a different number of joints.

However, since the traversability over a single terrain
may greatly vary between robotic platforms, such as
wheeled and legged ground vehicles [19], the obtained
knowledge cannot be shared directly between different
robots. Therefore, we aim to utilize transfer learning to
distribute a traversability assessment model consisting
of a neural network.

3. Problem Statement
We examine various robots 𝑅𝑖 perceiving diverse terrains
𝑇 during operational usage. Let the robots be deployed
in an environment modeled as the 2.5D grid, where each
cell 𝜐 can be labeled by a number, and thus 𝜐 ∈ ℕ, and the
cell size 𝑑𝜐 corresponds to the footprint of the smallest
robot in the team. The center of each robot’s footprint is
discretized as the cell 𝜐robot ∈ ℕ. Robots move through
the environment along paths 𝜓 that are represented as
sequences of neighboring cells 𝜐1, … , 𝜐𝑛 corresponding to
the robot’s discretized positions.

The robot 𝑅𝑖’s path-planning decisions are made with
respect to (w.r.t.) the particular robot’s cost 𝑐𝑖 by finding
a path with the minimal expected cost

𝜓 ∗,𝑖 = argmin𝜓∈Ψ(𝜐,𝜐′) ∑
𝜐𝑗∈𝜓

𝑐𝑖(𝜐𝑗), (1)

where Ψ(𝜐, 𝜐′) is a set of all paths from 𝜐 to 𝜐′. How-
ever, the cost function 𝑐𝑖 is not known a priori; thus, the
robot has to learn it to estimate the cost by ̂𝑐𝑖. Hence,
a traversability assessment model 𝑟 𝑖 is needed that as-
signs the predicted cost ̂𝑐𝑖 for a terrain 𝑇 observed using
exteroceptive sensors as

𝑟 𝑖 ∶ 𝐴 → ̂𝑐𝑖, (2)



where 𝐴 is the observed terrain appearance.
Since the mobile robot’s traversability is considered

too complex to be assessed using a handcrafted function,
a model 𝑟 𝑖 is trained from the robot’s experience to pre-
dict its future cost ̂𝑐𝑖. The costs utilized for training are
computed using proprioceptive sensors because of their
ability to measure how the environment influences the
robot’s body. The training of each traversability model
𝑟 𝑖 aims to minimize the Root Mean Square Error (RMSE)
between the model’s cost assessments and the cost 𝐶 𝑖
measured using proprioceptive sensors as

RMSE𝑖 =
√

1
𝑛

𝑛
∑
𝑗=1

(𝑟 𝑖(𝐴(𝑇𝑗)) − 𝑐𝑖𝑗)2. (3)

We address the traversability assessment for heteroge-
neous robotic platforms 𝑅1 ≠ 𝑅2, which possess differ-
ent capabilities. Therefore, we assume that differences
between the platforms can result in unequal cost mea-
surements 𝑐1𝑗 ≠ 𝑐2𝑗 over some terrain 𝑇𝑗. On the other
hand, we assume that there are underlying similarities
between how the robots interact with the terrain. The
problem being addressed is to improve the performance
of traversability assessment by transferring the cost as-
sessment model 𝑟1 from the robot 𝑅1 before learning
on the robot 𝑅2, and thus learning its cost assessments
relatively sooner while achieving similar or better pre-
dictions than the regressor 𝑟2 trained using only the 𝑅2’s
data.

4. Method
In the proposed approach for transferring mobile robot
terrain traversal experience between the heterogeneous
robots, the traversability experience is denoted as the
traversal cost 𝑐. Then, for each robot, the costs are pre-
dicted using the robot’s regressor 𝑟. Each regressor is a
neural network trained using the robot’s prior traversal
costs associated with the description of the particular
terrain where the cost was experienced. The teacher’s
terrain experience, represented as the teacher’s learned
network, is transferred to the student who has no prior
terrain experience by using the teacher’s weights to ini-
tialize the student’s network. After the transfer, the stu-
dent’s network is further trained to adapt to the student’s
domain fully.
In the rest of this section, we describe in detail the

traversal costs used by the individual robots, the regres-
sor, its learning process, and the knowledge transfer.

4.1. Robots’ Traversal Costs
The traversability assessment regressor is trained on
trails that include observations of the traversed ter-
rain paired with the cost perceived over the terrain,

which each robot can compute using its cost computa-
tion method. All the cost computation methods return
strictly positive values because zero and negative values
would incentivize infinite paths, preventing the robot
from reaching its goal. We consider the following cost
computation methods.

Velocity 𝑐𝑣 - monitors relation of the achieved speed 𝑣
and commanded velocity 𝑣 using equation 𝑐𝑣 =𝑣
𝑣cmd

.

Slope 𝑐𝑠 - computes the cost 𝑐𝑠 = 1 + 𝜃 as an angular
distance in the degrees from the straight pose 𝜃.
The offset by 1 is to accent the energy expenditure
even on flat terrains.

Difference 𝑐𝑑 - is defined similarly to 𝑐𝑠 as 𝑐𝑑 = 1 + 𝛾,
where 𝛾 expresses the maximal angular distance
in degrees of the subsequent robot’s positions.

Further, the costs are adjusted as

𝑐adjusted = 𝑐max ⋅ tanh
𝑐

𝑐max
, (4)

where 𝑐 stands for 𝑐𝑣, 𝑐𝑠, and 𝑐𝑑. The adjustment is to
lower the high-cost values for cases the achieved velocity
is negligible when compared with commanded velocity
because the robot gets stuck.

Tilt 𝑐𝑎 - is computed as 𝑐𝑎 = 𝛼 = | tan 𝑑𝑧
𝑑𝑥𝑦

|, where 𝛼 is

the absolute angle of the two opposing footholds
(for the legged robots) from the flat surface. For
example, the left front and right rear legs are con-
sidered opposing. The values 𝑑𝑧 and 𝑑𝑥𝑦 measure
a difference in elevation and flat-plane distance
of the footholds, respectively.

4.2. Traversal Cost Regressor
The cost regressor 𝑟, based on the regressor proposed
in [20], uses the terrain appearance and geometry to
assess the robot’s traversal cost. The regressor is a neural
network that uses the image processing-like architecture
shown in Figure 2 and operates as follows.

During the deployment, the robot uses its range mea-
surements to build a height map ℕ of the mission envi-
ronment in the form of an elevation grid map with the
squared cell size of 7.5 cm [21]. Depending on the carried
sensory equipment, the grid mapmay also include the ter-
rain color in addition to the elevation information, which
can be further utilized in regression and extrapolation of
the learned traversal experience.
The regressor is learned from the cost measurements

localized inℕ paired with the terrain observations at the
respective locations. Each terrain observation is in the
form of a𝑤×𝑤×𝑛 segment centered at the location, where
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Figure 2: Architecture of the regressor, where 𝑛 is the number
of terrain observation’s channels entering the neural network
and the observation window width is 𝑤 = 8.

𝑤 is the observation window size selected so that the
entire robot’s footprint is covered. The dimensionality 𝑛
is either 1 when only range measurements are available,
or 3 in the case range measurements are accompanied by
a and b channels of the lab color space. The network is
learned using Adam optimizer w.r.t. the mean absolute
percentage error

Λ = 100 |||(𝑦𝑡 − 𝑦𝑝)
1
𝑦𝑡
||| , (5)

where 𝑦𝑡 is the expected output of the neural network
and 𝑦𝑝 the prediction.

4.3. Knowledge transfer
During the knowledge transfer, the weights from the
source domain are utilized in the target domain. Besides,
when needed, the transferred model is adjusted as shown
in Figure 3. The width 𝑤 of the input window is prepared
separately since it is selected to fit the robot receiving
the model. However, the observation dimensionality can
differ between teachers’ and students’ exteroceptive sen-
sors. In such a case, an additional convolutional layer is
used to reshape the input and accommodate the trans-
ferred regressor to the student’s perceived data. The layer
comprises 1 × 1 convolutional kernel with the input and
output channels corresponding to the perceived number
of channels and the number of transferred regressor’s
input channels, respectively.

The new model is retrained using the student’s dataset
collected by the student. It is because the teacher’s and
student’s costs are heterogeneous, albeit it is assumed
that the network captures underlying terrain properties
that can be transferred. Additionally, during the retrain-
ing of the regressor, 𝑙 layers can be frozen by fixing their
weights since it is assumed that the initial layers extract
general features that are primarily similar between vari-
ous data.

Predicted
cost 

Terrain
observation

Layers to
freeze 

Transferred
regressor 

Input
reshape

Figure 3: Setup used during the transfer of knowledge, where
𝑙 denotes the frozen layers during the training.

5. Results
The proposed knowledge transfer method has been exam-
ined in several experimental scenarios. First, we simulate
the heterogeneity of the robots using a small hexapod
crawler with varying cost perception, which provides
an easy way to verify the feasibility of the proposed
approach. Then, we display the proposed knowledge
transfer using two different real robots.

(a) (b)

Figure 4: (a) SCARAB II hexapod crawler and (b) Spot with
sensor payload.

The proposed method can be used with any set of
ground vehicles. However, we focus on multi-legged
robots since their traversal capabilities permit deploy-
ment in a wide range of terrains. The utilized robots
are the small hexapod crawling robot SCARAB II [22]
and the four-legged Spot that are depicted in Figure 4.
Besides their morphology, the robots also differ in size.
Spot’s footprint is larger than SCARAB II that occupies
a disk with a 25 cm radii, while Spot’s footprint fits into
1.1m × 0.5m rectangle. Furthermore, SCARAB II carried
the Intel RealSense Tracking Camera T265 and the RGB-D
Intel RealSense Depth Camera D435 providing depth and
color appearance exteroceptive data. Spot perceived only
range measurements using the Ouster OS0-128 LiDAR
and does not perceive color.

5.1. Cost Assessment Methods
Examination

The feasibility of the proposed method is firstly veri-
fied in a scenario where the difference in perception of
heterogeneous robots is simulated using various cost as-
sessment methods of SCARAB II. The robot collected the



datasets in the Bull Rock Cave near Brno, Czech Repub-
lic, as described in [20]. The datasets were collected in
various parts of the cave system, and each set is a result
of the robot walking over one of the particular terrains,
whose selection is shown in Figure 5. Each dataset collec-
tion included approximately 5 minutes of the navigation,
enabling the robot to observe 6 × 6m of the environment.

(a) (b) (c)

Figure 5: Test terrains in the Bull Rock Cave in the (a) Chiffon,
(b) Hall, and (c) Room areas.

The transfer learning approach is examined using five
scenarios for each pair of the cost assessment meth-
ods. The scenarios are prepared by randomly choosing
five datasets from the collected dataset pool as testing
data for the direct and transferred model. The testing
datasets are removed from the datasets available to train
the teacher’s and the student’s cost assessment models.
From the remaining datasets, twelve are randomly drawn
for the teacher and five for the student to create training
datasets for their cost assessment models. All regressors
are trained for 300 epochs with a training-validation split
of 9-to-1, and the width of the observation window is
𝑤 = 8.

Table 1
Mean (std) of the RMSE for 5 randomly generated scenarios
for each pair of cost assessment methods. For the transfer
regressors, the number denotes the frozen layers 𝑙 during the
retraining of the transferred model.

Scenario Direct Transfer 0 Transfer 4 Transfer 8

𝑐𝑑 → 𝑐𝑠 2.10 (0.27) 2.08 (0.27) 2.27 (0.58) 2.00 (0.19)
𝑐𝑑 → 𝑐𝑣 3.25 (1.37) 1.68 (0.57) 1.43 (0.32) 1.95 (1.32)
𝑐𝑠 → 𝑐𝑑 2.49 (1.33) 1.43 (0.16) 1.34 (0.22) 1.40 (0.16)
𝑐𝑠 → 𝑐𝑣 2.83 (0.95) 2.19 (0.11) 1.98 (0.40) 2.01 (0.45)
𝑐𝑣 → 𝑐𝑑 3.41 (1.41) 1.60 (0.15) 1.52 (0.23) 1.34 (0.08)
𝑐𝑣 → 𝑐𝑠 2.58 (0.57) 2.36 (0.65) 2.27 (0.28) 1.98 (0.09)

Overall 2.78 (0.98) 1.89 (0.32) 1.80 (0.34) 1.78 (0.38)

The results presented in Table 1 show that the model
transfer lowered the RMSE of predictions on the testing
datasets. The best results are achieved with 𝑙 = 8 frozen
layers.
In Table 2, the transfer from 𝑐𝑣 to 𝑐𝑠 is chosen to ex-

amine the influence of training for increased number
of the training epochs. The same randomly generated
transfer scenarios are utilized as in Table 1; however, the
models are trained for 600 epochs instead of 300. The re-

Table 2
RMSE’s mean (std) values between 300 and 600 epochs of
𝑐𝑣 → 𝑐𝑠 transfer.

Epochs Direct Transfer 0 Transfer 4 Transfer 8

300 2.58 (0.57) 2.36 (0.65) 2.27 (0.28) 1.98 (0.09)
600 2.13 (0.28) 2.31 (0.38) 2.25 (0.30) 2.25 (0.21)

sults show that the direct student’s model has improved
with the increased number of epochs, while the RMSE of
the transferred model slightly increased during the pro-
longed training, likely because of overfitting the training
data. The transfer model learned with 300 epochs has
achieved sufficient performance, and the results suggest
that the transfer helps reduce the necessary number of
training epochs.

5.1.1. Transfer between Slope 𝑐𝑠 and Velocity 𝑐𝑣
Cost Assessment Method

- We further examine the transfer between the student’s
slope 𝑐𝑠 and teacher’s velocity 𝑐𝑣 cost assessment method
in detail as those methods compute cost using dissimilar
approaches. The dataset is split so that the student’s
dataset is overall a third size of the teacher’s, hence
suitable to showcase the knowledge transfer as there is
much information to be received by the student. Teach-
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Figure 6: Progress of the cost assessment model’s neural
network training for (a) 300 and (b) 1000 epochs.

ers’ and students’ direct baseline cost assessment models
were trained for 300 epochs. After the teacher’s model
was transferred to the student, it was tweaked using 300
epochs and 𝑙 = 0 frozen layers to create the transferred
model. Figure 6a summarizes the first 300 epochs in the
student’s domain, where an initial boost can be observed
for the transferred model. The prolonged training for
1000 epochs, shown in Figure 6b, results in the improved
validation loss achieved by the student’s model. After
training for 300 epochs, the RMSE of the regressors’ pre-
dictions against the collected ground truth is 3.69 and
1.84 for the direct and transferred models, respectively.
Hence, we can conclude that the transferred model im-
proved performance faster.
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Figure 7: Predicted costs by the student’s and transferred
neural network compared to the ground truth after training
for 300 epochs.

Moreover, we examined the traversal of a single cave
trail. Figure 7 shows the predicted costs by the student’s
direct and transferred models compared to the collected
ground truth. We can observe that the transferred model
follows the ground truth better than the direct model.
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Figure 8: (a) Direct and (b) transferred model’s cost assess-
ments of the perceived environment after training for 300
epochs; (c) and the environment’s height map, where the path
of the robot is in red. The shown maps have squared cells with
the size 7.5 cm.

Figure 8 shows the cost prediction for the entire envi-
ronment observed from the trail. Note that the ground
truth for the whole view is unavailable as the robot tra-
versed just a single path (the trail). Thus, we manually
evaluate the cost assessments’ feasibility for path plan-
ning. Compared to the direct model, the transferred
model returns higher costs in locations where the ele-
vation of the height map changes, suggesting that the
transferred model produces improved assessments.

5.2. Transfer between SCARAB II and
Spot

The dataset comprising heterogeneous robots is created
by adding the Spot’s datasets to the SCARAB II’s data.
The datasets were collected in indoor and outdoor loca-
tions of the Czech Technical University in Prague campus
at Charles Square, Prague, Czech Republic. Indoors, see
Figure 4b, Spot moved over surfaces partially covered

with artificial grass and spikes in the form of soundproof-
ing material. Outdoors, the robot traversed various sur-
faces such as hard-packed soil, cobbles, and sloped grass.
Spot can move faster than SCARAB II; thus, the Spot’s
datasets are longer, as Spot traverses more terrain in sim-
ilar 5-minute long deployment, where Spot is capable
of traveling through 15 × 15m environment. Therefore,
using fewer datasets to train the cost assessment model
is sufficient. In the following paragraphs, we examine
the performance when transferring both from Spot to
SCARAB II, and in the opposite direction.

5.2.1. Spot Knowledge Transfer to SCARAB II

- The transfer from Spot to SCARAB II is achieved us-
ing observation windows with the width of 𝑤 = 8 cells,
which is suitable for the smaller hexapod crawler. Each
transfer scenario, comprising transfer from Spot to one of
the hexapod’s cost models, is evaluated in 5 setups. For
each setup, 5 datasets are randomly chosen to train the
Spot’s teacher model, while SCARAB II receives 6 ran-
domly chosen datasets. The trained models are examined
on 5 randomly chosen datasets, which differ from the
training sets. The regressors are trained for 300 epochs
with a 9-to-1 training-validation split.

SCARAB II models the environment as a colored height
map, while Spot uses only a height map. Thus, we con-
sider the student’s model input with both 𝑛 = {1, 3} chan-
nels in each transfer scenario. When using the three-
channel version, which perceives both the elevation and
the a and b channels of the lab color space, a convolu-
tional layer reshaping the input, is added to accommodate
teacher’s (Spot’s) model that has only one input channel.

Table 3
Mean (std) of the RMSE for knowledge transfer from Spot
to SCARAB II. Transfer 𝑥 denotes 𝑥 frozen layers during re-
training the regressor, 𝑥 ∈ {0, 4}. Depth denotes 𝑛 = 1 input
channel for the resulting model perceiving just height map,
Depth + ab denotes 𝑛 = 3 where SCARAB II utilizes colored
observations.

Observ. Scenario Direct Transfer Transfer
0 4

Depth

Spot → 𝑐𝑑 2.13 (0.59) 1.45 (0.26) 1.45 (0.27)
Spot → 𝑐𝑠 2.50 (0.72) 2.29 (0.35) 2.28 (0.53)
Spot → 𝑐𝑣 3.80 (1.52) 2.51 (1.04) 2.31 (0.85)
Overall 2.81 (0.94) 2.08 (0.55) 2.01 (0.55)

Depth+ ab

Spot → 𝑐𝑑 2.44 (1.19) 1.60 (0.30) 1.53 (0.60)
Spot → 𝑐𝑠 2.80 (1.49) 2.15 (0.21) 2.05 (0.13)
Spot → 𝑐𝑣 2.37 (0.86) 2.34 (1.06) 1.87 (0.87)
Overall 2.54 (1.18) 2.03 (0.52) 1.81 (0.54)

Table 3 shows the performance of the trained models.
All transferred models perform overall better than the di-
rect model. However, the performance of the transferred
model has not improved when modifying the teacher’s



model to accept the colored height map collected by
SCARAB II, although the direct model has improved
when using 𝑛 = 3 input channels. In the authors’ opinion,
the added convolutional layer could not sufficiently mod-
ify the input observation to achieve good performance
in combination with the underlying transferred model.

5.2.2. SCARAB II Knowledge Transfer to Spot

- For the transfer from SCARAB II to Spot, the scenar-
ios are adjusted by using 𝑤 = 16 to match Spot’s body
size, and the regressors are trained for 100 epochs in
Spot’s target domain. Besides, the reshaping convolu-
tional layer is added during the transfer to Spot to utilize
the SCARAB II’s model with the three input channels.

Table 4
Mean (std) of the RMSE for knowledge transfer from
SCARAB II to Spot. Transfer 𝑥 denotes 𝑥 frozen layers during
retraining the regressor, 𝑥 ∈ {0, 4}. Depth denotes 𝑛 = 1 input
channel for the resulting model perceiving just height map,
Depth + ab denotes 𝑛 = 3 where SCARAB II utilizes colored
observations. Note that only one direct model is created for
both the Depth and Depth + ab observation setup, since for
the student, both scenarios possess the same number of input
channels 𝑛.

Observ. Scenario Direct Transfer Transfer
0 4

Depth

𝑐𝑑 → Spot 0.37 (0.14) 0.28 (0.14) 0.52 (0.32)
𝑐𝑠 → Spot 0.32 (0.14) 1.72 (2.12) 0.29 (0.23)
𝑐𝑣 → Spot 0.92 (0.82) 0.31 (0.19) 0.24 (0.19)
Overall 0.54 (0.37) 0.77 (0.82) 0.35 (0.25)

Depth+ ab

𝑐𝑑 → Spot / 0.11 (0.01) 0.11 (0.01)
𝑐𝑠 → Spot / 0.12 (0.00) 0.11 (0.01)
𝑐𝑣 → Spot / 0.11 (0.01) 0.11 (0.00)
Overall / 0.11 (0.01) 0.11 (0.01)

The results in Table 4 indicate improvements when uti-
lizing transfer learning. The transfer of the SCARAB II’s
model perceiving color has achieved the best perfor-
mance on the testing dataset. The authors suppose that
the added convolutional layer and increased number of
channels help themodel better grasp the underlying terra-
mechanical properties.

5.3. Individual Transfer between Spot
and SCARAB II

We further present a detailed overview of the knowledge
transfer between Spot and SCARAB II. SCARAB II uti-
lizes the difference cost computation method 𝑐𝑑, and the
width of the observation window is set to 𝑤 = 8. Af-
ter 300 training epochs, the student’s direct transferred
and fine-tuned models achieved RMSE of 1.79 and 1.09,
respectively.
The progress of the regressors’ training after a pro-

longed training for 1000 epochs is depicted in Figure 9a.
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Figure 9: (a) Progress of the cost assessment model’s neu-
ral network training for 1000 epochs; (b) and student’s and
teacher’s predicted costs, and the ground truth after training
for 300 epochs.

The boost caused by the transfer can be observed in the
initial epochs. After training for more than 400 epochs,
the improvement in loss stops; particular losses do not
change significantly until the end of the training. The
transferred model produces lower validation losses, and
the RMSE after training for 1000 epochs is 1.64 and 1.38
for the direct and transferred model, respectively. The
observation suggests that both models are overfitted after
such prolonged training. Figure 9b shows the measured
and predicted costs on a particular trail where we can ob-
serve that the transferred model follows the ground truth
closely, avoiding spikes in the assessments observed in
the direct model. However, even the transferred model
cannot closely follow the oscillations of the ground truth.
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Figure 10: (a) Direct and (b) transferred model’s cost as-
sessments of the perceived environment after training for
300 epochs; (c) and the environment’s height map with the
squared cell of the size 7.5 cm.

Figure 10 illustrates the cost assessments and the



height map with the marked robot trail in the Room part
of the cave. Since the robot traversed only a tiny part of
the observed environment, we present a manual evalu-
ation of the cost assessments as the cost measurements
are not presented in the observed area. The transferred
model assigns a higher cost to the terrain edge, while the
student’s model underestimates the difficulty. Addition-
ally, the transferred model suggests a more challenging
cost in all areas of the environment, which resembles the
actual perceived cost more closely. Thus, we conclude
that the transfer can correct the student’s direct model
predictions.

6. Conclusion
In this paper, we present an approach for sharing knowl-
edge about traversability between heterogeneous robots.
Traversal cost predictors are created using neural net-
works processing observations from exteroceptive sen-
sors. The knowledge transfer is implemented as the trans-
fer of neural network weights, and the transferred net-
works are fine-tuned to adapt to the receiving robot’s ter-
rain perception. The proposed method is verified using
a small hexapod crawler and a large quadruped walker,
with the proposed method lowering the traversability
prediction error. Next, we aim to deploy the proposed
method in path planning tasks, with the final goal of
simultaneous online learning on multi-robots.
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