
Transferable Knowledge in P Colonies
Lucie Ciencialová1, Luděk Cienciala1

1Institute of Computer Science and Research Institute of the IT4Innovations Centre of Excellence, Silesian University in Opava, Opava, Czech
Republic

Abstract
In this paper we introduce the notion of transferable programs as shared knowledge applied in different types of P colonies.
We will discuss the basic type of P colonies and 2D P colonies. We will show the possibilities of using transferable programs
using examples.

Keywords
membrane computing, P colonies, transferable knowledge, paralell computing, multi-agent system

1. Introduction
P colony is very simple computational device related to
membrane systems inspired by colonies of formal gram-
mars. Since 2004, when P colonies were introduced in
[1], many types of these systems have been developed.
Basically, these are P colonies with different restrictions
on the type of programs used (restricted, homogeneous)
or working with an environment that is not only in the
form of a multiset, but also a string or a 2D grid. Even P
colonies whose environment changes dynamically have
been introduced. The interested reader is referred to [2]
for detailed information on membrane systems (P sys-
tems) and to [3] and [4] for more information to grammar
systems theory. For more details on P colonies consult
the surveys [5] and [6].

A basic P colony consists of a finite number of agents
and their joint shared environment. The agents are
formed from a finite number of objects and their func-
tioning is based on programs consisting of rules. These
rules are of two types: they may change the objects of
the agents and they can be used for interacting with the
shared environment of the agents. In the case of a ba-
sic P colony, the environment is a multiset of objects.
The number of objects inside each agent is set by defi-
nition and it is usually a very small number: 1, 2 or 3.
The environment is processed by the agents and it is
used as a communication channel for the agents as well
since through the environment, the agents can affect the
behaviour of another agent.

The idea of shared knowledge lies in transferable pro-
grams. These are programs that are equipped with a
condition that, when satisfied, allows the program to
be transferred to the agent’s program set or, conversely,

ITAT’22: Information technologies – Applications and Theory, Septem-
ber 23–27, 2022, Zuberec, Slovakia
" lucie.ciencialova@fpf.slu.cz (L. Ciencialová);
ludek.cienciala@fpf.slu.cz (L. Cienciala)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

from this set to the environment.
The agent’s program set consists of two kinds of pro-

grams.
The first type can be named internal programs. These

are the agent’s essential programs and cannot be shared.
This does not mean that such programs are unique in the
P colony. They can be such acts of the agent that can
be compared to the basic acts of living organisms such
as respiration, digestion, and perception. Thus, they are
functions that the organism knows by definition, does not
have to learn, and cannot be taught to other organisms.

The second type, called transferable, is the opposite
of the first type. It is the knowledge and abilities of an
agent that can be shared with the environment under
certain conditions.

The environment may also contain transferable pro-
grams. These are programs that allow agents to perform
activities they did not know how to do - their program set
did not contain such programs. These can be instructions
on how to use various devices present in the environment,
instructions contained in someone else’s DNA, etc.

The paper is structured as follows: after the introduc-
tory section introducing readers to preliminaries and
basic notions, there is a section on basic P colonies and
their extension to transferable programs. The fourth
section is devoted to shared programs in a 2D P colony
environment. In conclusion, we summarize the content
of the paper and outline future research goals for the
behaviour of P colonies.

2. Preliminaries and Basic Notions
Throughout the paper we assume the reader to be famil-
iar with the basics of the formal language theory and
membrane computing [7, 2].

For an alphabet Σ, the set of all words over Σ (includ-
ing the empty word, 𝜀), is denoted by Σ*. We denote
the length of a word 𝑤 ∈ Σ* by |𝑤| and the number
of occurrences of the symbol 𝑎 ∈ Σ in 𝑤 by |𝑤|𝑎.

mailto:lucie.ciencialova@fpf.slu.cz
mailto:ludek.cienciala@fpf.slu.cz
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

A multiset of objects 𝑀 is a pair 𝑀 = (𝑂, 𝑓), where
𝑂 is an arbitrary (not necessarily finite) set of objects and
𝑓 is a mapping 𝑓 : 𝑂 → 𝑁 ; 𝑓 assigns to each object in 𝑂
its multiplicity in 𝑀 . Any multiset of objects 𝑀 with the
set of objects 𝑂 = {𝑥1, . . . 𝑥𝑛} can be represented as
a string 𝑤 over alphabet 𝑂 with |𝑤|𝑥𝑖

= 𝑓(𝑥𝑖); 1 ≤ 𝑖 ≤
𝑛. Obviously, all words obtained from 𝑤 by permuting
the letters can also represent the same multiset 𝑀 , and
𝜀 represents the empty multiset.

3. Basic P colonies
The original concept of a P colony was introduced in [1]
and presented in a developed form in [8, 9].

Definition 1. A P colony of capacity 𝑘, 𝑘 ≥ 1, is a con-
struct

Π = (𝐴, 𝑒, 𝑓, 𝑣𝐸 , 𝐵1, . . . , 𝐵𝑛), where

• 𝐴 is an alphabet, its elements are called objects;
• 𝑒 ∈ 𝐴 is the basic (or environmental) object of the

colony;
• 𝑓 ∈ 𝐴 is the final object of the colony;
• 𝑣𝐸 is a finite multiset over 𝐴 − {𝑒}, called the

initial state (or initial content) of the environment;
• 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑛, are agents, where each agent
𝐵𝑖 = (𝑜𝑖, 𝑃𝑖) is defined as follows:

– 𝑜𝑖 is a multiset over𝐴 consisting of 𝑘 objects,
the initial state (or the initial content) of the
agent;

– 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑘𝑖} is a finite set of pro-
grams, where each program consists of 𝑘
rules, which are in one of the following forms
each:

∗ 𝑎 → 𝑏, 𝑎, 𝑏 ∈ 𝐴, called an evolution
rule;

∗ 𝑐 ↔ 𝑑, 𝑐, 𝑑 ∈ 𝐴, called a communi-
cation rule;

∗ 𝑟1/𝑟2, called a checking rule; 𝑟1, 𝑟2
are both evolution rules or both com-
munication rules.

Now, we add brief explanations of the components of
the P colony.

The first type of rules associated with the programs
of the agents, the evolution rules, are of the form 𝑎 → 𝑏.
This means that object 𝑎 inside the agent is rewritten to
(evolved to be) object 𝑏.

The second type of rules, the communication rules, are
of the form 𝑐 ↔ 𝑑. If a communication rule is performed,
then object 𝑐 inside the agent and object 𝑑 in the envi-
ronment swap their location. Thus, after executing the
rule, object 𝑑 appears inside the agent and object 𝑐 is
located in the environment.

The third type of rules is the checking rule. A checking
rule is formed from two rules of one of the two previous
types. If a checking rule 𝑟1/𝑟2 is performed, then the rule
𝑟1 has higher priority to be executed over the rule 𝑟2.
This means that the agent checks whether or not rule
𝑟1 is applicable. If the rule can be executed, then the
agent must use this rule. If rule 𝑟1 cannot be applied,
then the agent uses rule 𝑟2.

The program determines the activity of the agent: the
agent can change its state and/or the state of the envi-
ronment.

The environment is represented by a finite number
of copies of non-environmental objects and countably
infinite copies of the environmental object 𝑒.

In every step, each object inside an agent is affected
by the execution of a program. Depending on the rules
in the program, the program execution may affect the
environment as well.

The functioning of the P colony starts from its initial
configuration (initial state).

The initial configuration of a P colony is an (𝑛 + 1)-
tuple of multisets of objects present in the P colony at the
beginning of the computation. It is given by the multisets
𝑜𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and by multiset 𝑣𝐸 . Formally, the config-
uration of the P colony Π is given by (𝑤1, . . . , 𝑤𝑛, 𝑤𝐸),
where |𝑤𝑖| = 𝑘, 1 ≤ 𝑖 ≤ 𝑛, 𝑤𝑖 represents all the ob-
jects present inside the 𝑖-th agent, and 𝑤𝐸 ∈ (𝐴−{𝑒})*
represents all the objects in the environment different
from the object 𝑒.

At each step of the computation (at each transition), the
state of the environment and that of the agents change in
the following manner: In the maximally parallel deriva-
tion mode, each agent which can use any of its pro-
grams should use one (non-deterministically chosen),
whereas, in the sequential derivation mode, only one
agent at a time is allowed to use one of its programs (non-
deterministically chosen). If the number of applicable
programs for an agent is higher than one, then the agent
non-deterministically chooses one of the programs.

A sequence of transitions is named a computation.
A computation is halting if in the last configuration that
is obtained there is no program that can be applied. With
a halting computation, we associate a result which is
given as the number of copies of the objects 𝑓 present in
the environment in the halting configuration.

Because of the non-determinism in choosing the pro-
grams, starting from the initial configuration we obtain
several computations, hence, with a P colony, we can
associate a set of numbers, denoted by 𝑁(Π), computed
by all possible halting computations of given P colony.

In the original model (see [1]) the number of objects
inside each agent is set to two, and the programs were
formed from only two rules. Moreover, the initial config-
uration was defined as (𝑛+ 1)-tuple (𝑒𝑒, . . . , 𝑒𝑒, 𝜀) so
at the beginning of the computation the environment of

the P colony is “empty”, it is without input information.
Although P colonies are very simple computing de-

vices, due to their (mainly parallel) working mode and
distributed nature they demonstrate large expressive
(computational) power. In most cases, computational
completeness can be obtained with these constructs even
with very few components and very few restrictions on
the programs.

3.1. P Colonies with transferable
programs

In this section, we focus on the definition of transfer-
able programs. Under what conditions can a program be
transferred into an agent, and under what conditions can
an agent transfer a program into an environment?

A transferable program is an ordered pair (program,
condition). We distinguish two kinds of conditions: 1.
Object condition - for a program to be transferred, the
destination must contain (or must not content) certain
objects. A condition is specified as a set of multisets of
objects. Each of the multisets has a size equal to the
capacity P of the colony. 2. program condition - for a
program to be transferred, the destination must contain
(or not contain) a certain program.

Let Π be a P colony of capacity 2 with one agent and
working with objects 𝑎, 𝑏, 𝑒, 𝑓 . Examples of transferable
programs are:

• (⟨𝑎 → 𝑏; 𝑎 ↔ 𝑒⟩ ; {𝑎𝑎}) – when such program
is placed in the environment an agent can con-
sume it only if it contains two copies of object 𝑎;
when such a program is placed in the agent it can
be transferred into environment only if the en-
vironment contains at least two copies of object
𝑎;

• (⟨𝑎 → 𝑏; 𝑎 ↔ 𝑒⟩ ; {¬𝑒𝑒,¬𝑏𝑒}) – when such
program is placed in the environment an agent
can consume it only if it does not contain two
copies of object 𝑒 or one object 𝑏 and one object
𝑒; such a program cannot be transferred into the
environment. The conditions can never be met,
the environment always contains environmental
objects.

• (⟨𝑎 → 𝑏; 𝑎 ↔ 𝑒⟩ ; {⟨𝑒 → 𝑎; 𝑒 ↔ 𝑎⟩}) – this
program can only be moved if program
⟨𝑒 → 𝑎; 𝑒 ↔ 𝑎⟩ is contained inside the recipient
(in its program set if it is an agent, or directly in
the environment if the program is to be moved
there)

We call a transferable program (program; condition)
permanent (denoted by the 𝑝 in the subscript) if each time
the program is moved to a different destination, one copy
of the program remains at the original location.

Such programs can be considered knowledge sources
(and in some cases object sources). Permanent transfer-
able programs may allow an agent to produce an object
that does not exist in the environment and that the agent
could not otherwise obtain before getting the program.

Initial content of the environment is now defined as
multiset over 𝐴 ∪ {set of transferable programs }.

Using transferable programs within a computation – In
every step of a computation an agent can apply one of
its applicable programs or transfer program in or out. It
means that moving a program takes one step of compu-
tation as well as applying the program.

Example 1. Let Π1 be a P colony with one agent whose
environment is a workshop with machines that enable the
processing of the product. If the agent has (contains) raw
materials that the machine can process, then the agent
uses the machine. That is, it obtains a program from the
environment that allows it to process the raw materials.

P colony Π1 =
(︁
𝐴, 𝑒, tp , 𝑣𝑒, 𝐵

)︁
is defined as follows:

𝐴 = { pow piece of wood,

p paint,

4n four nuts,

s-b double ended screw bolt,

l leg,

lh leg with hole,

lc complete leg,

tt table top,

tth table top with holes,

ttn table top with nuts,

tt1l table top with 1 leg,

tt2l table top with 2 legs,

tt3l table top with 3 legs,

tc complete table,

ts sanded table,

tp painted table,

𝑒 }
𝑣𝑒 = pow pow pow pow pow 4n p s-b

s-b s-b s-b(︁⟨
pow → tt , 𝑒 ↔ 𝑒

⟩
, { pow 𝑒}

)︁
saw(︁⟨

pow → l , 𝑒 ↔ 𝑒
⟩
, { pow 𝑒}

)︁
wood lathe(︁⟨

tt → tth , 𝑒 ↔ 𝑒
⟩
, { tt 𝑒}

)︁
drill(︁⟨

l → lh , 𝑒 ↔ 𝑒
⟩
, { l 𝑒}

)︁
drill(︀⟨︀

tc → ts , 𝑒 ↔ 𝑒
⟩︀
, { tc 𝑒}

)︀
angle grinder(︁⟨

ts → tp , 𝑝 → 𝑒
⟩
, { ts 𝑝}

)︁
paint spray gun

Agent 𝐵 is in the initial state 𝑒𝑒 and its set of programs
is formed from its ability to work with or without hand
tools:
𝑃 = {⟨
𝑒 ↔ pow , 𝑒 ↔ 𝑒

⟩
, take a piece of wood⟨

lh → lh , 𝑒 ↔ s-b
⟩
, take a screw bolt⟨

lh → lc , s-b → 𝑒
⟩
, mount the screw bolt⟨

lc ↔, 𝑒 ↔ 𝑒
⟩
, put down complete leg⟨

tth → tth , 𝑒 ↔ 4n
⟩
, take four nuts⟨

tth ↔ ttn , 4n → 𝑒
⟩
, put nuts on the holes⟨

𝑒 ↔ ttn , 𝑒 ↔ lc
⟩
, take the table top

and complete leg⟨
ttn ↔ tt1l , lc → 𝑒

⟩
,mount the complete leg

on the table top⟨
tt1l ↔ 𝑒, 𝑒 ↔ 𝑒

⟩
, put down the table top

with one leg⟨
𝑒 ↔ tt1l , 𝑒 ↔ lc

⟩
, take the table top with leg

and the second complete leg⟨
tt1l ↔ tt2l , lc → 𝑒

⟩
, mount the second leg

on the table top⟨
tt2l ↔ 𝑒, 𝑒 ↔ 𝑒

⟩
, put down the table top

with two legs⟨
𝑒 ↔ tt2l , 𝑒 ↔ lc

⟩
, take the table top with

2 legs and the second complete leg⟨
tt2l ↔ tt3l , lc → 𝑒

⟩
, mount the third leg

on the table top⟨
tt3l ↔ 𝑒, 𝑒 ↔ 𝑒

⟩
, put down the table top

with three legs⟨
𝑒 ↔ tt3l , 𝑒 ↔ lc

⟩
, take the table top

and the third complete leg⟨
tt3l ↔ tc , lc → 𝑒

⟩
, mount the fourth leg

on the table top⟨︀
ts → ts , 𝑒 ↔ 𝑝

⟩︀
, take the paint⟨

tp ↔ 𝑒, 𝑒 ↔ 𝑒
⟩
, put down the painted table

}
The P colony starts an computation with all supplies

in the environment. Agent contents two environmental
objects. In this configuration agent can use only one
program. This program allow it to consume one piece of
wood.

(𝑒𝑒)

⟨
𝑒↔ pow ,𝑒↔𝑒

⟩
−−−−−−−−−−−→

(︁
pow 𝑒

)︁
The agent himself can’t process a piece of marrow.

There are two programs in the environment that (if the
agent contains a piece of wood) can be transferred to the

agent. These programs allow the agent to process pieces
of wood into a table top or leg. we can imagine that the
agent, by transferring the program, "picks up" a saw or
uses a wood lathe.(︁

pow 𝑒
)︁ import
−−−−−−−−−−−−−−−−−−−−−−→(︂⟨

pow → tt ,𝑒↔𝑒

⟩
,{ pow 𝑒}

)︂
(︁

pow 𝑒
)︁

Now the agent can use this program to make the table
top from piece of wood.

(︁
pow 𝑒

)︁ (︂⟨
pow → tt ,𝑒↔𝑒

⟩
,{ pow 𝑒}

)︂
−−−−−−−−−−−−−−−−−−−−−−→

(︀
tt 𝑒

)︀
Because of non-determinism the agent can import the

second transferable program instead of using the first one.
In the next step, the agent can import a new program from
the environment that allows it to drill holes in the table
top. In the next step, the agent use imported program
and then the agent move the table top with holes into
the environment.(︀

tt 𝑒
)︀ import
−−−−−−−−−−−−−−−−−−−−→(︂⟨

tt → tth ,𝑒↔𝑒

⟩
,{ tt 𝑒}

)︂ (︀
tt 𝑒

)︀
(︀

tt 𝑒
)︀ (︂⟨

tt → tth ,𝑒↔𝑒

⟩
,{ tt 𝑒}

)︂
−−−−−−−−−−−−−−−−−−−−→

(︁
tth 𝑒

)︁
(︁

tth 𝑒
)︁ ⟨

tth ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−−→ (𝑒𝑒)

Now, the agent is prepared for processing another
piece of wood or mounting the nuts into the holes in the
table top. The next scheme shows nuts assembly to the
table top with holes.

(𝑒𝑒)

⟨
𝑒↔ tth ,𝑒↔ 4n

⟩
−−−−−−−−−−−−−→

(︁
tth 4n

)︁
(︁

tth 4n
)︁ ⟨

tth → ttn , 4n →𝑒

⟩
−−−−−−−−−−−−−−−−→

(︀
ttn 𝑒

)︀
(︀

ttn 𝑒
)︀ ⟨

ttn ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−−→ (𝑒𝑒)

The leg production is similar to the table top produc-
tion. The agent consumes a piece of wood, imports pro-
gram for leg making using wood lathe and changes the
piece of wood into the table leg. Then the agent import
program for hole making with drill and by applying it
the agent obtain leg with hole. Then agent put the leg to
the environment and consume it together with double
ended screw bolt to assembly screw to hole in the leg.
The agent can put complete leg into environment.(︁

pow 𝑒
)︁ import
−−−−−−−−−−−−−−−−−−−−−−→(︂⟨

pow → l ,𝑒↔𝑒

⟩
,{ pow 𝑒}

)︂
(︁

pow 𝑒
)︁

(︁
pow 𝑒

)︁ (︂⟨
pow → l ,𝑒↔𝑒

⟩
,{ pow 𝑒}

)︂
−−−−−−−−−−−−−−−−−−−−−−→

(︁
l 𝑒

)︁
(︁

l 𝑒
)︁ import
−−−−−−−−−−−−−−−−−−→(︂⟨

l → lh ,𝑒↔𝑒

⟩
,{ l 𝑒}

)︂
(︁

l 𝑒
)︁

(︁
l 𝑒

)︁ (︂⟨
l → lh ,𝑒↔𝑒

⟩
,{ l 𝑒}

)︂
−−−−−−−−−−−−−−−−−−→

(︁
lh 𝑒

)︁
(︁

lh 𝑒
)︁ ⟨

lh ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−→ (𝑒𝑒)

(𝑒𝑒)

⟨
𝑒↔ lh ,𝑒↔ s-b

⟩
−−−−−−−−−−−−−→

(︁
lh s-b

)︁
(︁

lh s-b
)︁ ⟨

lh → lc , s-b →𝑒

⟩
−−−−−−−−−−−−−−−→

(︁
lc 𝑒

)︁
(︁

lc 𝑒
)︁ ⟨

lc ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−→ (𝑒𝑒)

The agent can make the legs and the table tops up to
a total quantity of five. Only such computations where
agents makes one table top and four legs leads to success-
ful end - production of one painted table.

(𝑒𝑒)

⟨
𝑒↔ ttn ,𝑒↔ lc

⟩
−−−−−−−−−−−−−→

(︁
ttn lc

)︁
(︁

ttn lc
)︁ ⟨

ttn → tt1l , lc →𝑒

⟩
−−−−−−−−−−−−−−−−→

(︁
tt1l 𝑒

)︁
(︁

tt1l 𝑒
)︁ ⟨

tt1l ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−−→ (𝑒𝑒)

(𝑒𝑒)

⟨
𝑒↔ tt1l ,𝑒↔ lc

⟩
−−−−−−−−−−−−−→

(︁
tt1l lc

)︁
(︁

tt1l lc
)︁ ⟨

tt1l → tt2l , lc →𝑒

⟩
−−−−−−−−−−−−−−−−→

(︁
tt2l 𝑒

)︁
(︁

tt2l 𝑒
)︁ ⟨

tt2l ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−−→ (𝑒𝑒)

(𝑒𝑒)

⟨
𝑒↔ tt2l ,𝑒↔ lc

⟩
−−−−−−−−−−−−−→

(︁
tt2l lc

)︁
(︁

tt2l lc
)︁ ⟨

tt2l → tt3l , lc →𝑒

⟩
−−−−−−−−−−−−−−−−→

(︁
tt3l 𝑒

)︁
(︁

tt3l 𝑒
)︁ ⟨

tt3l ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−−→ (𝑒𝑒)

(𝑒𝑒)

⟨
𝑒↔ tt3l ,𝑒↔ lc

⟩
−−−−−−−−−−−−−→

(︁
tt3l lc

)︁
(︁

tt3l lc
)︁ ⟨

tt3l → ttc , lc →𝑒

⟩
−−−−−−−−−−−−−−−→

(︀
ttc 𝑒

)︀
During the computation, the agent can export pro-

grams that allow the processing of a piece of wood - if
there is a piece of wood in the environment the program
can be transferred. After processing the last piece of
wood, the program remains in the agent’s set of pro-
grams.

When the agent contains the complete table, it can
import program that allows agent to use angle grinder
and proceed from the complete table to the sanded table.
Then the agent can take the paint and import the last
program to spray the table with paint using a paint spray
gun.

(︀
tc 𝑒

)︀ import
−−−−−−−−−−−−−−−−−−−→(︂⟨

tc → ts ,𝑒↔𝑒

⟩
,{ tc 𝑒}

)︂ (︀
tc 𝑒

)︀
(︀

tc 𝑒
)︀ (︂⟨

tc → ts ,𝑒↔𝑒

⟩
,{ tc 𝑒}

)︂
−−−−−−−−−−−−−−−−−−−→

(︀
ts 𝑒

)︀
(︀

ts 𝑒
)︀ ⟨

ts → ts ,𝑒↔𝑝

⟩
−−−−−−−−−−−−→ (𝑒𝑒)(︀

ts 𝑝
)︀ import
−−−−−−−−−−−−−−−−−−−−→(︂⟨

ts → tp ,𝑝→𝑒

⟩
,{ ts 𝑒}

)︂ (︀
ts 𝑒

)︀
(︀

ts 𝑒
)︀ (︂⟨

ts → tp ,𝑝→𝑒

⟩
,{ ts 𝑒}

)︂
−−−−−−−−−−−−−−−−−−−−→

(︁
tp 𝑒

)︁
The last executed program is to put painted table into

environment.

(︁
tp 𝑒

)︁ ⟨
tp ↔𝑒,𝑒↔𝑒

⟩
−−−−−−−−−−→

(︀
e 𝑒

)︀
If we add a special object to the environment, which

will be part of the condition for transfer in all transferable
programs, the agent can end computation only when it
"returns" all transferred programs back to the environ-
ment.

4. 2D P Colonies
In [10] a new model, called 2D P colony was introduced.
As in the original model, the P colony is of capacity two
and the agents are equipped with sets of the programs
formed from rules – communication and evolution. The
main change is in the environment. The authors put the
agents into the 2D grid of square cells and they provide

the agent with the possibility to move – the motion pro-
gram. The direction of the movement of the agent is
determined by the contents of cells surrounding the cell
in which the agent is placed. The motion program can
contain one motion rule and one evolution rule.

Definition 2. A 2D P colony is a construct

Π = (𝐴, 𝑒,𝐸𝑛𝑣,𝐵1, . . . , 𝐵𝑘, 𝑓), 𝑘 ≥ 1, where

• 𝐴 is an alphabet of the colony, its elements are
called objects,

• 𝑒 ∈ 𝐴 is the basic environmental object of the 2D
P colony,

• 𝐸𝑛𝑣 is a pair (𝑚×𝑛,𝑤𝐸), where 𝑚×𝑛,𝑚, 𝑛 ∈
𝑁 is the size of the environment and 𝑤𝐸 is the
initial contents of environment, it is a matrix of
size 𝑚× 𝑛 of multisets of objects over 𝐴− {𝑒}.

• 𝐵𝑖, 1 ≤ 𝑖 ≤ 𝑘, are agents, each agent is a con-
struct 𝐵𝑖 = (𝑜𝑖, 𝑃𝑖, [𝑜, 𝑝]) , 0 ≤ 𝑜 ≤ 𝑚, 0 ≤
𝑝 ≤ 𝑛, where

– 𝑜𝑖 is a multiset over 𝐴, it determines the
initial state (contents) of the agent, |𝑜𝑖| = 2,

– 𝑃𝑖 = {𝑝𝑖,1, . . . , 𝑝𝑖,𝑙𝑖} , 𝑙 ≥ 1, 1 ≤ 𝑖 ≤
𝑘 is a finite set of programs, where each
program contains exactly 2 rules, which are
in one of the following forms each:

∗ 𝑎 → 𝑏, called the evolution rule,
𝑎, 𝑏 ∈ 𝐴,

∗ 𝑐 ↔ 𝑑, called the communication rule,
𝑐, 𝑑 ∈ 𝐴,

∗ [𝑎𝑞,𝑟] → 𝑠, 0 ≤ 𝑞, 𝑟 ≤ 2, 𝑠 ∈ {⇐
,⇒,⇑,⇓}, called the motion rule,

• 𝑓 ∈ 𝐴 is the final object of the colony.

A configuration of the 2D P colony is given by the state
of the environment - matrix of type 𝑚×𝑛 with multisets
of objects over 𝐴− {𝑒} as its elements, and by the state
of all agents - pairs of objects from alphabet 𝐴 and the
coordinates of the agents. An initial configuration is
given by the definition of the 2D P colony.

A computational step consists of three parts. The first
part lies in determining the set of applicable programs
according to the current configuration of the 2D P colony.
In the second part, we have to select from this set one
program for each agent, in such a way that there is no
collision between the communication rules belonging to
different programs. The third part is the execution of the
chosen programs.

A change of the configuration is triggered by the exe-
cution of programs and it involves changing the state of
the environment, contents and placement of the agents.

A computation is non-deterministic and maximally
parallel. The computation ends by halting when there is
no agent with applicable program.

The result of the computation is the number of copies
of the final object placed in the environment at the end
of the computation.

The aim of introducing 2D P colonies is not study-
ing their computational power but monitoring their be-
haviour during the computation.

4.1. 2D P Colonies with transferable
programs

We can introduce transferable programs into 2D P
colonies model.

Aspects of transferable programs composed of evo-
lutionary and communication rules have already been
mentioned in the previous section.

A transferable motion program can upgrade an
agent’s motion capabilities. For example, an agent
that previously could only move in one direction
now has the ability to move left, right, or backwards.
The agent’s program⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ → ⇑; 𝑎 → 𝑎

⟩

The transferred program⟨⎡⎣ 𝑒 𝑒 𝑒
𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇐; 𝑎 → 𝑎

⟩

If the agent had any restrictions in the original mo-
tion programs under which it could move in a certain
direction, these restrictions can be changed. For example,
if the agent could only move to the left if there was an
object 𝐿 on the left, then after importing the program, it
will also be able to move to the left if there is an object
𝑇 to the left of the agent. The agent’s program⟨⎡⎣ 𝑒 𝑒 𝑒

𝐿 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇐; 𝑎 → 𝑎

⟩

The transferred program⟨⎡⎣ 𝑒 𝑒 𝑒
𝑇 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇐; 𝑎 → 𝑎

⟩

Similarly, constraints can be imposed on the agent’s
content. The agent may be given "one-time permission"
to turn left in the form of object 𝐿, which it will be able
to rewrite 𝐿 to another object while according to the
agent’s movement rule agent moves left.

The transferred program⟨⎡⎣ 𝑒 𝑒 𝑒
𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇐; 𝐿 → 𝑎

⟩

Example 2. Consider a 2D P colony with two agents
Π2 = (𝐴, 𝑒,𝐸𝑛𝑣,𝐵1, 𝐵2, 𝑓). The first agent can move
around the environment and spread the transferable pro-
gram allowing the agent to consume slave object. The
second agent’s programs allows the agent to move only if
slave object is inside the agent. If the second agent enters
special position in the environment it can import a program
that enables the agent to make its own object 𝑠. The agent
that imports such a program will then not have to follow
the first agent.

The environment has a size 5 × 5 and each cell con-
tains only environmental objects except for the cell with
address [4, 4], which also contains transferable program

(⟨𝑒 → 𝑠; 𝑒 → 𝑒⟩ , {𝑒𝑒}) .

The first agent 𝐵1 = (𝑒𝐹, 𝑃1, [0, 0]) has a set of pro-
grams 𝑃1 that include the following programs:

(⟨𝑒 → 𝑒; 𝑒 ↔ 𝑠⟩ , {𝑒𝑒})𝑝⟨⎡⎣ 𝑒 𝑒 𝑒
𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇒; 𝐹 → 𝑠

⟩
⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇐; 𝐹 → 𝑠

⟩
⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ → ⇑; 𝐹 → 𝑠

⟩
⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ → ⇓; 𝐹 → 𝑠

⟩
⟨𝑒 → 𝐹 ; 𝑠 ↔ 𝑒⟩

The first agent 𝐵2 is defined as (𝑒𝑒, 𝑃2, [2, 2]). Its set
of programs is formed by following programs:⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇒; 𝑠 → 𝑒

⟩
⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ →⇐; 𝑠 → 𝑒

⟩
⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ → ⇑; 𝑠 → 𝑒

⟩
⟨⎡⎣ 𝑒 𝑒 𝑒

𝑒 𝑒 𝑒
𝑒 𝑒 𝑒

⎤⎦ → ⇓; 𝑠 → 𝑒

⟩

The first agent starts the computation in the state 𝑒𝐹
with two options - 1. export the transferable program,

or 2. apply one of the motion programs. Executing
the motion program changes the agent’s position and
also changes its state to 𝑒𝑠. In the following step, the
agent can also export a program or apply a program
⟨𝑒 → 𝐹 ; 𝑠 ↔ 𝑒⟩. By executing the program, the agent
places the slave object 𝑠 in the cell and changes its state
to 𝑒𝐹 .

The second agent is in state 𝑒𝑒 at the beginning of the
computation. It has no applicable program until the first
agent visits its position and places transferable program
(⟨𝑒 → 𝑒; 𝑒 ↔ 𝑠⟩ , {𝑒𝑒}) there. Thus, the movement of
agent 𝐵2 is thus dependent on this program and the
presence of object 𝑠 in the environment.

If agent 𝐵2 reaches cell [4, 4] during the computation,
it can import a program whose application can evolve
object 𝑠 from the environmental object and thus becomes
independent of the presence of object 𝑠 in the environ-
ment.

Example 3. Imagine a student moving within the school
building to acquire the necessary knowledge and pass an
exam. We can simulate such a situation by using a 2D P
colony.

The single cells of the 2D environment represent parts
of a school building (or multiple buildings) such as class-
rooms, laboratories, libraries, teachers’ offices, etc. The
student’s goal is to obtain a grade in the course (object 𝑀
- mark). At the beginning of the computation, agent – stu-
dent can contain either only environmental symbols or
also an object that expresses his intention to successfully
complete the course (object 𝑚). Its movement through
environment can be random (the agent can use any of
movement program, it can move in any direction)

There may be other agents in the environment such
as teachers who will move from their office to the class-
room or lab and back again. If they encounter a student
in these rooms (the student places their marker in the
environment), they can provide a program that allows
the student to advance closer to obtaining the 𝑀 object.
Let to get the grade require attending a class, gaining
knowledge by studying in the library and lab, and finally
passing an exam. Thus, object 𝑚 can be acquired over
time by a subscript that captures the facts of the actions
taken (T - teacher, L - library, A - lab, C - consultation).
We can determine under which conditions it is possible
to change the index just with the help of transferable
programs that are available in different rooms - cells.

We leave it to the esteemed reader to construct partic-
ular programs for student and teacher.

5. Conclusion
In this paper we introduced the notion of transferable
programs in two models of P colonies - basic P colonies

and 2D P colonies. One of the main features of P colonies
is the use of environment agents to store shared objects.
Thus, objects can be used by all agents that are in a given
part of the environment and know how to handle the
object (have programs that process the object). Transfer-
able programs allow not only to share objects, but also
to share the ability to handle these objects.

Our goal for the future is to introduce a type of numer-
ical P colony with transferable programs, whose agents
would acquire their abilities by moving around in an en-
vironment that has a specified structure. Agents in such
a P colony would perform search algorithms known, for
example, from graph theory.

Acknowledgments
This work was supported partially by European Union
under European Structural and Investment Funds Opera-
tional Programme Research, Development and Education
project Zvýšení kvality vzdělávání na Slezské univerzitě
v Opavě ve vazbě na potřeby Moravskoslezského kraje,
CZ.02.2.69/0.0/0.0/18_058/0010238 and by the Silesian
University in Opava under the Student Funding Scheme,
project SGS/8/2022.

References
[1] J. Kelemen, A. Kelemenová, Gh. Păun, Preview of

P colonies: A biochemically inspired computing
model, in: Workshop and Tutorial Proceedings.
Ninth International Conference on the Simulation
and Synthesis of Living Systems (Alife IX), Boston,
Massachusetts, USA, 2004, pp. 82–86.

[2] Gh. Păun, G. Rozenberg, A. Salomaa, The Oxford
Handbook of Membrane Computing, Oxford Uni-
versity Press, Inc., New York, NY, USA, 2010.

[3] J. Kelemen, A. Kelemenová, A grammar-
theoretic treatment of multiagent systems, Cy-
bern. Syst. 23 (1992) 621–633. doi:10.1080/
01969729208927485.

[4] E. Csuhaj-Varjú, J. Kelemen, Gh. Păun, J. Dassow,
Grammar Systems: A Grammatical Approach to
Distribution and Cooperation, 1st ed., Gordon and
Breach Science Publishers, Inc., USA, 1994.

[5] A. Kelemenová, P Colonies, in: Gh. Păun, G. Rozen-
berg, A. Salomaa (Eds.), The Oxford Handbook of
Membrane Computing, 1st. ed., Oxford University
Press, Inc., New York, NY, USA, 2010, pp. 584–593.

[6] L. Ciencialová, E. Csuhaj-Varjú, L. Cienciala,
P. Sosík, P colonies, Journal of Membrane
Computing 1 (2019) 178–197. URL: https://doi.
org/10.1007/s41965-019-00019-w. doi:10.1007/
s41965-019-00019-w.

[7] G. Rozenberg, A. Salomaa, Handbook of Formal
Languages: Beyonds words, Handbook of For-
mal Languages, Springer, 1997. URL: https://books.
google.hu/books?id=voLFxNxAHdkC.

[8] J. Kelemen, A. Kelemenová, On P colonies, a bio-
chemically inspired model of computation, in:
Proc. of the 6𝑡ℎ International Symposium of Hun-
garian Researchers on Computational Intelligence,
Budapest TECH, Hungary, 2005, pp. 40–56. URL:
http://conf.uni-obuda.hu/mtn2005/Kelemen.pdf.

[9] E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová,
Gh. Păun, Gy. Vaszil, Computing with cells in en-
vironment: P colonies, Journal of Multiple-Valued
Logic and Soft Computing 12 (2006) 201–215.

[10] L. Cienciala, L. Ciencialová, M. Perdek, 2D
P Colonies, in: Proceedings of the 13th
International Conference on Membrane Com-
puting, CMC’12, Springer-Verlag, Berlin, Hei-
delberg, 2012, p. 161–172. URL: https://doi.
org/10.1007/978-3-642-36751-9_12. doi:10.1007/
978-3-642-36751-9_12.

http://dx.doi.org/10.1080/01969729208927485
http://dx.doi.org/10.1080/01969729208927485
https://doi.org/10.1007/s41965-019-00019-w
https://doi.org/10.1007/s41965-019-00019-w
http://dx.doi.org/10.1007/s41965-019-00019-w
http://dx.doi.org/10.1007/s41965-019-00019-w
https://books.google.hu/books?id=voLFxNxAHdkC
https://books.google.hu/books?id=voLFxNxAHdkC
http://conf.uni-obuda.hu/mtn2005/Kelemen.pdf
https://doi.org/10.1007/978-3-642-36751-9_12
https://doi.org/10.1007/978-3-642-36751-9_12
http://dx.doi.org/10.1007/978-3-642-36751-9_12
http://dx.doi.org/10.1007/978-3-642-36751-9_12

	1 Introduction
	2 Preliminaries and Basic Notions
	3 Basic P colonies
	3.1 P Colonies with transferable programs

	4 2D P Colonies
	4.1 2D P Colonies with transferable programs

	5 Conclusion

