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Abstract
This paper deals with the processing of TIL-Script constructions. TIL-Script constructions are a computational variant of the
Transparent Intensional Logic (TIL) constructions. In this paper, two main directions are addressed. The first area is the use
of TIL-Script in supervised machine learning with a symbolic representation of facts in a search for explications of atomic
concepts. Subsequently, the paper discusses the modifications that were necessary for use in the spatial data processing. The
paper describes the theory necessary to understand TIL theory, Supervised machine learning, formal conceptual analysis, and
spatial data processing issues specified in the TIL-Script language.
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1. Introduction
This paper outlines the use of Transparent Intensional
Logic (TIL) constructions with a focus on Formal Con-
ceptual Analysis (FCA) and supervised machine learn-
ing. The paper is divided into two parts. The first part
contains the use of machine learning and FCA to find
relevant textual sources of information. The second part
contains the modification of supervised machine learning
to process constructions that represent spatial data.
The following section summarizes the current devel-

opments in the use of TIL and, consequently, TIL-Script
in supervised machine learning.
The paper is structured as follows. In the Chapter 2,

the reader is introduced to the basics of TIL. This chapter
is taken as a summary of the most important characteris-
tics and definitions that are relevant for understanding
the paper. However, since the language of TIL construc-
tions is quite complex to process by a computer, in the
Chapter 2.1, we introduce the TIL-Script language, which
is a computational variant of TIL, and which is used in
machine processing. In the Chapter 4, we will discuss the
basics of formal conceptual analysis theory and the use
of this method to find relevant information sources. Sub-
sequently, the Chapter 5 discusses the issue of working
with spatial data.
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2. TIL
This section briefly introduces the Transparent Inten-
sional Logic system.
TIL is a partial, typed hyperintensional 𝜆-calculus of

partial functions with procedural semantics. Expressions
of natural language encode algorithmically structured
procedures as their meaning. These procedures produce
extensional or intensional entities, or even lower-order
procedures, as their products. In the early 1970s, Pavel
Tichý defined six kinds of such procedures, which he
coined TIL constructions as the centerpiece of his system;
see [1].

The TIL distinguishes between two types of construc-
tion: atomic and molecular constructions. These con-
structions are Trivialization and Variables. The opera-
tional meaning of Trivialization is similar to the meaning
of constants in formal languages or pointers in program-
ming language terminology. Trivialization supplies an
object O without mediating any additional procedures.
We write the trivialization of an object O as ′𝑂. The
second atomic construction, Variable, produces objects
depending on its evaluation. The variable v-constructs
an object.
The following constructions are molecular. Compo-

sition [𝐹 𝐴1…𝐴𝑛] corresponds to an application in 𝜆-
calculus. It is a procedure for applying a function 𝑓 to
an ordered tuple (if any) produced by the 𝐴1…𝐴𝑛 pro-
cedure. The 𝑣-composition constructs the value of the
function 𝑓 on the arguments of 𝐴1…𝐴𝑛 if the function
𝑓 is defined on the arguments of 𝐴1…𝐴𝑛. However, if
the value of the function 𝑓 on the arguments 𝐴1…𝐴𝑛 is
not defined, then Composition is 𝑣-improper (fails), i.e.
v-constructs nothing. This situation can also occur if
there is a type of inconsistency in the construction. The
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Closure [𝜆𝑥1…𝑥𝑛 𝑋] corresponds to a 𝜆-abstraction in a
𝜆-calculus. It is a procedure that 𝑣-constructs a function
by abstraction over the values of the variables 𝑥1, … , 𝑥𝑛.
The closure is never 𝑣-improper for any valuation, since
it always 𝑣-constructs a function.1 Now we define Double
execution, Single execution is not relevant to us now. The
Double Execution 𝑋 will execute the given construction
twice, thus reducing, for example, themode of occurrence
of the display construction to the mode of the execution
construction. If 𝑋 𝑣-constructs a 𝑌 construction, and 𝑌 𝑣-
constructs an entity 𝑍, then 𝑋 𝑣-constructs 𝑍. Otherwise,
𝑋 is 𝑣-improper in that it does not produce anything.
The TIL ontology is organized into a branching hi-

erarchy of types built on top of the base. It is a two-
dimensional type hierarchy. The first ”horizontal” dimen-
sion increases the degree of molecularity, i.e. it starts
at the level of atomic objects (base objects) and builds a
hierarchy of functions above them by folding functions
into more and more complex functions. The second, ”ver-
tical” dimension increases the order of construction. At
its beginning are entities that are not constructions, fol-
lowed by constructions that construct non-constructions,
etc. At the base level of type hierarchies, there are, from
an algorithmic point of view, nonconstructive entities
belonging to types of order 1. Given the base of atomic
types (𝑜-truth values, 𝜄-individuals, 𝜏-time instants/real
numbers, 𝜔-possible worlds), the induction rule for func-
tion creation is applied: where 𝛼, 𝛽1, ..., 𝛽𝑛 are types of
order 1, the set of partial mappings from 𝛽1 × ... × 𝛽𝑛 to 𝛼,
denoted by (𝛼 𝛽1...𝛽𝑛) is also an order 1 type. Construc-
tions that construct entities of order 1 type are order 1
constructions. They belong to the order 2 type denoted
by ∗1. This type, together with atomic types of order
1, serves as the basis for the induction rule: any set of
partial mappings, type (𝛼 𝛽1...𝛽𝑛), involving ∗1 in their
domain or range is a type of order 2. Constructions that
construction entities of type order 1 or 2 are constructions
of order 2. They belong to type of order 3 denoted by ∗2.
Any set of partial mappings involving ∗2 in their domain
or range is a of type order 3 and so on ad infinitum.

2.1. TIL-Script
TIL is not suitable for computer processing due to its com-
plex notation; therefore, we are using its computational
variant, TIL-Script [13]. TIL-Script offers standardized
notation, base of types, and form notation using ASCII
characters only (letters of the Greek alphabet, indices, etc.
cannot be written using ASCII characters). Compared
to TIL, TIL-Script has a broader base of types, making
construction more easily handled compared to TIL. Some
of the newly added types are well known for common
programming languages (Bool, Int, Real) and others are
1This is a so-called generated function that v-constructs nothing for
each tuple

native to TIL-Script (Indiv, World, Time). Each TIL con-
struction has an equivalent in TIL-Script, but with a dif-
ferent syntax. For comparison, here are some examples:

• Trivialization in TIL: 0𝐶 → Trivialization in TIL-
Script: ’C

• Composition in TIL: [𝐹 𝐴1…𝐴𝑛] → Composition
in TIL-Script: [𝐹 𝐴1…𝐴𝑛]

• Closure in TIL: [𝜆𝑥1…𝑥𝑛 𝑋] → Closure in TIL-
Script: [\𝑥1… [\𝑥𝑛 𝑋]… ]

An example of a natural language sentence captured
in TIL and TIL-Script:

• Sentence: Charles counts 3 + 5.
• TIL: 𝜆𝑤𝜆𝑡[′𝐶𝑜𝑢𝑛𝑡𝑠𝑤𝑡 ′𝐶ℎ𝑎𝑟 𝑙𝑒𝑠 [′+ ′3 ′5]]
• TIL-Script:
[\𝑤 [\𝑡 [′𝐶𝑜𝑢𝑛𝑡𝑠@𝑤𝑡 ′𝐶ℎ𝑎𝑟 𝑙𝑒𝑠 ′[′+ ′3 ′5]]]].

There is an EBNF grammar for TIL-Script.

3. Supervised machine learning
In [2], we describe machine learning with the teacher.
Here, we briefly summarize the basic characteristics of
this approach.
Supervised machine learning is a subcategory of ma-

chine learning that uses training data partitioned into
positive and negative examples of a concept to be learned.
These data are described by a set of input and output at-
tributes. There is an unknown functional dependency
f between the values of the input and output attributes.
The goal of learning is to approximate the unknown func-
tional dependency f with the functional dependency h
called hyphotesis. The hypothesis is obtained by observ-
ing the values of the input and output attributes of the
training data. The correctness of the hypothesis is tested
on test data for which only the input attribute values
are known to the learner. The hypothesis is correct if it
correctly predicts the values of the output attributes of
the test data.

Supervised machine learning is most commonly used
to solve two types of problem: regression and classifica-
tion. Regression is a problem in which the values of the
output attributes are elements from a continuous range
of numbers. For example, when predicting the price of
a diamond based on its properties. Examples of regres-
sion algorithms are linear regression, logistic regression, or
polynomial regression. In classification, the output values
are discrete, and the model matches the input examples
with the output categories. The classification problem
is, for example, the recognition of traffic signs in the im-
age data. Common classification algorithms are Support
Vector Machine, decision trees, and random forest.



3.1. Winston
Patrick Winston’s algorithm [14] presents learning using
positive and negative near-miss examples. A near-miss
example represents a negative example that differs from
a positive example in one important difference. It is a
supervised algorithm; therefore, each input example is
labeled as positive or negative, and the model (hypothesis
in the learning process) is modified based on observa-
tions of the values of the input and output attributes of
these examples. The model is modified using induction
heuristic functions. The heuristic functions are require-
link, forbid-link, climb-tree, enlarge-set, drop-link
and close-interval. Winston represented the examples
graphically by a semantic network in which the attribute
values of objects are represented as nodes of the network,
and the relations between them (edges of the network)
are called links.2 The heuristics are described as follows.

• require-link: Used if the model contains link,
which the near-miss example does not. The given
link is marked in the model as MUST-BE (must
be).

• forbid-link: Used when there is a link in the
near-miss example that is not in the model. The
given link is inserted and marked as MUST-NOT-
BE (must not be) in the model.

• climb-tree: Used when we want to generalize a
too specific model. Based on the positive example,
we generalize an attribute value that differs in the
model. The most common general value of the
attribute of the model and the example found in
the ontology provided by the teacher replace the
value in the model.

• enlarge-set: Used if the ontology is not provided
or the values in the example and model do not
share a common most specific value in the ontol-
ogy. In this case, the values are concatenated into
a set of values.

• drop-link: Used when the model has a link
where the positive example does not, or the at-
tribute values are mutually exclusive. The given
link is removed from the model.

• close-interval: Used when a numeric value or
an interval of numeric values is present in the
positive example. If the values from the positive
example are not already included in the model,
the interval in the model is extended to include
these new values.

Winston defines two main methods, Generalization
and Specialization, in which heuristics are applied to the
model.
2For example, if a cube is white in color, there would be two nodes
in the graphical representation, one for the object cube and one for
the attribute value white. These nodes would be connected by link
has𝑐𝑜𝑙𝑜𝑟

Specialization is triggered using near-miss examples.

1. Compare the hypothesis model and the near-miss
example to find a significant difference.

2. If a significant difference exists, then proceed:
a) If the model has a link and the near-miss

example does not, then require-link is
used.

b) If the near-miss example has a link and the
model does not, forbid-link is used.

c) Otherwise, the example is ignored.

Generalization is done with positive examples.

1. Compare the hypothesis model and the positive
example to find the difference.

2. For each difference is verified:
a) If the link in the model binds to a value

different from the value in the example,
then it is verified:

i. If the attributes in which the model
and the example differ have the most
specific generic value, then climb-
tree is used.

ii. If the attribute values are inconsis-
tent, drop-link is used.

iii. Otherwise, enlarge-set is used.
b) If there is a link in the model that is not in

the example, drop-link is used.
c) If the model and the example differ in a

numeric value or an interval of numeric
values, close-interval is used.

d) If none of the above can be applied, the
example is ignored.

3.2. Natural Language Processing
This work is based on the use of TIL in natural language
processing, described in detail in [4]. For completeness,
we describe the whole concept. The algorithms described
in the 5 section build on these ideas.

In [4], a method that supports automatic information
retrieval was proposed to select a relevant information
source from many potentially relevant ones. The method
is based on the logical analysis of natural language texts
in the form of a TIL constructions language. Combined
with a machine learning algorithm based on the afore-
mentioned Winston’s algorithm, explanations of atomic
concepts are extracted from the formalized texts.34 Based
on these explications and user preferences, the most rele-
vant sources of information from which the explications
were built are recommended.
3A concept in TIL terminology is a closed construction.
4Carnapian explication, used in this paper, is the process of refining
a vague or inaccurate expression into an adequately accurate one.
For simplicity, we refer to the refinement of a given expression as
an explication.



3.2.1. Modified Winston’s algorithm

In order to extract concept explications from text sources,
Winston’s algorithm had to be adjusted. The input of the
algorithm (examples) is formalized natural language sen-
tences that mention the concept to be explicated. These
sentences are formalized into TIL constructions. The re-
sult of the algorithm is a molecular TIL construction that
describes a simple concept. In addition to the general-
ization and specialization methods, the algorithm also in-
cludes a refinement method that inserts new constituents
into the molecular construction.

Natural language sentences often contain only partial
information about a given simple concept. The exam-
ples used by Winston always contain complete informa-
tion. For this reason, a new heuristic method Concept-
introduction was proposed, which adds partial informa-
tion as constituents to the explication in a refinement pro-
cess. On the basis of the negative examples, the Negative-
concept method is triggered, which adds new constituents
to the explication in a negated way. This method is used
to distinguish explications of similar concepts. General-
ization replaces the values of the constituents with more
general values.
Generalization contains heuristic functions General-

concept, Disjunctive-concept and Close-interval. First two
heuristic functions has similar functionality. They gener-
alize values in constituents of the model. If the supervisor
provides an ontology of values, and the positive example
differ in value from the model, General-concept replaces
the value in the model with the most specific general
value of values in the model and example from ontology.
If the ontology is not provided, Disjunctive-concept gen-
eralize the value in the model with an union of values in
the model and example.
If the model and example differ in numerical value

Close-interval generalize the model’s value with the nu-
merical interval spanning both values.

The algorithm is described in detail in [4].

4. Formal Conceptual Analysis
One of the main focuses of this work is the application
of Formal conceptual analysis (FCA) to the explications
obtained, aspirants ordering and the implementation of
both methods.
In this section, we discuss a procedure for finding a

suitable atomic concept using explications of simple con-
cepts and FCA.5 This procedure has been published in
[8]. The output of the method is a recommendation of
a suitable concept based on a given set of properties or
attribute values that occur in the explications obtained.

5For example, if we know some basic characteristics of an object for
which we do not know the name.

Using FCA, we search for a concept that is represented
by a given set of properties or attribute values.

FCA [15] was introduced by Rudolf Wille in 1981. It is
a popular technique used for data mining, software engi-
neering, knowledge processing, machine learning, and
many others. FCA studies the relationships between ob-
jects described by a set of attributes and their hierarchical
grouping based on common attributes.

We now describe FCA and aspirant ordering using for-
mal definitions presented in [5] and then explain the
methods by example.

Definition 1. Let (𝐺,𝑀, 𝐼 ) be a formal context, then
𝛽(𝐺,𝑀, 𝐼 ) = {(𝑂, 𝐴)|𝑂 ⊆ 𝐺, 𝐴 ⊆ 𝑀,𝐴↓ = 𝑂, 𝑂↑ = 𝐴}
is a set of all formal concepts of context (𝐺,𝑀, 𝐼 ) where
𝐼 ⊆ 𝐺 × 𝑀, 𝑂↑ = {𝑎|∀𝑜 ∈ 𝑂, (𝑜, 𝑎) ∈ 𝐼 }, 𝐴↓ = {𝑜|∀𝑎 ∈
𝐴, (𝑜, 𝑎) ∈ 𝐼 }. 𝐴↓ is called extent of the formal concept (O,
A) and 𝑂↑ is called intent of the formal concept (𝑂, 𝐴).

Definition 2. Concept aspirants of the set of attributes
a in 𝛽(𝐺,𝑀, 𝐼 ) is a set 𝐶𝐴(𝑎) = ⋃𝑛

𝑖=1 𝑂
𝑎
𝑖 , where 𝑂𝑎 is the

extent of a concept (𝑂, 𝐴) ≠ (𝐺, 𝐵), 𝑎 ⊆ 𝐴, 𝐵 ⊆ 𝑀. Namely,
concept aspirants of the set of attributes a is a union of
all formal concept extents where a is a subset of a particular
formal concepts’ intents.

Definition 3. Let 𝐶𝐴(𝑎) be a set of concept aspirants of
a set of attributes a, let 𝛿(𝑎) be a set of concepts (𝑂, 𝐴)
where 𝑎 ⊆ 𝐴, i.e.: 𝛿(𝑎) = {(𝑂𝑎, (𝑂𝑎)↑)|(𝑂𝑎, (𝑂𝑎)↑) ≠
(𝐺, 𝐵), 𝐵 ⊆ 𝑀, (𝑂𝑎, (𝑂𝑎)↑) ∈ 𝛽(𝐺,𝑀, 𝐼 )}. Then x ⊑ y
is in relation of aspirant ordering iff 𝑚𝑎𝑥(|(𝑂𝑦)↑|) ≤
𝑚𝑎𝑥(|(𝑂𝑥)↑|), 𝑥, 𝑦 , ∈ 𝐶𝐴(𝑎), (𝑂𝑥, (𝑂𝑥)↑), (𝑂𝑦, (𝑂𝑦)↑) ∈
𝛿(𝑎).

Definition 4. Let (𝐶𝐴(𝑎), ⊑) be an ordered set according
to the definition 3, then the maximal elements are most
appropriate concepts.

FCA is used to obtain the set of all formal concepts
and form a conceptual lattice over explications. The con-
ceptual lattice captures the hierarchical ordering of the
explications. On the basis of the set of all formal con-
cepts, we find the so-called Concept Aspirants. Concept
Aspirants is the union set of all intents of formal concepts
in which a set of selected attributes occurs. We order
this set according to the definition of 3. If the set is in
the relation Aspirant Ordering, then its maximal element
is themost appropriate concept describing the search
object.

4.1. Program implementation
The entire algorithm for FCA and Aspirant Ordering is
implemented in Java without using third-party libraries
that address the issue. The formal context, which is the
FCA input, is displayed in the code 1 and is obtained
from the input CSV file. Each row of the formal context



represents one object, and the values 1 or 0 in the columns
indicate whether the object has the attribute. The next
input argument is the attributes based on which the most
appropriate concept will be searched.

First, we need to perform a complete FCA according to
the definition of 1. We are looking for sets of objects that
share sets of attributes. Each formal concept corresponds
to amaximal submatrix whose elements all have the same
attributes equal to 1. However, objects that form a formal
concept do not need to have identical set of attributes, e.g.,
an object 𝑜2 and an object 𝑜7 can form a formal concept
𝐶1 = ({𝑜2, 𝑜7}, {𝑎7}) even if 𝑜7 has attributes that 𝑜2 does
not. The FCA algorithm is defined as follows:

1. For every possible set of objects:
a) For each attribute:

i. Check if each object of the currently
examined set has the given attribute:
A. If so, the attribute is added to

the set of common attributes.
B. If not, the attribute is ignored.

b) Check if a formal concept with an identical
set of common attributes already exists:

i. If so, compare the number of objects
of the formal concept and the cur-
rently examined set of objects:
A. If the currently examined set

has more objects than the ex-
isting formal concept, the exist-
ing formal concept is replaced
by a new one including more
objects.

B. If the existing formal concept
has more objects, no change is
made.

ii. If not, a new formal concept is cre-
ated with the currently examined
set of objects and set of common at-
tributes.

If we have a complete FCA, then the algorithm for
Aspirant Ordering can start. In this particular example,
the input will be 𝑎1 and 𝑎2, for which we want to find the
most suitable concept that is described by the attributes
given. We first look for formal concepts in which both
input attributes occur at the same time; formal concepts
are listed in code 3.

In the next step, we get the union of all extents from
the previous step; as shown in code 4. We get all objects
that have both attributes that we are looking for.



Next, for each of the retrieved objects, we search for its
intent, as shown in code 5. This gives us a set of objects
with all their attributes, where one of them is the most
appropriate concept to be searched for. This set is called
Concept Aspirants by the definition 2.

In the last step, we sort the set of concept aspirants
according to the definition 3 and select the maximum
element to obtain the most suitable concept described by
the input attributes.

5. Heuristics for spatial data
In this section of the paper, the issue of knowledge base
representing space in multi-agent systems is discussed.
Using natural language processing, TIL, and previously
described machine learning methods, we create a topo-
logical representation of a map that an agent can use to
navigate in space. The first outline of this approach is
proposed in [9].

The input for the construction of the topological map
representation is a set of ordered sentences formalized us-
ing TIL-Script constructions describing the agent’s jour-
ney through the environment (in this particular case, a
path through a city). Each sentence may contain informa-
tion about who went where, how, from where, through
what, etc., but some information may sometimes be miss-
ing or incomplete. We assume that the different parts of
the journey are described sequentially, and hence some
missing information can be obtained from the previous
sentences. However, once a representation of one path is
constructed, its form may not be final but may change if,
for example, the same path is described in more detail by
another agent; hence, we are concerned not only with
the construction of the path representation but also with
its modification. Part of this paper deals with the prob-
lem of knowledge base representing space in multi-agent
systems.
The input to the algorithm is an ordered set of natu-

ral language sentences formalized into TIL-Script. These
sentences describe the journey of some agent through the
environment (in this particular case, a journey through a
city). The sentences contain information about who, how,
from where, to where, through what, etc. traveled. How-
ever, not all sentences contain complete information. The
missing information is filled in from previous sentences
in the preprocessing of the input, as it is a sequential de-
scription of the journey. The machine learning algorithm
then creates a molecular construction that describes the
agent’s journey from the preprocessed input. By com-
bining the different paths of the agents with the same
algorithm, we then obtain a topological representation
of the space in which the agents traveled. In this paper,
however, we focus only on the creation of a single agent
path.

The heuristic methods and algorithm described in Sec-
tion 3.2, but modified to handle path descriptions, are
the basis for creating space representations. The funda-
mental difference from the application of the algorithm
already mentioned is that we are now not specifying a
simple concept, but building a molecular construction
describing the agent’s path.
To handle path descriptions, we use the class of so-

called motion verbs (which contains e.g. the verbs go,
run, ride, cross, turn, etc.). Verbs in this class bind cer-
tain parts of sentences to each other by valency. The



valency bindings for individual verbs are described us-
ing valency frames. The valency frame provides infor-
mation on which complements are valence-bound to a
particular motion verb [16]. For example, the verb go
is valence-bound in sentences by complements written
with a functor, such as ACT (who went), DIR1 (where he
went), DIR2 (which way/what he went), DIR3 (where he
went), MANN (how).

In [9] we used the following:

• Actor [ACT] - Paul quickly walked home from
school through the city center.

• Direction - from where [DIR1] - Paul walked
quickly home from school through the city cen-
tre.

• Direction (direction) - which way [DIR2] - Paul
walked quickly home from school through the
city centre.

• Direction (direction) - where [DIR3] - Paul walked
quickly home from school through the city cen-
tre.

• Manner (way) [MANN] - Paul walked fast home
from school through the city centre.

• Extent [EXT] - After 100m he turned right.

Using the valency structures of motion verbs, we get
a description of the journey. The path locations, identi-
fied by directional functors (DIR1, DIR2 and DIR3), are
the basic information for the construction of the path
description. The path representation is defined in [7]
using the following terms.

Definition 5 (node, edge). Let V be a motion verb, let
𝑆 = {𝐵|(′𝐷𝐼𝑅1 or ′𝐷𝐼𝑅3) and 𝑉 are constituents of B } and
let 𝐷𝑉 = {𝐶|𝑉 is a constituent of C } ⧵ 𝑆 then 𝐷𝑉 is a set of
edges and 𝑆 is a set of nodes.

Definition 6 (place, functor, value). Let [𝛼 𝑥 𝑣] be a node
and let [𝛽 𝑦 𝑣1] be an edge. Then 𝑥 is a place, 𝛼, 𝛽 are
functors, and 𝑦, 𝑣 , 𝑣1 are values.

Definition 7 (connection). Inductive definition:

1. Let 𝛼 be an edge then 𝛼 is a connection (atomic).
2. Let 𝛼, 𝛾 be connections, let 𝛽 be node then 𝛼 → 𝛽 →

𝛾 is a connection.
3. Only structures in 1 and 2 are connections.

Remark: Connection is a transition between nodes.

Definition 8 (path). Let 𝛼 and 𝛾 be nodes and let 𝛽 be a
connection then 𝛼 → 𝛽 → 𝛾 be a path.

Definition 9 (same path). Let 𝛼 → 𝛽 → 𝛾 and 𝛼 → 𝛿 → 𝛾
be paths in model and positive example respectively, let
𝛿 = 𝜖 → ... → 𝜔 then if 𝜆𝑥[′𝐷𝐼𝑅2𝑤𝑡 𝑥 𝑦] in 𝛽 (model) =
𝜆𝑦[′𝐷𝐼𝑅2𝑤𝑡 𝑦 𝑧] in 𝛿 (positive example) then both paths
represent the same path.

Definition 10 (network). A network is a set of all paths.

5.1. Path Preprocessing
As mentioned earlier, input sentences may not always
contain all the necessary information. If node informa-
tion is missing, then it is not path as defined by definition
8. However, the heuristics described in the following
sections can only be applied to paths, so we must first
deploy the Path Preprocessing algorithm.

5.2. Heuristic application
The Path Introduction and Path Update heuristics de-
scribed in the following sections are applied in differ-
ent cases. Before deploying the heuristics, we need to
check whether the model and the example capture same
paths as defined by definition 9, and select the appro-
priate heuristic to apply based on the result. If they are
Same Paths, the Path Update heuristic is applied. Other-
wise, Path Introduction is applied. The description of the
algorithm for checking Same Paths is as follows:



1. Check if DIR1 locations are the same in the model
and example:

a) If not, the algorithm terminates, and they
are not same paths.

b) If so, the algorithm continues.
2. Check if the DIR3 locations in the model and

example are the same:
a) If not, the algorithm ends and they are not

same paths.
b) If yes, the algorithm continues.

3. Check if all nodes in the model and example have
the same DIR2 locations:

a) If not, the algorithm ends and they are not
same routes.

b) If yes, the algorithm continues.
4. All conditions are met and they are a same paths.

Subsequently, a specific heuristic is already applied.

5.3. Path Introduction
After passing all sentences through Path Processing and
checking whether they are same paths or not, we can
start building the actual topological representation of the
map from these sentences. First, we focus on the Path
Introduction heuristic. This heuristic works with two
constructions: the existing path model and an example
representing a sub-path. Path Introduction adds a new
path to the model. We will explain the whole process
using an example.

The heuristic algorithm proceeds as follows:

1. From the positive example, we get all explications
representing nodes (containing DIR1 or DIR3).

2. For each explication of the model:
a) If DIR1 or DIR3 appears in the current ex-

plication, then:
i. Loop through all the nodes obtained

in step 1 from the example.
ii. Compare the location in the exam-

ple node with the location in the cur-
rently examined model node:
A. If they match, we mark the ex-

ample as connected to the the
model.

B. If they do not match, continue
by examining other nodes.

3. If the example was marked as connected, then
the entire example is added to the model.

Branch (a) of the above algorithm description is dis-
played in the code 9.

5.4. Path Update
The second heuristic for building the topological repre-
sentation of the map is Path Update, which modifies the
existing path in the model. The heuristic also works with
a model and a positive example and is applied when both
paths represent the same path. The positive example then
describes the given path in more detail than is captured
in the model, so we use the information from the positive
example to refine the model.
Let us have the input data displayed in code 10. Both

paths have the same origin and destination and also iden-
tical DIR2 locations, so Path Update can be deployed.

We refine the model by removing the entire DIR3 node
explication, since here we have to link to the new location
from the positive example. We then merge the model and
positive example explications and insert the previously
removed DIR3 node explication at the end. The resulting
model is displayed in the code 11.



6. Conclusion
In this paper, we described the TIL-Script construction
processing used for two purposes.
In the first part, we have described the method of

finding an appropriate concept based on properties and
attributes’ values known by the user. The method ex-
ploits Formal Conceptual Analysis applied on the expli-
cations of atomic concepts contained in textual sources.
The method offers appropriate concepts which fall under
properties and attributes’ values provided by the user.
In the second part, we described heuristics that ob-

tain descriptions of agent’s journeys from descriptions
in natural language. Such a description can be used as a
navigation tool in complex multi-agent systems environ-
ments.
Both methods in the first and second parts of this pa-

per are based on the same supervised machine learning
algorithm that processes TIL-Script constructions as ex-
amples. The algorithm is adjusted for its purpose.
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