
jSO and GWO Algorithms Optimize Together
Radka Poláková1, Daniel Valenta1

1Silesian University in Opava, Faculty of Philosophy and Science in Opava, The Institute of Computer Science, Opava, Czech Republic

Abstract
This paper deals with global optimization. There are many algorithms for global optimization in the literature. In this text,
we focus on two effective optimizers. The first one is an adaptive version of Differential evolution algorithm which was the
most successful version of the algorithm on CEC 2014 congress and is called the jSO algorithm. The second one is the Grey
wolf optimizer which was introduced in 2014. We propose new algorithm cooperation in which both of these algorithms
are used together to get better results when optimization problems are being solved. In our attempt, both algorithms take
turns making the optimization process. We tested the proposed algorithm on four multi-modal functions on two levels of
dimension. The results are quite promising.

Keywords
Optimisation, GWO, jSO, Cooperation, Optimization algorithms

1. Global Optimization
In human life, there are many different problems which
lead to optimization of a mathematical function. To opti-
mize a function 𝑓 in a search space means to find a point
in the search space in which the function 𝑓 has global op-
timum, thus global minimum or global maximum, which
depends on the task. It is well-known that when we are
searching for global maximum of function 𝑓 , it is the
same as finding a global minimum of function 𝑔 = −𝑓 ,
so we can talk only about minimization in the following.
The minimization problem is defined as follows. Let’s
have a function 𝑓 ,

𝑓 : 𝑆 → ℛ, 𝑆 ⊂ ℛ𝐷 (1)

𝑓 is minimized function, 𝐷 is dimension of problem. 𝑆
is search space, here continuous.

𝑆 = Π𝐷
𝑗=1[𝑎𝑗 , 𝑏𝑗]; 𝑎𝑗 < 𝑏𝑗 , 𝑗 = 1, 2, . . . , 𝐷 (2)

Π notation (also called Product notation, Cartesian in
this case) is used here in the standard way and indicates
repeated multiplication.

A point 𝑥*⃗ is global minimum point of the function 𝑓
in the search space 𝑆 if the following condition holds.

∀𝑥⃗ ∈ 𝑆; 𝑓(𝑥*⃗) ≤ 𝑓(𝑥⃗) (3)

It is possible to find the minimum of a function by analyt-
ical way, but there are functions for which such process is
difficult, long, or impossible because of function features.
Then stochastic algorithms could help us.

ITAT’22: Information technologies – Applications and Theory, Septem-
ber 23–27, 2022, Zuberec, Slovakia
$ radka.polakova@fpf.slu.cz (R. Poláková);
daniel.valenta@fpf.slu.cz (D. Valenta)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

The most difficult functions to solve with optimization
algorithms are those that are not easily differentiable at
some points or have many local extremes. The result
may not always correspond exactly to the real optimum.
However, it could be enough with regard to the complex-
ity of the optimized function. In other words, the result
of a stochastic optimizer is a sufficient estimation of the
real solution of the problem, and it is not so expensive.
According to the No Free Lunch theorem [1], there is
no optimization algorithm that solves all functions best.
Therefore, new methods are being developed. We de-
scribe two already established and one new method in
the following sections.

2. Differential Evolution and jSO
There are many different algorithms to optimize-
minimize a mathematical function. In this paper, we work
with jSO which is an adaptive version of Differential evo-
lution algorithm and also with Grey wolf optimizer. We
describe all three algorithms briefly in this section.

2.1. Differential Evolution
Differential evolution (DE) algorithm was introduced
in [2]. It is an efficient optimizer. It is population-based
algorithm in which a population evolves during the run in
order to have better and better members. Better in a sense
of lower function value in the point. The best member of
the population is the result at the end of the run. It is the
point of global optimum found by the algorithm.

The algorithm works with the population of points
which are at the beginning of the run of the algorithm
generated randomly (with uniform distribution) in the
search space 𝑆. Then, each population member is moved
around the search space and is evolved to have better
values of optimized function.

mailto:radka.polakova@fpf.slu.cz
mailto:daniel.valenta@fpf.slu.cz
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In a generation (iteration) of the algorithm run, a trial
point 𝑦𝑖⃗ is computed for each population member 𝑥𝑖⃗,
𝑖 = 1, 2, . . . , 𝑁𝑃 , 𝑁𝑃 is the size of the population. The
point 𝑦𝑖⃗ is produced by two operations, the fist one is
mutation. A mutant point 𝑢𝑖⃗ is computed based on a kind
of mutation. Then the mutant 𝑢𝑖⃗ enters into crossover
operation together with the original point 𝑥𝑖⃗. The result
of the crossover is the trial point 𝑦𝑖⃗. If the trial point
𝑦𝑖⃗ is better than the original point 𝑥𝑖⃗, the new point 𝑦𝑖⃗
enters into the next generation instead of 𝑥𝑖⃗. If not, the
original point 𝑥𝑖⃗ enters into the next generation of the
population.

There are several types of mutation, e.g. rand/1, ran-
drl/1, current-to-rand/1, rand/2, current-to-pbest/1, etc.
The most used one is the rand/1 mutation - eq. (4). By
this mutation, each mutant 𝑢𝑖⃗ is computed from three
randomly chosen points 𝑟1𝑖⃗ , 𝑟2𝑖⃗ , and 𝑟3𝑖⃗ from current
population which are different from original point 𝑥𝑖⃗.

𝑢𝑖⃗ = 𝑟1𝑖⃗ + 𝐹 (𝑟2𝑖⃗ − 𝑟3𝑖⃗) (4)

The 𝐹 is mutation parameter of DE. Also the crossover
could be made in one of several ways in DE. The most
frequently used two types of crossover are binomial and
exponential ones. The algorithm uses parameter 𝐶𝑅
as a crossover parameter. It influences the count of co-
ordinates which are inherited by a trial point from the
mutant point 𝑢𝑖⃗. In the binomial crossover, inherited
coordinates are distributed uniformly. The trial point
takes consecutive series of coordinates from the mutant
in the exponential crossover.

Thus, DE algorithm has several parameters. They are
mutation parameter 𝐹 , crossover parameter 𝐶𝑅, muta-
tion type, type of crossover, and also population size 𝑁𝑃 .
There are many adaptive versions of the algorithm in
the literature. Several of them were successful on CEC
congresses, e.g. SHADE [3], LSHADE [4], jSO [5].

The principles of the algorithm are shown in the
pseudo-code below. Note that this is a simplification,
which does not describe how the trial point was created.
The trial point 𝑦⃗𝑖 to point 𝑥⃗𝑖 is created using two opera-
tions, mutation and crossover. We will discuss the spe-
cific method of creating the trial point in the pseudo-code
presented in the following section for the jSO algorithm
(Algorithm 2).

2.2. jSO
jSO [5] is very sophisticated version of DE. The algo-
rithm evolved from its predecessors. The first one, of
course except DE, is JADE [6]. Authors of this algorithm
developed a new mutation, current-to-pbest/1. This mu-
tation in slightly modified version is used in jSO. They
also suggested to employ an archive of old members of
the population. The next algorithm is SHADE [3], which
is improved version of JADE. SHADE employs historical

Algorithm 1 DE
1: Generate the initial generation 𝑃0 of the population

𝑃 ; 𝑃0 = (𝑥⃗1, 𝑥⃗2, ..., 𝑥⃗𝑁𝑃)
2: Compute the value of the optimized function 𝑓 at all

points of the generation 𝑃0;
3: Set counter of generations to 𝑔 = 0;
4: while termination criterion is not met do
5: 𝑄𝑔 = 𝑃𝑔 ;
6: for 𝑖 = 1 to 𝑁𝑃 do
7: Create a trial point 𝑦⃗𝑖 to point 𝑥⃗𝑖;
8: Compute the value of the function 𝑓 at point

𝑦⃗𝑖;
9: if 𝑓(𝑦⃗𝑖) ≤ 𝑓(𝑥⃗𝑖) then

10: Insert point 𝑦⃗𝑖 into 𝑄𝑔 instead of point
𝑥⃗𝑖;

11: 𝑃𝑔+1 = 𝑄𝑔 ; 𝑔 = 𝑔 + 1;
12: The result is the best point in 𝑃𝑔 .

circle memories to adapt 𝐹 and 𝐶𝑅 parameters. Then
the LSHADE algorithm [4] was proposed, it is SHADE
with a linear reduction of population size mechanism.
The next algorithm is iLSHADE [7]. And finally, the last
one is jSO. The jSO algorithm uses the linear reduction
of population size mechanism, archive, and other tools.
It has several features different from iLSHADE, e.g. size
of the population is set to 𝑁𝑃 = 25×

√
𝐷× log𝐷 at the

beginning of the search process instead of 𝑁𝑃 = 18×𝐷,
parameter 𝑝, which is the parameter of current-to-pbest/1
(and also of current-to-pbest-w/1) mutation, is handled
in a different way in this algorithm compared to its pre-
decessors. The size of historical circle memories 𝐻 is set
to 5 here. For a detailed description of the algorithm, see
[5] and Algorithm 2.

2.3. Grey Wolf Optimizer
Grey wolf optimizer (GWO) is a nature-based and already
well-established meta-heuristic method inspired by social
dynamics found in the pack of grey wolves [8]. In other
words, the algorithm simulates the behavior of wolves,
that live and hunt together in packs. The algorithm was
introduced in 2014.

Let us focus on principles observed in a pack of wolves.
There are strict rules that they must follow, and each wolf
has a clearly defined role. Based on this, we can classify
them into four categories: alpha, beta, delta, and omega.
The leader of the pack is the alpha pair of wolves. They
are dominant in the group and other wolves follow their
lead. They could be substituted by beta wolves if it is
necessary. Beta wolves are second in command. They are
important because they help and support the alpha pair
during its decisions. Delta wolves follow instructions
ordered by wolves alpha and beta. Mid-ranking wolves

Algorithm 2 jSO
1: Generate the initial generation 𝑃0 of the population

𝑃 randomly; 𝑃0 = (𝑥⃗1, 𝑥⃗2, ..., 𝑥⃗𝑁𝑃)
2: Initialize archive 𝐴 = ∅;
3: Compute the value of the optimized function 𝑓 at all

points of the generation 𝑃0;
4: Set all values in 𝑀𝐹 and 𝑀𝐶𝑅 to 0.5;

Note: 𝑀𝐹 and 𝑀𝐶𝑅 are circle memories, storing
the position parameters for the Cauchy (𝑀𝐹) and
normal (𝑀𝐶𝑅) distributions;
The size of these memories is 𝐻 ; 𝐻 = 5;

5: 𝑔 = 0 (current iteration - generation);
6: 𝑒𝑣𝑎𝑙𝑠 = 𝑁𝑃 (current number of used function eval-

uations);
7: 𝑘 = 1 (index counter for circle memories);
8: while termination criterion is not met do
9: 𝑆𝐹 = ∅ and 𝑆𝐶𝑅 = ∅;

10: for 𝑖 = 1 to 𝑁𝑃 do
11: Select 𝑟𝑖 randomly from {1, 2, ..., 𝐻};
12: if 𝑟𝑖 = 𝐻 then
13: 𝑀𝐹,𝑟𝑖 = 0.9; 𝑀𝐶𝑅,𝑟𝑖 = 0.9;
14: if 𝑀𝐶𝑅,𝑟𝑖 < 0 then
15: 𝐶𝑅𝑖,𝑔 = 0;
16: else Generate 𝐶𝑅 using normal distribution:

𝐶𝑅𝑖,𝑔 = 𝑁𝑖(𝑀𝐶𝑅,𝑟𝑖 , 0.1);
17: if 𝑒𝑣𝑎𝑙𝑠 < 1

4
𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠; 𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠 is the

maximum number of allowed function
evaluations;
then

18: 𝐶𝑅𝑖,𝑔 = 𝑚𝑎𝑥(𝐶𝑅𝑖,𝑔, 0.7);
19: else if 𝑒𝑣𝑎𝑙𝑠 < 1

2
𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠; then

20: 𝐶𝑅𝑖,𝑔 = 𝑚𝑎𝑥(𝐶𝑅𝑖,𝑔, 0.6);
21: Generate 𝐹 using Cauchy distribution:

𝐹𝑖,𝑔 = 𝐶𝑖(𝑀𝐹,𝑟𝑖 , 0.1);
22: if 𝑒𝑣𝑎𝑙𝑠 < 1

6
𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠 and 𝐹𝑖,𝑔 > 0.7

then
23: 𝐹𝑖,𝑔 = 0.7;
24: A trial point 𝑦⃗𝑖,𝑔 is created using

DE/current-to-pbest-w/1/bin strategy (see
[5]);

25: Evaluate optimized (objective) function 𝑓 in all
𝑁𝑃 made trial points 𝑦⃗𝑖,𝑔 , 𝑖 = 1, 2, . . . , 𝑁𝑃 ;

26: 𝑒𝑣𝑎𝑙𝑠 = 𝑒𝑣𝑎𝑙𝑠+𝑁𝑃 ;
27: for 𝑖 = 1 to 𝑁𝑃 do
28: if 𝑓(𝑦⃗𝑖,𝑔) ≤ 𝑓(𝑥⃗𝑖,𝑔) then
29: Update point for the next generation:

𝑥⃗𝑖,𝑔+1 = 𝑦⃗𝑖,𝑔

30: else 𝑥⃗𝑖,𝑔+1 = 𝑥⃗𝑖,𝑔

31: if 𝑓(𝑦⃗𝑖,𝑔) < 𝑓(𝑥⃗𝑖,𝑔) then
32: Insert 𝑥⃗𝑖,𝑔 into archive 𝐴;
33: Insert 𝐶𝑅𝑖,𝑔 into 𝑆𝐶𝑅; and 𝐹𝑖,𝑔 into 𝑆𝐹 ;
34: If necessary, shrink archive A;
35: Calculate the new value of the first parameter

for both distributions 𝑆𝐹 and 𝑆𝐶𝑅, and store
them in 𝑀𝐹𝑘 and 𝑀𝐶𝑅𝑘 ; 𝑘 = 𝑘 + 1;

36: if 𝑘 > 𝐻 then 𝑘 = 1;
37: Apply linear population size reduction mecha-

nism, see [5] (update 𝑁𝑃 and population 𝑃);
38: Update parameter 𝑝 for current-to-pbest-w/1

mutation strategy (see [5]);
39: 𝑔 = 𝑔 + 1;
40: The result is the best point in 𝑃𝑔 .

in the hierarchy are delta ones. They ensure the routine
activities of the pack and follow the orders of alpha and
beta wolves. Each delta wolf has a specific focus, based
on which we can divide them into the following sub-
categories: scouts, sentinels, and caretakers. The omega
wolves are in the lowest position in the hierarchy and
others wolves often pick on them. It is important to filter
aggression and prevent frustration in the pack. Losing
omega wolves can cause fighting between other wolves,
and damage to discipline or hierarchy.

In nature, wolves’ primary goal is to find and hunt
down prey. This process consists of these main steps:
searching for prey, encircling prey, and attacking prey.
During searching for the prey, wolves are trying to find
the most abundant (but easily catchable) prey to hunt.
Once they find such prey, they attempt to push it into a
situation when it is alone and cannot escape while they
encircle it. Finally, when the prey is surrounded and can
no longer escape, they attack it. Wolves attack the weak
spots of the prey like legs, snout, or belly, until it stops
resisting, and afterwards, they bring it down and crush
its windpipe.

The Grey wolf optimizer is inspired by the processes
described above: the creation of a social hierarchy and
hunting technique. Because it is an agent-based algo-
rithm, each agent represents one of the wolves in the
pack. Agents are randomly placed into the environment
(search space 𝑆). The better value (in the sense of mini-
mization) in the position of the current wolf the closer
position to the prey (the solution of the solved optimiza-
tion problem).

GWO is an iterative algorithm. In each iteration, each
wolf is assigned to the pack hierarchy according to the
value of its fitness function 𝑓 at its position. The wolf
with the best value is ranked as alpha, the second best as
beta, the third best as delta, and all the others as omega.
Wolves alpha, beta, and delta have the same meaning and
save the three best solutions found at the iteration. Posi-
tions of wolves in the environment are updated in each
iteration. The new position of the agent is based upon
the estimated location of the prey, which is probably
somewhere between alpha, beta, and delta wolves. We
assume this, but the optimum may be located elsewhere,
so a mechanism is needed to thoroughly scan the entire
environment. The agent approaching the prey hunts it,
while the agent moving away from it tries to find even
more abundant prey elsewhere. For this purpose, two
vectors 𝐴⃗ and 𝐶⃗ are used, thanks to which the algorithm
passes smoothly through two phases: scouting and hunt-
ing the prey. Both vectors have random components so
they help to prevent convergence to a local optimum (not
very abundant prey) instead of a global one.

Vector 𝐴⃗ has components 𝑟𝑎𝑛𝑑(−1, 1) * 𝑎, where
𝑟𝑎𝑛𝑑(−1, 1) generates a random number with a uniform

distribution between -1 and 1 and 𝑎 = 2− (2𝑖𝑡/𝑖𝑡𝑚𝑎𝑥),
while 𝑖𝑡 is the algorithm current iteration and 𝑖𝑡𝑚𝑎𝑥 is
the maximum number of iterations. Each component of
the vector influences movement of the agent in a specific
dimension of the environment (search space). As you
can see, the interval in which components of vector 𝐴⃗
lie is narrowing we can say linearly from [−2, 2] to [0, 0]
as the number of iterations increases. It is because the
parameter 𝑎 decreases during the whole run from 2 to 0.
The closer is the value of component of 𝐴⃗ to 0, the higher
is the probability that the agent chooses the hunting
phase instead of the scouting one.

Another vector supporting divergence between scout-
ing and hunting phases is 𝐶⃗ . Vector 𝐶⃗ is similar to vector
𝐴⃗, but the values of components of this vector do not
linearly decrease as the number of iterations grows. This
vector has components set to 𝑟𝑎𝑛𝑑(0, 2), which is a ran-
dom number with the uniform distribution between 0
and 2. The closer the value is to 0, the higher is the prob-
ability that the agent chooses the hunting phase. This
vector helps wolves to behave more naturally. In nature,
there are various obstacles (e.g. bushes, stones, or trees)
on hunting trails. Wolves change direction to avoid them,
so they do not move directly towards their prey. Vector
𝐶⃗ simulates this part of their behaviour.

Each wolf-agent is on position 𝑋𝑗
⃗ in search space 𝑆, 𝑗

is index of wolf, 𝑗 = 1, 2, . . . , 𝑁 , where 𝑁 is the size of
wolf pack. Positional vectors of agents 𝑋𝑗

⃗ are updated
according to the formula 𝑋𝑗

⃗ (𝑖𝑡 + 1) = 𝑋1
⃗ +𝑋2

⃗ +𝑋3
⃗

3
,

where 𝑋1
⃗ , 𝑋2

⃗ , and 𝑋3
⃗ represent potential new positions

of the prey to move (positions close to optimum) and are
computed in the following way:

𝑋1
⃗ = 𝑋𝛼

⃗ (𝑖𝑡)−𝐴1
⃗ *𝐷𝛼

⃗ , (5)

𝑋2
⃗ = 𝑋𝛽

⃗ (𝑖𝑡)−𝐴2
⃗ *𝐷𝛽

⃗ , (6)

𝑋3
⃗ = 𝑋𝛿

⃗ (𝑖𝑡)−𝐴3
⃗ *𝐷𝛿

⃗ , (7)

where 𝑋𝛼
⃗ (𝑖𝑡), 𝑋𝛽

⃗ (𝑖𝑡), and 𝑋𝛿
⃗ (𝑖𝑡) are current positions

of alpha, beta, and delta wolf, respectively. They rep-
resent the current best three preys found, 𝐴⃗ is already
defined above and is generated separately for each of
𝑋𝛼
⃗ (𝑖𝑡), 𝑋𝛽

⃗ (𝑖𝑡), and 𝑋𝛿
⃗ (𝑖𝑡) wolves, so we get 𝐴1

⃗ , 𝐴2
⃗ ,

and 𝐴3
⃗ . Vectors 𝐷𝛼

⃗ , 𝐷𝛽
⃗ , 𝐷𝛿

⃗ represent the distance of
the wolf 𝑋𝑗

⃗ from prey. It is computed in the following
way:

𝐷𝛼
⃗ = |𝐶1

⃗ *𝑋𝛼
⃗ (𝑖𝑡)−𝑋𝑗

⃗ (𝑖𝑡)|, (8)

𝐷𝛽
⃗ = |𝐶2

⃗ *𝑋𝛽
⃗ (𝑖𝑡)−𝑋𝑗

⃗ (𝑖𝑡)|, (9)

𝐷𝛿
⃗ = |𝐶3

⃗ *𝑋𝛿
⃗ (𝑖𝑡)−𝑋𝑗

⃗ (𝑖𝑡)|, (10)

where |𝑋⃗| is vector whose components are the absolute
values of components of 𝑋⃗ . Vector 𝐶⃗ was already defined
above and is generated separately for each of 𝑋𝛼

⃗ (𝑖𝑡),

𝑋𝛽
⃗ (𝑖𝑡), and 𝑋𝛿

⃗ (𝑖𝑡) wolves, similarly as 𝐴⃗, so we get 𝐶1
⃗ ,

𝐶2
⃗ , and 𝐶3

⃗ .
GWO has only two parameters, the size of the wolf

pack 𝑁 and the length of the time it can search for the
optimum. In the original proposal, it works with the
maximum of iterations it can make. Here, we use the
maximum number of function evaluations, in order to do
a fair comparison of algorithms.

Algorithm 3 GWO
1: Randomly generate an initial population of wolves-

agents 𝑋1
⃗ , 𝑋2

⃗ , ..., 𝑋𝑁⃗ into the environment;
2: while termination criterion is not met do
3: Calculate the fitness value of each agent 𝑋𝑗

⃗ ;
4: Determine the social hierarchy and find position

of alpha, beta, and delta wolves;
5: Generate vectors 𝐴⃗ and 𝐶⃗ for all three best

wolves;
6: Calculate the new position of each agent 𝑋𝑗

⃗ ;
7: The result is the position of the best wolf after the

last iteration of the algorithm.

Because wolves are moving closer toward prey from
various directions with the increasing number of itera-
tions, they are encircling it.

3. Cooperation of Algorithms
We proposed to use both algorithms, jSO and GWO, to-
gether in the optimization process of a function. The used
idea of common use of both algorithms is very simple.
We wanted to do a part of optimization process by one
of two mentioned algorithms and then give the results
of the algorithm to the other algorithm to do another
part of optimization process and then after making its
part of the process, it gives its results to the first algo-
rithm, etc. Each algorithm needs some time to optimize
a function. It is like when someone needs some time to
do something he has to do. It is not the best idea to let
somebody do something and immediately after he starts
doing it to stop him. Mentioned ideas led us to divide
the number of allowed function evaluations into several
(not many) parts, we divide the amount into 𝑘 (𝑘 = 10)
portions here. The length of a portion is 𝑙. And then,
jSO makes 5 of these parts and GWO does the rest of the
parts (also 5 parts). jSO starts doing optimization process
and after spending such amount of function evaluation
that equals to 𝑙, it gives its population to GWO. GWO
takes the best 𝑁 (𝑁 = 6, the size of the pack of wolves)
points of received population and spends next 𝑙 function
evaluations. After each iteration, GWO in cooperation
tests if its current optimum is better than the optimum
in the population which was originally received from

jSO. And if so, it rewrites randomly chosen points in the
"temporary" population which is prepared for next work
of jSO. When it is the last run of GWO in cooperation, it
rewrites the whole received population by the wolves,
when the best point found in the iteration is better than
the interim result. After spending its amount of function
evaluations, it gives prepared population (with the best
found point) again to jSO. And the process is repeated 5
times. Thus, the last algorithm which works in the search
process by our cooperation algorithm is GWO.

We wanted to use all advantages of both original algo-
rithms, so we put them together in a way that keeps all
the principles of the original algorithms. So, all param-
eters of both algorithms are set to the values according
their original proposal, see [5], [8]. When jSO optimizes,
the size of population is gradually linearly decreased.
Also, parameter 𝑝 decreases as proposed in [5]. When
the GWO algorithm works inside cooperation, also param-
eter 𝑎 decreases (as proposed in [8]) during the whole
run of cooperation. The size of the pack of wolves is equal
to 𝑁 during the whole run of the cooperation algorithm.

Algorithm 4 Cooperation algorithm
1: Generate the initial generation 𝑃0 of the population

𝑃 ; 𝑃0 = (𝑥⃗1, 𝑥⃗2, ..., 𝑥⃗𝑁𝑃); 𝑁𝑃 is set as in the jSO
algorithm;

2: 𝑙 = 𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠
𝑘

; 𝑘 is the total number of runs of both
algorithms in cooperation; 𝑘 = 10; 𝑚𝑎𝑥𝑒𝑣𝑎𝑙𝑠 is the
total number of allowed function evaluations;

3: Set the iteration counter 𝑐 to 1;
4: 𝑟 = 0;
5: while 𝑐 ≤ 𝑘 do
6: if 𝑐 mod 2 = 1 then
7: Read population 𝑃𝑟 as input;
8: Run the jSO algorithm for 𝑙 evaluations;
9: 𝑟 = 𝑟 + 1

10: Note: the output of this run of jSO is 𝑃𝑟 ;
11: else if 𝑐 mod 2 = 0 then
12: Read the 𝑁 best points from 𝑃𝑟

into 𝑋⃗1, 𝑋⃗2, ..., 𝑋⃗𝑁 ; 𝑁 = 6 in this case;
13: Run the GWO algorithm for 𝑙 evaluations;
14: if the condition about currently found best

point and the best point of 𝑃𝑟 holds (see text)
then

15: if 𝑐 < 𝑘 then
16: Rewrite 𝑁 points in 𝑃𝑟 by current

positions of 𝑋⃗1, 𝑋⃗2, ..., 𝑋⃗𝑁 but do
not affect the best three points of 𝑃𝑟 ;

17: else
18: Rewrite whole 𝑃𝑟 by pack 𝑋⃗1, 𝑋⃗2,

..., 𝑋⃗𝑁

19: 𝑐 = 𝑐+ 1;
20: The result is the best point in 𝑃𝑟 .

Table 1
Search spaces, optimal values, and position of optimal values
for used test functions

function search space 𝑆 𝑓(𝑥*⃗) 𝑥*⃗

Ackley [−30, 30]𝐷 0 (0, 0, 0, . . . , 0)
Rastrigin [−5.12, 5.12]𝐷 0 (0, 0, 0, . . . , 0)
Rosenbrock [−10, 10]𝐷 0 (1, 1, 1, . . . , 1)
Happycat [−50, 50]𝐷 0 (0, 0, 0, . . . , 0)

The presented cooperative algorithm is one of the first
attempts to use the GWO and jSO algorithms together.
In order to achieve even better results and to find the
optimal number of repetitions of the sequence of both al-
gorithms, it would be necessary to perform experiments
on a larger number of optimization functions with a va-
riety of features.

4. Experiments and Results
We computed optima by three algorithms, jSO, GWO,
and proposed cooperation in this paper. Four multi-modal
functions were used to make an experimental tests. Used
functions are Ackley function - eq. (11), Rastrigin func-
tion - eq. (12), Rosenbrock function - eq. (13), and Hap-
pycat function - eq. (14).

𝑓(𝑥⃗) = −20 exp
(︁
−0.02

√︁
1
𝐷

∑︀𝐷
𝑗=1 𝑥

2
𝑗

)︁
−

− exp
(︁

1
𝐷

∑︀𝐷
𝑗=1 cos 2𝜋𝑥𝑗

)︁
+ 20 + exp(1)

(11)

𝑓(𝑥⃗) = 10𝐷 +

𝐷∑︁
𝑗=1

[︀
𝑥2
𝑗 − 10 cos(2𝜋𝑥𝑗)

]︀
(12)

𝑓(𝑥⃗) =

𝐷−1∑︁
𝑗=1

[︀
100(𝑥2

𝑗 − 𝑥𝑗+1)
2 + (1− 𝑥𝑗)

2]︀ (13)

𝑓(𝑥⃗) =
⃒⃒⃒∑︀𝐷

𝑗=1 𝑥
2
𝑗 −𝐷

⃒⃒⃒1/4
+

+ 1
𝐷

(︁
0.5

∑︀𝐷
𝑗=1 𝑥

2
𝑗 +

∑︀𝐷
𝑗=1 𝑥𝑗

)︁
+ 0.5

(14)

Used search space 𝑆 of each used function is displayed
in Table 1. In this table, global optimum and point of
the optimum are written too. It is not clearly visible, but
each of these functions has many local extremes.

Algorithms were tested on two levels of dimension,
𝐷 = 10 and 𝐷 = 30, in this work. In each dimension,
we set the total amount of allowed function evaluations
to two different values, for 𝐷 = 10, the two values were
3000 and 30000, for 𝐷 = 30, the two values were 10000
and 100000. For each combination of algorithm, function,
dimension, and value of allowed function evaluations,

Table 2
Results of three tested algorithms on Ackley, Rastrigin, Rosen-
brock, and Happycat functions in dimensions 𝐷 = 10 and
𝐷 = 30 with two different amounts of allowed function eval-
uations, 3000 and 30000 for 𝐷 = 10, 10000 and 100000 for
𝐷 = 30

jSO GWO coop
mean mean mean

func D maxevals std std std
ack 10 3× 103 1.2005 0.0019 0.0973

0.1801 0.0037 0.1164
3× 104 2.1E-06 4.4E-16 4.4E-16

5.0E-06 0 0
30 1× 104 1.4459 1.6E-11 2.8E-06

0.0869 6.2E-11 6.3E-06
1× 105 0.0027 4.4E-16 4.4E-16

0.0016 0 0
ras 10 3× 103 24.443 0.0098 1.0742

5.0200 0.0263 1.8183
3× 104 4.8E-08 0 0

9.5E-08 0 0
30 1× 104 125.44 0 0.0664

11.986 0 0.2570
1× 105 0.6580 0 0

0.8321 0 0
ros 10 3× 103 12.188 9.0068 8.6566

3.3652 0.0327 0.3620
3× 104 1.9E-06 8.9895 0.5470

5.7E-06 0.0131 0.3062
30 1× 104 57.495 28.993 28.421

12.379 0.0040 0.3609
1× 105 12.716 28.974 19.871

0.8105 0.0554 0.7234
hac 10 3× 103 0.7336 1.7077 0.6613

0.2225 0.3172 0.1212
3× 104 0.1094 1.8145 0.1652

0.0232 0.3412 0.0316
30 1× 104 0.7271 1.8126 0.9969

0.1310 0.2919 0.1742
1× 105 0.2262 2.0396 0.2878

0.0362 0.3823 0.0283

we made 15 runs. The total amount of runs in our exper-
iments was 720.

All tested algorithms were implemented in GNU Oc-
tave, version 7.1.0 and all computations were carried
out on a standard PC with Windows 10 Home, Intel(R)
Core(TM) i7-7500U CPU 2.70GHz 2.90GHz, 8 GB RAM.

Summarisation of experimental test results is written
in Table 2. We highlight the best results in bold. Results
are also displayed on the two figures above. There is a
boxplot for shorter runs on the left side and the boxplot
for longer ones on the right side for all four displayed
combinations of function and dimension on these figures.

For Ackley function and dimension 𝐷 = 10 in longer

runs, GWO reaches very good values, they are very near
optimum. Results of jSO are only a little worse here. The
cooperation algorithm adopts the results of GWO in this
case. In shorter runs, GWO reaches better results than
jSO, and when both algorithms optimize together in the
cooperation algorithm, the results are only a little worse
than the results of GWO, but better than the results of
jSO. For dimension 𝐷 = 30 in longer runs, GWO reaches
again very small values (reached values of jSO are worse)
and cooperation adopts them again. In shorter runs here,
the situation is similar or a little better than for shorter
runs in dimension 𝐷 = 10.

When we discuss the optimization process of Rastrigin
function with tested algorithms, the situation is very
similar to the previous case, in both tested dimensions
for both lengths of runs.

For Rosenbrock function for both tested dimensions
for shorter runs, GWO is better optimizer than jSO and
cooperation is little better then GWO. But when algo-
rithms have much more time (larger amount of function
evaluations), jSO is better then GWO and cooperation
reaches better results than GWO but not better than jSO
reaches.

When we think about the Happycat function, the re-
sults of tests are very similar in both dimensions. It holds
for both lengths of runs. We mean the results of compar-
ison of algorithms. Moreover, it seems that the results of
cooperation are a little better than the results of the jSO
algorithm (which is here the better one of GWO and jSO
algorithms) for shorter runs and lower dimension. For
longer runs in both dimensions, jSO is better then GWO
and cooperation reaches better results than GWO but a
little worse results than jSO.

5. Conclusion
The new algorithm called cooperation for global optimiza-
tion was proposed in this paper. It is based on two very ef-
fective optimizers, Grey wolf optimizer and one of many
adaptive versions of Differential evolution algorithm, the
jSO algorithm.

We proposed to use both algorithms together for opti-
mization. The idea of cooperation is very easy, the algo-
rithms take turns performing the optimization process.
Four multi-modal functions and two levels of dimension
were selected for our experimental comparison. The
results of the made experimental comparison are promis-
ing.

In this paper, we have used only a basic scheme in
which each algorithm has been used repeatedly 5-times
for the cooperation algorithm. In future work, we plan to
develop some more sophisticated schema for the change
of controlling of optimization process by these two al-
gorithms, probably based on the stagnation of search

Ackley, D=10

Ackley, D=30

Rastrigin, D=10

Rastrigin, D=30

Figure 1: Results of all three tested algorithms on Ackley and
Rastrigin functions

process by currently used algorithm. The goal is to find a
scheme that works best for most of the functions tested,
ideally better than both original algorithms in most cases.

Acknowledgement: This work was supported by the
project no. CZ.02.2.69/0.0/0.0/18_054/0014696, "Devel-
opment of R&D capacities of the Silesian University in
Opava", co-funded by the European Union.

Acknowledgments
This work was supported by the project no.
CZ.02.2.69/0.0/0.0/18_054/0014696, "Development
of R&D capacities of the Silesian University in Opava",
co-funded by the European Union.

Rosenbrock, D=10

Rosenbrock, D=30

Happycat, D=10

Happycat, D=30

Figure 2: Results of all three tested algorithms on Rosenbrock
and Happycat functions

References
[1] Wolpert D. H., Macready, W. G.: No Free Lunch The-

orems for Optimization. IEEE Transactions on Evo-
lutionary Computation. 1 (1997) 67–82

[2] Storn R., Price, K.: Differential evolution - A Simple
and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Global Optimization. 11 (1997)
341–359

[3] Tanabe R., Fukunaga, A.: Success-history based pa-
rameter adaptation for differential evolution. In IEEE
Congress on Evolutionary Computation 2013. (2013)
71–78

[4] Tanabe R., Fukunaga, A.: Improving the Search Per-
formance of SHADE Using Linear Population Size
Reduction. In IEEE Congress on Evolutionary Compu-
tation 2014. (2014) 1658–1665

[5] Brest J., Maučec M. S., Boškovič B.: Single Objec-
tive Real-Parameter Optimization: Algorithm jSO.
In IEEE Congress on Evolutionary Computation 2017.
(2017) 1311–1318

[6] Zhang J., Sanderson A. C.: JADE: Adaptive Differ-
ential Evolution With Optional External Archive.
IEEE Transactions on Evolutionary Computation. 13
(2009) 945–958

[7] Brest J., Maučec M. S., Boškovič B.: iL-SHADE: Im-
proved L-SHADE algorithm for single objective real-
parameter optimization. In IEEE Congress on Evolu-
tionary Computation 2016. (2016) 1188–1195

[8] Mirjalili S., Mirjalili S. M., Lewis A.: Grey Wolf Opti-
mizer. Advances in Engineering Software. 69 (2014)
46–61

	1 Global Optimization
	2 Differential Evolution and jSO
	2.1 Differential Evolution
	2.2 jSO
	2.3 Grey Wolf Optimizer

	3 Cooperation of Algorithms
	4 Experiments and Results
	5 Conclusion

