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Abstract
Although contextual word representations produced by transformer-based language models (e.g., BERT) have proven to be
very successful in different kinds of NLP tasks, there is still little knowledge about how these contextual embeddings are
connected to word meanings or semantic features. In this article, we provide a quantitative analysis of the semantic vector
space induced by the XLM-RoBERTa model and the Wikicorpus. We study the geometric properties of vector embeddings of
selected words. We use HDBSCAN clustering algorithm and propose a score called Cluster Dispersion Score which reflects
how disperse is the collection of clusters. Our analysis shows that the number of meanings of a word is not directly correlated
with the dispersion of embeddings of this word in the semantic vector space induced by the language model and a corpus.
Some observations about the division of clusters of embeddings for several selected words are provided.
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1. Introduction
Contextual word representations (embeddings) produced
by transformer-based language models, such as BERT,
have proven to be valuable and very successful in differ-
ent kinds of NLP tasks, including machine translation,
text generation, word sense disambiguation, etc. How-
ever, there is still little knowledge about how these con-
textual embeddings are connected to word meanings or
semantic features.

We believe that if we better understand the relation of
these embeddings to semantics of corresponding words,
we will be able to figure out the way in which transformer-
based models learn and represent natural language. It
can also help to design more robust methods for word
sense disambiguation, analysis of semantic change, and
related tasks.

In this article, we provide a quantitative analysis of
the semantic vector space induced by a popular language
model called XLM-RoBERTa [1] and a text corpus called
Wikicorpus [2]. Concretely, we study the geometric prop-
erties of vector embeddings of selected polysemous (e.g.,
“developer”) and monosemous (e.g., “sheet”) words.1 For
a given word, we collect all sentences containing this
word, process these sentences by the language model,
and collect word-specific embeddings. We then used the
UMAP algorithm to reduce the dimensionality of the em-
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1For details on how we differentiate between monosemous and pol-
ysemous words see Section 3.1.

beddings and apply the HDBSCAN clustering algorithm
to cluster these embeddings.

To study the geometric properties of this collection of
clusters of word-specific embeddings, we propose a mea-
sure called Cluster Dispersion Score. We provide figures
and descriptions of the results for several selected words.
We also quantify the correlation between the score and
the number of meanings of a given word. Our analysis
shows that the number of meanings of a word is not di-
rectly correlated with the dispersion of the embeddings
of this word in the semantic vector space induced by the
language model and a corpus.

The paper is structured as follows. Section 2 discusses
related work on the usage and properties of embeddings
obtained by transformer models. In Section 3, we describe
the methods we use, including the selection of words we
investigate, the computation of embeddings, clustering,
the computation of the cluster dispersion score, and clus-
ter summarization. The description of our experiments
and results can be found in Section 4. It also contains
a more detailed description of the results for several se-
lected target words. Then, a discussion of the interpre-
tation of the results is provided in Section 5. Finally,
Section 6 contains conclusions and directions for further
research.

2. Related Work
Although neural network language models are well rec-
ognized for their ability to capture contextual semantics,
in-depth discussions about the relationships between
word vector representations and word meanings are not
so common. The majority of works are concentrated on
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improving the performance of language models for Word
Sense Disambiguation (WSD) tasks, and only a few are
investigating how language models encode and recover
word senses.

As a semantic disambiguation task [3], WSD has
progressed greatly since the appearance of neural net-
work language models [4]. This is especially true for
transformer-based models [5]. For instance, BERT and
its derivatives (BERT family models) have proven to be
very successful for WSD and word embeddings produced
by these models can deliver rather satisfying results even
with a simple non-parametric approach (e.g., nearest
neighbors) and a small training set [6, 7]. However, with
the priority of improving WSD performance, such studies
offer little insight into word vector organizations.

A few works have attempted to discuss more in-depth
how transformer-based language modes encode semantic
knowledge, such as semantic information provided by
WordNet (a predefined word sense inventory). Loureiro
et al. [7] provided quantitative and qualitative analysis
of different classes of words (with different numbers of
meanings) in the BERT model and found that BERT can
capture high-level or coarse-grained sense distinctions,
but it does not capture fine-grained sense distinctions. In
reality, it sometimes even fails with the coarse-grained
setting due to problems such as availability of training
data and computing resources. Loureiro et al. also gave a
detailed investigation of the BERT model regarding lexi-
cal ambiguity and different semantic knowledge-based
benchmarks. But they did not put much emphasis on the
relationship between vector spaces and semantic knowl-
edge. In order to better understand the emergent seman-
tic space, Yenicelik et al. [8] investigated the vectors of
polysemous words by using cluster analysis. Their study
shows a similar result: BERT can to some extent distin-
guish different meanings of polysemous words, but with
challenges that cannot be ignored. The work of Yenicelik
et al. is informative about the relation between BERT em-
beddings and semantic knowledge, but suffers from small
sample sizes (using SemCor data with approximately 500
embeddings per word) and the missing control group
(monosemous words).

Unlike the above studies, the work of Garí Soler and
Apidianaki [9] shows that BERT can detect the polysemy
level of words as well as their sense partitionability. How-
ever, its performance is not universal. English BERT em-
beddings are more likely to contain polysemy-related in-
formation, but models in other languages can also distin-
guish between words at different polysemy levels. With
carefully designed experiments, they discussed several
closely related tasks: lexical polysemy detection, poly-
semy level prediction, the impact of frequency and POS2,
classification by polysemy level, and word sense cluster-
2A part-of-speech (POS) is a category of words that have sim-
ilar grammatical properties. For example, noun, verb, adjec-

ability. The study focuses on the macroscopic discussion
of whether language models can detect word polysemy
level, and does not probe deeply into the fine-grained
differences within different clusters of embeddings.

Finally, how semantic clusters are formed and con-
nected in language models has been addressed more
qualitatively than quantitatively [10, 11, 6], and there
are still no agreed-upon answers to these questions.

Our work differs in that we are trying to understand
the geometric properties of word-specific embeddings
and how they connect to semantic knowledge by con-
ducting quantitative and qualitative analyses with the
Wikicorpus.

3. Methods
In this section, we describe all the steps we follow in
our analysis. Concretely, we describe the selection of
target words for the analysis, the creation of contextual
embeddings, the clustering of the embeddings, the com-
putation of the Cluster Dispersion Score (CDS) and, finally,
the summarization of each cluster.

3.1. Selection of Target Words
For the analysis described in this contribution, we se-
lected 43 unique words (target words). The selection pro-
cess reflected two requirements: 1. The selected words
should have approximately the same frequency within
the given corpus (to be sure that our analysis is not in-
fluenced by the frequency), 2. The selected list of words
should contain examples of words with only one unique
meaning (monosemous words) and words with multiple
meanings (polysemous words). To satisfy the second
requirement, we used the SemCor corpus [12] which is
a textual corpus with each word labeled by a specific
meaning from the WordNet ontology [13]. We selected
1000 words that have only one specific meaning within
the SemCor corpus, and 1000 words that have more than
one meaning. From these, we filtered only words with a
frequency in the range of 5700–6000.

Another important criterion for selecting words is to
choose words that remain the same after the tokenization
process. The language model that we use for this study is
XLM-RoBERTa [1], which is a transformer-based model
pre-trained on a large corpus (2.5TB of filtered Common-
Crawl data) in a self-supervised fashion. The model uses
a tokenizer based on SentencePiece [14], and it some-
times tokenizes one word into two or more pieces. After
filtering out words with this tokenization condition, we fi-
nally obtained a list of 43 target words for this study. The
resulting list contains 15 words from the monosemous

tive, adverb, pronoun, preposition, etc. For more details, see
https://en.wikipedia.org/wiki/Part_of_speech



category and 28 words from the polysemous category.
The concrete words are listed in Table 1.

3.2. Computing the Contextual
Embeddings

Our analysis of the embedding space is carried out on
the Wikicorpus [2], which contains a large portion of the
Wikipedia 2006 dump. It contains parallel contents of
three languages, namely, Catalan, Spanish, and English.
The size of the corpus is more than 750 million words.
For our experiment, we used only English content for
analysis.

To compute contextual embeddings for a given target
word, we first collect all sentences from the Wikicorpus
that contain this word. Each sentence is then processed
by the neural language model. For our experiments, we
use a transformer-based model called XLM-RoBERTa [1]
because of its popularity in the NLP community and the
available pre-trained implementation3 The model pro-
duces a vector embedding for every word within the sen-
tence by taking other words in the sentence into account.
This allows the embeddings to be contextual in contrast
to Word2Vec [4] embeddings, which are fixed and inde-
pendent of the context. We collect only the embeddings
that correspond to the target word. Each embedding has
a dimension of 768.

3.3. Clustering and Visualization
Our hypothesis was that distinct meanings of a given
target word will form well-separated clusters in the em-
bedding space. We wanted to detect these clusters in
an unsupervised way without specifying the number
of clusters in advance. For this purpose, we used the
UMAP algorithm [15] to reduce the dimensionality of
each embedding to 50 and the HDBSCAN clustering al-
gorithm [16] to cluster the reduced embeddings. We set
the hyperparameters of these algorithms to fixed values,4

but we note that for the analysis described in this paper,
one could tweak the hyperparameters for each word sep-
arately. For the visualization of the clusters shown in
Figure 4, we use the UMAP algorithm with the same hy-
perparameters, except that the embeddings are projected
into the 2D space.

3.4. Cluster Dispersion Score
As part of our analysis, we invent a score which should
measure how varied the usage of a given target word is.
We call it cluster dispersion score or shortly dispersion score.
It reflects the average distance between the discovered

3https://huggingface.co/roberta-base.
4For UMAP: n_neighbors = 30, min_dist = 0.0, and for HDBSCAN:
min_samples = 40, min_cluster_size = 50.

clusters and also their size. First, we introduce a simple
notation used in the definition of the score.

Let 𝑋 = {𝑋1, . . . , 𝑋𝑛} be a set of embedding vectors
of a given target word and 𝐶 = {𝑐1, . . . , 𝑐𝑚} the set
of indices of the clusters discovered by the clustering
algorithm. We denote the distance between two clusters
𝑐𝑖, 𝑐𝑗 by 𝑑𝑐𝑙(𝑐𝑖, 𝑐𝑗) and the embeddings corresponding
to the cluster 𝑐𝑖 by 𝑋(𝑐𝑖). At a high level, the score has
the following form:

𝐶𝐷𝑆(𝑋) =
∑︁

𝑐𝑖,𝑐𝑗∈𝐶,𝑐𝑖<𝑐𝑗

𝑑𝑐𝑙(𝑐𝑖, 𝑐𝑗) ·𝑊𝑖𝑗 .

It is the sum of weighted distances over all pairs of
distinct clusters. If 𝑚 = 0, the score is defined to be
equal to 0. The weights and distances are symmetric;
therefore, we ignore pairs with 𝑐𝑖 ≥ 𝑐𝑗 . To compute the
distance between two clusters, we first select the 20 most
similar pairs of vectors (𝑋𝑖𝑘, 𝑋𝑗𝑘), where 𝑋𝑖𝑘 ∈ 𝑋(𝑐𝑖)
and 𝑋𝑗𝑘 ∈ 𝑋(𝑐𝑗). For the similarity of two vectors, we
use the cosine distance and compute it in the original
768-dimensional space. The distance between the two
clusters is then the average over the 20 pairs:

𝑑𝑐𝑙(𝑐𝑖, 𝑐𝑗) =
1

20

20∑︁
𝑘=1

𝑑𝑐𝑜𝑠(𝑋𝑖𝑘, 𝑋𝑗𝑘)

It is a variation of the single linkage distance [17], which
is obtained by setting 𝑘 = 1. Averaging over 20 most
similar pairs makes the computation more robust to out-
liers.

The rationale behind using the closest pairs to calculate
the distance instead of computing the distance between
cluster centers is that sometimes the clustering algorithm
splits one large cluster into multiple smaller ones as seen
in Figure 4. This is not a problem if we use the closest
pairs to compute the distance, because the distance will
be negligible in this case and will not influence the score
significantly.

The weight 𝑊𝑖𝑗 for a pair of two clusters 𝑐𝑖, 𝑐𝑗 is a
product of two terms:

𝑊𝑖𝑗 = 𝑆𝑖𝑗 ·𝐻𝑖𝑗 .

𝑆𝑖𝑗 quantifies the proportion of embeddings contained
in these two clusters. It is computed by:

𝑆𝑖𝑗 =
|𝑋(𝑐𝑖)|+ |𝑋(𝑐𝑗)|∑︀

𝑐𝑘,𝑐𝑙∈𝐶,𝑐𝑘<𝑐𝑙
|𝑋(𝑐𝑘)|+ |𝑋(𝑐𝑙)|

.

The sum in the denominator normalizes the size with
respect to all possible pairs. The intuition behind 𝑆𝑖𝑗

is that we want the score to be influenced more if the
two clusters contain a large proportion of embeddings,
compared to the case when the clusters are the same
distance apart but contain only few embeddings. In the



second case, the clusters could correspond to a very rare
usage of a given word or to outliers in the given corpus.5

The value of 𝐻𝑖𝑗 reflects how imbalanced the propor-
tion of the cluster 𝑐𝑖 is with respect to the size of the
cluster 𝑐𝑗 . This imbalance is captured by the binary en-
tropy function 𝐻𝑏:

𝐻𝑖𝑗 = 𝐻𝑏

(︂
|𝑋(𝑐𝑖)|

|𝑋(𝑐𝑖)|+ |𝑋(𝑐𝑗)|

)︂
.

The intuition behind 𝐻𝑖𝑗 is that we want the score to
be influenced more if the two distinct clusters have ap-
proximately similar size compared to the case when one
cluster contains, say, 95% and other 5% of embeddings.

3.5. Cluster summarization
In order to produce a summary of each cluster, we list
10 words with the highest TF-IDF score (Term Frequency
– Inverse Document Frequency) [18, 19, 20]. TF-IDF is
a popular score used in information retrieval that is in-
tended to reflect how important a given word is to a
document in a collection of documents. It is a product of
two statistics: term frequency (how many times a given
word appears in a document relative to all words in this
document) and inverse document frequency (how rare is
the word across all documents). In our case, we concate-
nate all sentences within one cluster together to form a
document and then apply the TF-IDF to all clusters/doc-
uments of a given word. Before applying the TF-IDF, we
remove the stop words.

4. Data and Experiments
In this section, we present the experimental results with
discussion.

For this study, we selected 43 target words that contain
15 monosemous words and 28 polysemous words. For
each target word, we conducted the clustering analysis
based on the extracted embeddings. Then we calculated
the dispersion score (Section 3.4) to measure how disperse
are the clusters of a target word, see Table 1.

Comparing the dispersion scores of monosemous
words and polysemous words in Figure 1 and Table 2, we
can see that polysemous words have a larger mean and
median. These results are in line with intuition. There
should be distinct clusters of meanings for a polysemous
word and the distance between these clusters should
be greater than that between clusters for monosemous
words. Although the polysemous word group has a larger
standard deviation, it might be caused by some outliers.

For a more rigorous comparison, we ran a statistical
test. We first looked at the distributions of the scores; see
5For example, there is a small cluster in the embeddigs of the word
‘tag’ which contains only phrases ‘list by a tag’.

word
SemCor WordNet

score
NM NPOS NM

keyboard 1 1 2 0.0009
mystery 1 1 2 0.0013
buying 1 2 6 0.0012
conversation 1 1 1 0.0008
lots 1 3 11 0.0025
basically 1 1 1 0.0009
clothes 1 2 4 0.0006
patron 1 1 3 0.0016
obviously 1 1 1 0.0007
quest 1 2 7 0.0004
celebrity 1 1 2 0.0012
sky 1 2 2 0.0010
successive 1 1 1 0.0015
developer 1 1 2 0.0030
everyday 1 1 3 0.0015
companion 2 2 4 0.0015
tag 4 2 10 0.0036
quiet 10 4 13 0.0004
depression 4 1 10 0.0013
coin 2 2 3 0.0015
afternoon 2 1 2 0.0017
carefully 2 1 2 0.0010
installation 2 1 3 0.0011
initiative 2 2 3 0.0014
cruise 2 2 5 0.0014
export 2 2 4 0.0014
topic 2 1 2 0.0017
tight 7 2 16 0.0020
sheet 3 2 10 0.0026
girlfriend 2 1 2 0.0012
rap 2 2 10 0.0006
seal 5 2 15 0.0020
evident 2 1 2 0.0013
sweet 9 3 16 0.0008
span 3 2 7 0.0031
spin 2 2 13 0.0018
stem 4 2 10 0.0032
conductor 3 1 4 0.0011
employ 3 2 3 0.0015
configuration 2 1 2 0.0002
stick 6 2 25 0.0026
comment 4 2 6 0.0009
confidence 3 1 5 0.0012

Table 1
The overview of target words. NM: number of meanings,
NPOS: number of POS. The category of monosemous words
consists of words which have the value 1 in the SemCor NM
column.

Figure 2. The dispersion score distributions of monose-
mous and polysemous words seem not to follow the nor-
mal distribution. Therefore, we applied the Rank Sum
Test to see whether there were significant differences be-
tween these two groups. With the statistic = −1.4015,
p− value = 0.1611, the statistical test shows that
there are no significant differences between the dis-



Figure 1: Boxplot of the dispersion score of monosemous and
polysemous words.

descriptive statistics mono poly

mean 0.0013 0.0016
median 0.0012 0.0014
standard deviation 0.0007 0.0008

Table 2
Descriptive statistics of the dispersion scores of monosemous
and polysemous words.

Figure 2: Distributions of cluster dispersion scores.

persion scores of monosemous and polysemous words
(p− value > 0.05). This result contradicts our intuition
and the results from descriptive statistics. Therefore, in
terms of the dispersion score, we cautiously conclude
that it is unclear whether there are real differences be-
tween the two groups of words. With more samples and
experiments in the future, we might be able to reach a
more reliable conclusion.

Furthermore, we would like to know whether there is a
correlation between the dispersion score and the number
of meanings a word has. Table 1 presents the number
of meanings of the target words. We believe that there
are two different kinds of meaning. Static meanings (in
an index such as WordNet or a dictionary) and dynamic
meanings (in actual texts). Table 3 and Figure 3 show
that there are no strong correlations. The dispersion of
clusters (representing different usages) does not correlate
with the number of meanings (and POS) a word has. Word
A, for example, may only have two meanings while word

Figure 3: The scatter plot of the dispersion scores.

B may have ten. However, the cluster distances of word
A may be greater than that of word B. The reasons may
be because word A has two very distinct meanings and
contexts, whereas word B has ten meanings and contexts
that are more similar. A closer look at the clusters will
help us understand the factors that influence dispersion
scores.

NM_SemCor NM_WordNet NPOS_WordNet

DS 0.1371 0.3924 0.1499

Table 3
The correlation coefficient. DS: dispersion score, NM: number
of meanings, NPOS: number of POS.

4.1. Closer Look at the Selected Words
Looking at the monosemous words in Table 1 (those
having the value 1 in the SemCor NM column), we can
see that there are two outliers ( “lots” and “developer” )
that have the dispersion score much higher than other
words in this category. In Figure 4, we show the UMAP
visualization of these two words together with two words
from the polysemous category (“stick” and “sheet”). The
clusters are colored according to the labels assigned by
the clustering algorithm. Next to each cluster, we display
10 words (or 5 for the word “stick”) with the highest TF-
IDF score. As can be seen in the plot for the word “lots”,
there are three distinct clusters. Two of them larger and
one smaller. The two larger clusters correspond to the
following meanings: lots as “parcels of land” and lots as
in “lots of people, money, etc.” and the smaller cluster
contains sentences with “parking lots”. Clusters in the
other three plots can be interpreted in a similar way.



Figure 4: This figure shows a UMAP visualization of embeddings of four selected words. The embeddings are colored according
to the class assigned by the clustering algorithm. The dark red color corresponds to the cluster ’-1’, which contains outliers.
The clustering was done in 50-dimensional space and therefore the 2D visualization may distort the geometry used for the
clustering. Next to each cluster, we display 10 (or 5 in the case of the word ’stick’) words with the highest TF-IDF score.

5. Discussion
After taking a closer look at the discovered clusters of
each word, we can see that it is not clear when to distin-
guish one meaning as separate from the other. For exam-
ple, for the word developer, there is a well-separated clus-
ter corresponding to the sentences containing the phrase
“game developer” and another cluster coresponding to
sentences about software developers. Similar nuances
can also be seen in several other words. This observation
questions the completeness of manually defined lists of

word meanings, such as those given by WordNet and
other sources. One could also realize that the clusters
are largely determined by the given corpus, which is a
small snapshot of the language used at a specific time
and place. It reflects distinctions that are important to
the people who wrote the texts contained in the corpus.
Such distinctions arise because of real needs of the people
using the language (e.g., Inuits having a large number
of distinct words for different types of snow). As can be
seen in Figure 4, neural language models can discover
these distinctions just by learning to predict a word from



its context.
We also mention a few problematic points in our

method. The most problematic point is that the disper-
sion score is unstable with respect to larger changes of
hyperparameters of the clustering algorithm. We tried
to design the score to be stable with respect to splits of
larger clusters into multiple smaller ones, but more work
would need to be done in order to really achieve this
stability.

Next, as discovered by Timkey et al. [21], the similarity
of embeddings created by transformer-based language
models may be greatly influenced by very few dimen-
sions of the embedding. These dimensions apparently
distort the cosine similarity and disable distinguishing
nuanced meanings. Timkey et al. suggest to normalize
the embeddings before measuring the cosine similarity
as a simple way to mitigate this problem. In our exper-
iments, we have not seen this problem, as the clusters
were often well separated, but we plan to use the pro-
posed normalization in the future.

Lastly, the range of selected words is very limited due
to the requirement of similar frequency and no subword
tokenization, as mentioned in Section 3.1. In the future,
we plan to conduct a more extensive analysis without
these limitations.

6. Conclusion
In this contribution, we provided a quantitative and qual-
itative analysis of the semantic vector space induced by a
neural language model and a corpus. We showed that the
contextual embeddings created by the language model
often form well-separated clusters that correspond to dif-
ferent meanings of the word. As part of our analysis, we
introduced a score that reflects how dispersed is the col-
lection of clusters for a given word. Our analysis shows
that the score is not directly correlated with the number
of meanings as defined by WordNet. After closer inspec-
tion of several words, we concluded that it is not clear
when one meaning should be separated from the other
and that manually defined lists of different meanings of
the word are not complete or fine-grained enough. Our
analysis also shows the possibility of developing applica-
tions that will create a list of different usages of the word
in an automatic data-driven way. We envision that such
applications may be useful for foreign language learners.
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