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Abstract
While we have seen considerable progress in learning rule-based theories in the past years, all state-of-the-art rule learners
still learn descriptions that directly relate the input features to the target concept. However, the limitation of learning
concepts in this shallow disjunctive normal form (DNF) may not necessarily lead to the desired models. In this paper, we
investigate a novel search strategy that uses conjunctions and disjunctions of individuals as its elementary operators, which
are successively combined to deep rule structures with intermediate concepts. We make use of efficient data structures known
from association rule mining, which can efficiently summarize counts of conjunctive expressions, and expand them to handle
disjunctive expressions as well. The resulting rule concepts develop over multiple generations and consist of arbitrary, deep
combinations of conjunctions and disjunctions. The behavior of this algorithm is evaluated on a benchmark task from the
domain of poker. A comparison to other rule learning algorithms shows that, while it is not generally competitive, it has some
interesting properties, such as finding more compact and better generalizing models, that cannot be found in conventional
rule learning algorithms.
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1. Introduction
Traditional rule learning algorithms usually learn models
that directly relate input features to the output class.
This approach works well for most benchmark datasets,
however, there are also datasets where it comes to its
limits. One such case is the poker-dataset, where the task
is to learn to identify the quantitative value (pair, full
house, straight, etc.) of a hand of five cards. Every card is
defined by a unique combination of a suit (clubs, spades,
hearts, diamonds) and a rank (ace, 2, 3, ..., queen, king).
For example, the class one pair includes hands where two
of the five cards have the same rank and the remaining
three cards a different one. Already this task of detecting
one pair is particularly difficult for a rule learner, because,
in order to make a correct classification, it essentially has
to enumerate all possible card combinations (card 1 and
2, card 1 and 3, ..., card 4 and 5), for every rank (ace, 2, 3,
..., queen, king). Advanced concepts based on this pair
concept, like two pairs or full house, are even harder to
learn, so that on the full poker-dataset the state-of-the-
art rule learner Ripper only achieves a little more than
50% accuracy, which can already be reached by simply
predicting the most frequent class nothing in hand that
covers 50% of the data as well. Even in an adapted binary
version of the poker-dataset, where the only classes are
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pair and no pair, Ripper gets stuck at 70% accuracy since
it is not able to generalize to pairs that it has not seen
during training.

In this paper, we make first steps towards tackling
this problem by trying to remove the restriction to DNF
formulas that is commonly made by conventional rule
learning algorithms, and directly learn arbitrary logical
concept descriptions. More precisely, we investigate the
behavior of a simple algorithm that successively com-
bines input signals with logical operators, thus building
up complex logic structures.

The remainder of the paper is organized as follows:
Section 2 describes the problem of learning the pair con-
cept in different logical representations and refers to re-
lated work. Based on this, we propose a combination of
a local search and genetic algorithm in Section 3 and test
it in various settings in Section 4. Finally, the results are
concluded in Section 5.

2. Pair Concept
Disjunctive Normal Form. Ripper [1] and most other
rule learners learn their models in disjunctive normal form
(DNF) [2]. This normal form consists of a disjunction
of conjunctions of literals whereby each conjunction is
called a rule and the whole DNF expression a ruleset. To
describe the concept of a pair in DNF for a set of 𝑐 cards
and 𝑟 ranks, we have to find one rule for each possible
combination of two cards for every rank as seen in the
following equation:
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𝑟⋁︁
𝑖=1

𝑐⋁︁
𝑗=1

𝑐⋁︁
𝑘=𝑗+1

𝑐𝑗 = 𝑖 ∧ 𝑐𝑘 = 𝑖. (1)

The total number of rules in this expression is 𝑟 · 𝑐 ·
𝑐−1
2

= 𝑟 ·
(︀
𝑐
2

)︀
with each of them consisting of two literals,

resulting in a total number of 𝑟 · 𝑐 · (𝑐 − 1) literals for
the whole ruleset.

Conjunctive Normal Form. An alternative represen-
tation is the conjunctive normal form (CNF), using a con-
junction of disjunctions of literals instead. In general,
every logical formula can be represented in both DNF
and CNF, the CNF form is less popular in rule learning
though (notable exceptions include [3, 4]). However, it
turned out to be similarly powerful in practical applica-
tions as well [4], with slight advantages for CNF learners
on some datasets and for DNF learners on others. Look-
ing at the pair concept in Equation (1), the corresponding
CNF would be much more complex. By only looking at
pairs of a single rank 𝑟0, we can find a CNF of a similar
complexity though:

𝑐⋀︁
𝑗=1

𝑐⋁︁
𝑘=1
𝑘 ̸=𝑗

𝑐𝑘 = 𝑟0. (2)

Each disjunction in this CNF has a length of 𝑐 − 1
literals, so that the whole CNF contains 𝑐 disjunctions,
resulting in the same number of 𝑐 · (𝑐− 1) literals as the
DNF when only considering a single rank 𝑟0. However, in
comparison to the DNF, this representation might require
a closer look to be comprehensible: Whenever any card
𝑐𝑘 has the rank 𝑟0, all disjunctions in the CNF besides
the 𝑟0

th disjunction become true, and the latter is true if
any other card has the rank 𝑟0 as well to form a pair.

Note, however, that the expressions of type 2 need to
be combined disjunctively, so that the resulting formula
actually contains three logical layers:

𝑟⋁︁
𝑖=1

𝑐⋀︁
𝑗=1

𝑐⋁︁
𝑘=1
𝑘 ̸=𝑗

𝑐𝑘 = 𝑖. (3)

Converting this formula to a pure CNF would be con-
siderably more complex than a DNF. In general, the
choice whether CNF or DNF is a more compact represen-
tation depends on the problem.

Other Representations. In fact, if we do not restrict
the logic formula to consist of only one conjunctive and
one disjunctive layer, even more compact representations
are possible. As an example, consider the pair concept
for 𝑐 = 4 and a single rank 𝑟0. The corresponding CNF
and DNF contain 4 · (4−1) = 12 literals but other repre-
sentations allowing nested conjunctions and disjunctions

can reduce this number to 8, as, e.g., in the following two
cases:

[(𝑐1 = 𝑟0 ∨ 𝑐2 = 𝑟0) ∧ (𝑐3 = 𝑟0 ∨ 𝑐4 = 𝑟0)] ∨
(𝑐1 = 𝑟0 ∧ 𝑐2 = 𝑟0) ∨ (𝑐3 = 𝑟0 ∧ 𝑐4 = 𝑟0),

(4)

[(𝑐1 = 𝑟0 ∨ 𝑐2 = 𝑟0) ∧ (𝑐3 = 𝑟0 ∨ 𝑐4 = 𝑟0)] ∨
[(𝑐1 = 𝑟0 ∨ 𝑐3 = 𝑟0) ∧ (𝑐2 = 𝑟0 ∨ 𝑐4 = 𝑟0)].

(5)

The first line of Equation (4) states that one of the first
two cards as well as one of the last two cards has rank 𝑟0,
and the remaining two possibilities to form a pair within
the first two cards or within the last two cards are covered
by the conjunctions in the second line. Equation (5) uses
the same conjunction in the first line and creates a similar
one in the second line, this time looking at the first and
third card and the second and fourth card respectively to
find the remaining pair combinations.

Note that these constructions can be generalized to an
arbitrary number of cards 𝑐: We first use two disjunctive
clauses with 𝑐/2 terms, which describe that a sought
rank occurs in the first half and in the second half of the
cards, and then need to recursively encode the cases that
a pair of that rank occurs in the first half, as well as that
a pair occurs in the second rank. Thus, the total number
of terms 𝑁𝑐 that we need for encoding all possible pairs
for 𝑐 cards is

𝑁𝑐 =
𝑐

2
+

𝑐

2
+𝑁 𝑐

2
+𝑁 𝑐

2
= 𝑐+ 2 ·𝑁 𝑐

2
. (6)

Flattening out the recursion yields

𝑁𝑐 = log2 𝑐 · 𝑐, (7)

which is considerably smaller than, for example, the(︀
𝑐
2

)︀
= 𝑂(𝑐2) terms that are needed for learning the DNF

representation of the concept.
Because of the more compact representation, deeper

models like shown in Equations (4) and (5) could be easier
to learn than those restricted to CNF or DNF. Further-
more, we noticed that state-of-the-art rule learners like
Ripper cannot generalize their pair concept to all possible
combinations and therefore only reached 70% accuracy
on the binary poker-dataset. It may be assumed that
deeper models generalize better even if not all pair com-
binations occur in the training data. If in the previous
example the pair combination of the first and the last card
is missing in the training data, an algorithm looking for
deep structures might still find and use the conjunction
(𝑐1 = 𝑟0 ∨ 𝑐2 = 𝑟0) ∧ (𝑐3 = 𝑟0 ∨ 𝑐4 = 𝑟0) instead
of splitting it into two conjunctions of size three (𝑐1 =
𝑟0∨𝑐2 = 𝑟0)∧𝑐3 = 𝑟0 and 𝑐2 = 𝑟0∧(𝑐3 = 𝑟0∨𝑐4 = 𝑟0)
or three conjunctions of size two 𝑐1 = 𝑟0 ∧ 𝑐3 = 𝑟0,
𝑐2 = 𝑟0 ∧ 𝑐3 = 𝑟0 and 𝑐2 = 𝑟0 ∧ 𝑐4 = 𝑟0. In the
following, we present a genetic algorithm that is capable
to build a model with arbitrary combinations of conjunc-
tions and disjunctions to verify this hypothesis.



3. Algorithm
The motivation behind the work reported in this pa-
per was to investigate, whether general logical formulas
could be built up using a local search algorithm, which
incrementally builds up logical structures.

The key idea is to simply start with the logical input
variables, and use the logical operators AND (∧) and OR
(∨) to combine pairs of such values into a more complex
expression. Note that such an approach should, in prin-
ciple, be sufficient for learning, for example, the DNF
representation in the poker pairs domain. If, e.g., the
population size is large enough to form all possible pairs
in a first iteration, all subsequent iterations could form
pairwise disjunctions of such pairs. Thus, once the

(︀
𝑐
2

)︀
conjunctive pairs are formed, we would need log2

(︀
𝑐
2

)︀
iterations in order to combine them into a single large
disjunct, which makes in total 1 + log2

(︀
𝑐
2

)︀
iterations.

The approach is quite similar to pattern trees, a data
structure designed for and used in fuzzy reasoning [5].
However, while this approach deals with numerical data
and fuzzification operators, we remain in strictly binary
worlds, where solving an optimization problem is consid-
erably harder than in its linear counterpart [6]. Also, the
structures are often built up in a top-down fashion [7],
whereas we proceed from the bottom upwards.

The goal of the experiments reported is to see whether
a logical formula correctly describing the pair concept
can be found at all, which parameter settings would be
necessary to find it, whether more compact structures
can be found, or maybe even better generalizations can
be achieved.

This attempt is realized in the form of a variant of a ge-
netic algorithm, which uses two types of crossovers, one
for conjunctively combining and one for disjunctively
combining two individuals in the current population, as
shown in Algorithm 1.

The algorithm builds upon data structures created by
Lord, a novel rule learner developed in our group [8].
Lord reuses ideas from association rule learning and only
needs a single pass through the training data during the
learning phase, which makes it very efficient for large
datasets. All further operations, e.g., determining how
many examples are correctly and incorrectly classified
for any given rule expression, can be directly extracted
from n-Lists. Note that, apart from the usage of the same
data structures, the genetic algorithm presented in this
paper and Lord are completely different and separate
approaches: While the genetic algorithm aims at finding
arbitrary logical formulas bottom upwards, Lord uses the
data structures to find the best DNF rule for each training
example. Detailed information about n-Lists are given in
[9], and about their application in the Lord algorithm in
[8].

The learning method of the variant of genetic algo-

Algorithm 1: learning()-method
Input: population_size, metric_type, metric_arg,

n_generations, n_offspring, max_sim, selectors
Output: concept

1 population← Population(selectors, metric_type,
metric_arg);

2 population.print_summary();
3 for 𝑔 ← 1 to n_generations do
4 new_population← population;
5 for 𝑜← 1 to n_offspring do
6 for 𝑖1 ∈ population do
7 repeat
8 𝑖2 ←

tournament_selection(population,
tournament_size);

9 until 𝑖1 ̸= 𝑖2;
10 𝑖𝑐𝑜𝑛𝑗 ← crossover(𝑖1, 𝑖2, true);
11 𝑖𝑑𝑖𝑠𝑗 ← crossover(𝑖1, 𝑖2, false);
12 sim← 𝑖𝑐𝑜𝑛𝑗 .support / 𝑖𝑑𝑖𝑠𝑗 .support;
13 if sim ≤ max_sim then
14 if 𝑖𝑐𝑜𝑛𝑗 ̸= null then
15 new_population.add(𝑖𝑐𝑜𝑛𝑗 );
16 end
17 if 𝑖𝑑𝑖𝑠𝑗 ̸= null then
18 new_population.add(𝑖𝑑𝑖𝑠𝑗 );
19 end
20 end
21 end
22 end
23 population←

new_population.get_n_fittest(population_size,
metric_type, metric_arg);

24 population.print_summary();
25 end
26 concept← population.get_n_fittest(1, metric_type,

metric_arg);
27 return concept

rithm is shown in Algorithm 1 and starts by creating a
default population consisting of all possible features, also
known as selectors in Lord. All single features can al-
ready be interpreted and evaluated as a rule for predicting
the class pair for some arbitrary metric and parameter
(e.g., m-Estimate with 𝑚 = 10). A first summary of
the population is output to potentially analyze the best
selectors.

The evolution begins in line 3 of Algorithm 1 and con-
sists of an outer loop for each generation, which copies
the population of the previous generation. It is followed
by a loop for possibly generating multiple offspring per
individual and two inner loops for selecting individuals
for the crossover. The first individual 𝑖1 is already preset
whereas the second one 𝑖2 is selected by a tournament
selection, returning the best individual of a fixed-sized
subset of the population. Since conjunctions and disjunc-



Algorithm 2: crossover()-method
Input: 𝑖1, 𝑖2, conjunctive
Output: 𝑖3

1 𝑖1, 𝑖2 ← order(𝑖1, 𝑖2);
2 if conjunctive then
3 nlist← conj(𝑖1.nlist, 𝑖2.nlist);
4 𝑖3 ← Individual(nlist, 𝑖1.body + "&&" + 𝑖2.body)
5 else
6 nlist← disj(𝑖1.nlist, 𝑖2.nlist);
7 𝑖3 ← Individual(nlist, "(" + 𝑖1.body + "||" + 𝑖2.body

+ ")")
8 end
9 if 𝑖3.support = 𝑖1.support ∨ 𝑖3.support = 𝑖2.support ∨

𝑖3.support = 0 then
10 return null
11 end
12 return 𝑖3

tions with itself are not changing the coverage of the
expression, we force 𝑖1 and 𝑖2 to be different individuals
before starting with the crossovers. Note that both the
conjunction and disjunction are computed successively
in lines 10 and 11.

Algorithm 2 describes the crossover procedure. After
ordering the two individuals alphabetically, either the
conjunctive or disjunctive n-List and condition string are
built. If one of the individuals covers a subset of instances
of the other one, or both individuals are disjoint from
each other, the resulting individual is meaningless and
null is returned instead. Otherwise, the created crossover
is returned to the learning method.

Optionally, in lines 12 and 13 of Algorithm 1, the Jac-
card similarity between the two generated crossovers is
computed to avoid offspring that is too similar to its con-
junction respectively disjunction "sibling" and parents. If
this is not the case, the crossovers are added to the new
population. Since the population increases this way, at
the end of each generation the population is filtered and
only the 𝑛 best individuals are kept (line 23). By printing
the summary of the population in line 24, the maximum
heuristic value and the ten best individuals are output.

Finally, the best individual of the last generation is re-
turned as the concept, which can then be used to evaluate
whether test examples are covered by the concept.

4. Experiments
For the experiments, we generated multiple versions of
the poker pairs-dataset with varying difficulty:

• pairs2 consisting of 30 card combinations with 12
pairs (𝑐 = 2 cards, 𝑟 = 2 ranks, 𝑠 = 3 suits)

• pairs3 consisting of 336 card combinations with
144 pairs (𝑐 = 3 cards, 𝑟 = 4 ranks, 𝑠 = 2 suits)

• pairs4 consisting of 11,880 card combinations
with 6,120 pairs (𝑐 = 4 cards, 𝑟 = 6 ranks, 𝑠 = 2
suits)

• pairs4a consisting of 6,660 card combinations
with 900 pairs (𝑐 = 4 cards, 𝑟 = 6 ranks, 𝑠 = 2
suits). In comparison to pairs4, all pairs besides
those with rank 𝑟0 = 6 are removed, and ad-
ditionally those with 𝑐1 = 6 and 𝑐4 = 6 are
retained for evaluation.

All datasets are split into ten folds, whereby just use
nine of them are used for training to break symmetries.
In all experiments, 10 generations with a population size
of 100 and a tournament size of 5 are used, and the rules
are evaluated by the m-estimate metric with 𝑚 = 10.
The m-estimate value ℎ𝑚 of a rule 𝑟 predicting class 𝑐
has been proposed by Cestnik [10] and is calculated as

ℎ𝑚(𝑟) =
𝑟.𝑝+𝑚 𝑃

𝑃+𝑁

𝑟.𝑝+ 𝑟.𝑛+𝑚
, (8)

where

𝑚 = a settable parameter in the range [0, +∞)
𝑟.𝑝 = the number of true positives of rule 𝑟
𝑟.𝑛 = the number of false positives of rule 𝑟
𝑃 = the number of examples with class = 𝑐
𝑁 = the number of examples with class ̸= 𝑐.

It provides an excellent, tunable trade-off between
weighted relative accuracy (𝑚 −→ ∞), which is fre-
quently used in descriptive rule learning, and precision
(𝑚 −→ 0), the main target for predictive learning [11].

The results of the experiments are summarized in Ta-
bles 1 and 2, the detailed evaluation is split into one
paragraph per poker pairs-dataset.

Table 1
Average percentage of pairs covered by the final concept (num-
ber of folds with 100% coverage in parenthesis). The column
"full c." denotes the number of generation where all crossovers
have been computed.

full c.
pairs

2 3 4 4a

0 93.5% (5) 74.0% (0) 39.3% (0) 98.9% (6)
1 100.0% (10) 100.0% (10) 87.0% (0) 100.0% (10)
2 100.0% (10) 98.8% (8) 63.0% (0) 100.0% (10)

Table 2
Average number of generations needed to find best concept.

full c.
pairs

2 3 4 4a

0 4.4 5.8 6.5 5.3
1 3.2 5.4 7.8 5.0
2 2.0 5.1 7.2 3.5



Pairs within two cards. In this minimalistic dataset,
there are only two different types of pairs since only
two cards and ranks are available. Both the minimal DNF
𝑐1 = 1∧𝑐2 = 1∨𝑐1 = 2∧𝑐2 = 2 and the corresponding
CNF (𝑐1 = 1 ∨ 𝑐2 = 2) ∧ (𝑐1 = 2 ∨ 𝑐2 = 1) consist of
four literals and could be found in two steps.

Using a strict genetic algorithm approach, i.e., without
building all possible crossovers in the first generation(s),
the learned concept describes all pairs for 5 out of 10
folds, and this concept is found between the third and
fifth generation. The 5 remaining folds also diverge to a
fixed concept (in different logical expressions) the latest
in the sixth generation, however, in 4 of them one or two
pairs are not covered respectively, and in the last one a
non-pair was covered mistakenly.

If in the first generation all possible crossovers are gen-
erated, thus in particular the crossovers 𝑐1 = 1 ∧ 𝑐2 = 1
and 𝑐1 = 2 ∧ 𝑐2 = 2, the perfect theory can be found in
all 10 folds. 6 of theses folds need four generations to do
so, the remaining 4 find it already in the second gener-
ation. Interestingly, one of them also finds the minimal
CNF additionally to the minimal DNF.

Finally, if also in the second generation all crossovers
are generated, both the minimal DNF and CNF are found
in all folds.

Pairs within three cards. The next dataset is already
more complex; three cards and four ranks lead to 12 pair
combinations, which need a length of at least 20 literals if
using an arbitrary nested logical expression and a length
of at least 24 literals if using a DNF.

Even with problems of this size, the presented simple
genetic algorithm can not find an expression covering
all pairs in any fold. The percentage of covered pairs
ranges from 56% to 92% and is approximately equally
distributed, same holds for the number of generations
that lies between 4 and 7.

As discussed in Section 3, already a single generation
with all possible crossovers can fix this problem. Even if
the population size is too small to keep all crossovers, it
is still large enough so that only irrelevant crossovers are
removed immediately (those taking the suit attributes
into account). In all folds, a concept covering all pairs is
learned in the fifth generation or sixth generation.

The average number of generations needed as well
as the overall complexity of the found concepts can be
slightly decreased by computing all crossovers for a sec-
ond generation. Surprisingly, this approach leads to in-
complete concepts in two folds though, that are missing
1 of the 12 pair combinations. This indicates that an ex-
haustive search over multiple generations leads to too
many similar individuals that prevent other diverse in-
dividuals from being included into the population and
used for further concepts.

Pairs within four cards. In the dataset with four cards
we used six ranks, summing up to 36 pair combinations.
While a minimal DNF needs at least 72 literals, with
deeper logical expressions sketched in Equations 4 and 5
only 48 literals are needed. However, this requires to find
suitable disjunctions in the first generation.

The results for the dataset with four cards are similar
to the previous one with three cards but with even more
significant differences between the three settings. The
performance of the pure genetic algorithm setting drops
to a pair coverage between 24% and 49% and it converges
in an even later generation than in the smaller datasets.
This can again be fixed by a single exhaustive search for
crossovers and a subsequent genetic algorithm covering
between 79% and 93% of the pairs. However, similar to
the dataset with three cards, if also in the subsequent gen-
eration all crossovers are computed, the convergence of
the algorithm is sped up but the pair coverage decreases
to percentages between 52% and 77%.

While the best performance is achieved by the al-
gorithm using a single generation with an exhaustive
crossover search, all resulting models have in common
that they learn DNFs instead of creating intermediate
disjunctions before conjuncting them. To investigate
further into this, we refine the dataset in the following
paragraph.

Subset of pairs within four cards. In the last ex-
periment, we want to focus on a different aspect: the
capability of the learner to augment the concept to pairs
that are not covered in the training data like described
in the end of Section 2. We consider pairs with cards of
rank 6 and ensure that only five out of six are part of the
training data. As a consequence, state-of-the-art DNF
rule learners like Ripper are only capable to detect these
five pair combinations and conjunct them:

(𝑐1 = 6 ∧ 𝑐2 = 6) ∨ (𝑐1 = 6 ∧ 𝑐3 = 6)∨
(𝑐2 = 6 ∧ 𝑐3 = 6) ∨ (𝑐2 = 6 ∧ 𝑐4 = 6)∨
(𝑐3 = 6 ∧ 𝑐4 = 6)

(9)

In this representation, the remaining pair combination
𝑐1 = 6 ∧ 𝑐4 = 6 remains uncovered. However, we have
seen in Equations 4 and 5 that even smaller concepts can
be learned, and those possibly also cover the missing
pair combination. We verify whether similar models can
indeed be learned with the suggested approach. Starting
with the pure genetic algorithm, the learner does not even
reliably find all pair combinations. In four out of ten folds,
parts of the concepts additionally use suit attributes in
the conjunctions, which led up to 37 of 810 pair instances
uncovered.

By generating all crossovers in the first generation,
the five pair combinations are found and combined to a



Generation: 1 Max fitness: 0,9503
0,9503 (164|0) c1=6 && c2=6 -> class=1
0,9503 (164|0) c1=6 && c3=6 -> class=1
0,9497 (162|0) c2=6 && c3=6 -> class=1
0,9491 (160|0) c4=6 && c2=6 -> class=1
0,9491 (160|0) c4=6 && c3=6 -> class=1
0,3822 ( 4|0) c3=5 && c4=5 -> class=1
0,3822 ( 4|0) c2=5 && c4=5 -> class=1
0,3822 ( 4|0) c4=1 && c1=1 -> class=1
0,3822 ( 4|0) c2=1 && c4=1 -> class=1
0,3822 ( 4|0) c3=1 && c4=1 -> class=1

Generation: 2 Max fitness: 0,9869
0,9869 (648|0) (c1=6 || c4=6) && (c2=6 || c3=6) -> class=1
0,9826 (486|0) (c1=6 || c2=6) && (c4=6 || c3=6) -> class=1
0,9826 (486|0) (c1=6 || c3=6) && (c4=6 || c2=6) -> class=1
0,9744 (328|0) (c1=6 && c2=6 || c1=6 && c3=6) -> class=1
0,9744 (328|0) c1=6 && (c2=6 || c3=6) -> class=1
0,9743 (326|0) (c1=6 && c2=6 || c2=6 && c3=6) -> class=1
0,9743 (326|0) (c1=6 && c3=6 || c2=6 && c3=6) -> class=1
0,9743 (326|0) (c1=6 || c3=6) && c2=6 -> class=1
0,9743 (326|0) (c1=6 || c2=6) && c3=6 -> class=1
0,9741 (324|0) (c1=6 && c2=6 || c4=6 && c2=6) -> class=1

Figure 1: Best ten individuals in the first and second generation respectively.

DNF similar to Equation 9 within five generations, i.e.,
one iteration more than in the optimal logarithmic case.
Therefore, all training instances consisting one of these
five pair combinations are covered, but the test instances
with the remaining sixth pair combination remain disre-
garded.

This behavior changes if the second generation com-
putes all crossovers as well. Figure 1 lists the best ten indi-
viduals found in the first and second generation. While in
the first generation this list only consists of conjunctions
that are already able to only cover pairs, in the second
generation the best three individuals are conjunctions
of disjunctions, i.e., crossovers of individuals that have
not been among the best ten in the first generation. In
particular, the second and third individual evaluate better
than all possible individuals in DNF and at the same time
still cover the missing sixth pair combination.

Based on these individuals, a concept covering all pairs
of the training set can be found already in the third gener-
ation for five of the folds, and in the fourth generation for
the remaining five folds. The percentage of individuals
covering the additional the missing sixth pair combina-
tion ranges from 13% to 31%. While this number is still
low, it is worthwhile to mention that in comparison to
DNF rule learner it is capable to generate such individu-
als, and in comparison to the other two versions it also
actually finds them.

5. Conclusion
In this work, we dealt with the question when conven-
tional DNF rule learners come to their limits. We con-
ducted this on the basis of a poker pairs-dataset and
showed that deep rule theories can both describe the
pair concept in a more concise form and are capable to
generalize the concept better. To investigate into this
behavior in practical experiments, we created a simple
variant of a genetic algorithm, which uses conjunctive
and disjunctive crossovers to built deep rule concepts out
of single features. We also implemented the possibility
to generate all possible crossovers at the beginning of
the algorithm, which can then be seen as a local search

approach.
While the presented combination of a local search and

genetic algorithm is not yet matured to be successfully
applied on arbitrary real-world datasets, through the ap-
plication on different versions of the poker pairs-dataset
we could take away some interesting properties of the
deep rule theories learned this way. An exhaustive search
for crossovers in the first generation was needed to re-
liably find concepts covering all or at least most pairs.
However, an additional exhaustive search in the subse-
quent generation led to too many similar individuals and
resulted in a worse performance for the chosen parame-
ters. Finally, the last experiment on a subset of the poker
pairs-dataset with four cards showed that the presented
learner indeed is capable to find the more compact and
better generalizing model described at the beginning of
this paper, which can not be learned by state-of-the-art
rule learners, and highlights the importance of subse-
quent combinations of disjunctions and conjunctions to
do so.

6. Future Work
In future work, further refinements of the genetic al-
gorithm are necessary and partly already implemented.
Most emphasized should be the handling of diversity,
which can, e.g., either be handled by a separate reserve
population that focuses on covering a wider variety of
examples instead of covering the most examples as possi-
ble or by penalizing the evaluation of individuals if their
Jaccard similarity is too high. Additionally, a penalty
for the rule length might force the algorithm to prefer
the most compact representation between those cover-
ing the same instances. Last but not least, the idea of
mutations might be refined for the rule learning setting.
Features on all levels of the logical expression could be
removed, replaced or augmented, and conjunctions could
be interchanged with disjunctions and vice versa. For all
these suggestions, a further in-depth analysis is needed
though.
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