
Membrane System as a Communication Interface between
IoT Devices
Šárka Vavrečková1

1Silesian University in Opava, Bezručovo nám. 13, Opava, Czech Republic

Abstract
Membrane systems can be used to describe transfer of objects between different locations (membranes) and their eventual
transformation. Network transmission protocols provide something similar, especially the transfer of data. In this paper, we
describe the use of a membrane system for modeling data transmission between IoT devices, while it is possible to take this
model as a generalization of the transmission operation transferable to other protocols or to various programming languages.
The paper also discusses the possibility of using rules of the membrane system to create a simple firewall.

Keywords
membrane systems, internet of things, protocol, membrane firewall

1. Introduction
Membrane computing is a framework of parallel dis-
tributed processing introduced by Gheorghe Pǎun in
1998. Information about this paradigm is available in
[1, 2, 3], or the bibliography at http://ppage.psystems.eu/
[2022-06-08]. Membrane systems are based on the hier-
archical structure of membranes in cells and can be used
to model distributed computing. Mathematical models
of membrane systems have been called P Systems.

Objects located in membranes pass between mem-
branes according to defined rules, similar to how var-
ious substances are transferred between membranes in
a biological cell. The system usually works in parallel
(depending on the selected mode).

The Internet of Things (IoT) is a term that is very
difficult to define. IoT devices are mostly small, incon-
spicuous devices with simple functionality and low con-
sumption, whose strength lies primarily in their intercon-
nection. We talk about smart devices, but the smartness
is in their interconnection and usage of the data obtained
from these devices.

IoT devices can be simple sensors detecting e.g. the
temperature, motion, humidity, light, or alarms, mecha-
nisms for handling lighting, opening or closing windows,
or passive recipients of data (e.g. displays). It can be
more complex devices with multiple functionalities, com-
munication points, gateways to other network types, or
common devices such as smartphones. We encounter
IoT devices at home, in companies, hospitals, industry,
agriculture, on streets,. . .

In principle, IoT devices are computationally indepen-

ITAT’22: Information technologies – Applications and Theory, Septem-
ber 23–27, 2022, Zuberec, Slovakia
$ sarka.vavreckova@fpf.slu.cz (̌. Vavrečková)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

dent of each other and work in parallel. Parallel pro-
cessing can also be described using membrane systems,
where the data transfer between devices can be modeled
using evolution rules.

The use of membranes or similar principles in the
IoT world has been considered for years. Villari et al.
in [4] introduce the concept of “osmotic computing” as
a paradigm, the main purpose of which is to increase
the accessibility of resources and services in a computer
network (e.g. IoT network), including cloud services. The
authors present the concept of micro-services gradually
migrating from the cloud (physically in large data cen-
ters) to the edge of the network (edge computing), i.e.
they are performed on devices in the internal network.
The paradigm is motivated by procedures from biology
or chemistry, where solvent molecules pass through a
semi-permeable membrane into other regions in the en-
vironment with higher solute concentration (osmosis).

The issue is further developed by the paper [5], which
considers the way in which micro-services, in particular,
can migrate between the cloud and edge resources and
focuses more on the Internet of Things. The authors of
[6] deploy micro-services in a hospital application. Datta
and Bonnet in [7] show the use of MELs in securing
connected “smart” cars and other similar devices.

We follow up on paper [8], in which the concept of
using the P system as an interface to IoT devices is pre-
sented. Here we slightly modify the concept, add new
types of objects corresponding to various kinds of mes-
sages in the IoT system, and strictly separate the different
functionalities of the system. We also discuss the possi-
bility of implementing a simple firewall at the membrane
system level.

http://ppage.psystems.eu/
mailto:sarka.vavreckova@fpf.slu.cz
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Preliminaries

2.1. Membrane Systems
We assume the reader to be familiar with the basics of
formal language theory and membrane computing. For
further details, we refer to [9] and [3].

As mentioned above, the basis of membrane systems is
a membrane structure. A membrane can contain objects
and/or nested membranes. The main membrane contains
all the other membranes, we call it the “skin membrane”.
Objects can be handled using evolution rules. Figure 2
shows a membrane system with one skin membrane and
four nested membranes. Almost all membranes contain
at least one object (objects can be usually simply denoted
by letters, but here we use more complex objects with
various parameters).

Definition 1 ([2], [10]). Let 𝐻 be a set of labels.
A P System of a degree 𝑚, 𝑚 ≥ 1, is a construct

Π = (𝑉, 𝜇, 𝑤1, . . . , 𝑤𝑚, 𝑅1, . . . , 𝑅𝑚)

where:

(i) 𝑉 is a nonempty alphabet, its elements are called
objects,

(ii) 𝜇 is a membrane structure consisting of 𝑚 mem-
branes, the membranes are labeled by the elements
of 𝐻 ,

(iii) 𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑚, are strings representing multi-
sets over 𝑉 associated with the region of the 𝑖-th
membrane in 𝜇,

(iv) 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑚, are finite sets of evolution rules
associated with the region of the 𝑖-th membrane in
𝜇; an evolution rule is a pair (𝑢, 𝑣), also written
𝑢 → 𝑣, where

• 𝑢 is a string over 𝑉 ,
• 𝑣 = 𝑣′ or 𝑣 = 𝑣′𝛿, where 𝑣′ is a string over{︀

𝑎ℎ𝑒𝑟𝑒, 𝑎𝑜𝑢𝑡, 𝑎𝑖𝑛𝑗

⃒⃒
𝑎 ∈ 𝑉, 1 ≤ 𝑗 ≤ 𝑚

}︀
,

and 𝛿 is a special symbol /∈ 𝑉 representing
dissolution of membrane.

The objects can be transported by the evolution rules
through membranes due to the targets out (to the parental
membrane) or in (to the child membrane specified by the
index), or they remain in the original membrane (here).

Details and examples can be found in [2] and [10].

2.2. Internet of Things
We can find a lot of definitions of the Internet of Things,
but none of them is fully descriptive. Their formulation
depends on the usage of such specific IoT structure. In
[11] there are several definitions taken from multiple
sources. We can compose the following definition from
them:

Definition 2 ([11]). The Internet of Things (IoT) is a net-
work of various types of smart objects (so called things) and
devices. The things are connected to the Internet and com-
municate with each other with minimum human interface.
They are embedded with abilities as sensing, analyzing,
processing and self-management based on interoperable
communication protocols and specific criteria. These smart
things should have unique identities and personalities.

There are several common communication models
(or communication patterns) used in IoT networks, the
model Publisher-Subscriber is quite common because it
is closer to the needs of IoT than other models. There
are three types of components: publishers produce data,
subscribers consume and process data, and the controller
(often called broker or server, depending on the specific
protocol) as the central point of the network mediates
data. Publishers send data to the controller, not to sub-
scribers, they don’t need to know about the existence
of subscribers. Each node with the role of a subscriber
subscribes to particular types of data (often called topics)
to the controller, and the controller sends the requested
data to all the subscribers interested in them. Sensors are
examples of publishers (producers); actuators (simple mo-
tors) or displays are examples of subscribers (consumers).

In practice, various higher-level protocols are used
in IoT networks, such as MQTT, XMPP, CoAP, AMQP,
or simply HTTP as in classic computer networks. Fur-
thermore, we will mainly follow the MQTT protocol, in
terms of terminology, message types and communication
scheme.

More details about IoT network communication mod-
els, including protocols, can be found in [12]. Very clear
and brief introduction to MQTT messages is in [13].

3. Model of System
The given definition of the P System does not meet our
requirements: we need a slightly more dynamic structure,
where it is possible to create new objects due to external
influences (e.g. to generate an object containing temper-
ature data), to pass objects to a real device, but also to
generate or delete rules. There are two possibilities:

1. We can modify the definition.
2. We can add an additional layer above the mem-

brane structure, this layer will carry out the stated
tasks.

The second option is more feasible for our purposes, how-
ever, with the possibility to change the set of rules in
membranes from outside (there is no need to change the
definition of membrane system). The set of rules will
be changed continuously, but the impact will only be a
change in the operation of the system, not collisions or
system errors.

The added control layer will be able to affect objects
and rules at each step of the computation. Figure 1
demonstrates the whole structure. The control layer is
above the membrane structure, this layer communicates
using a suitable protocol with other components: a local
network and, indirectly, the Internet, the cloud.

Devices

666666
??????

messages

Control Layer

666666
??????

objects

Membrane Layer

Regular
Network

-�

Cloud

6
?

Figure 1: Communication Architecture

The membrane layer contains a P System with a mem-
brane structure, objects and rules as prescribed by the
definition. The only change from the definition is the
addition of semantics. The objects contain semantic infor-
mation (e.g. the identifier of the sending membrane, the
published data, the credentials when connecting). The
rules only take this information into account in their no-
tation; the semantic information is not changed by rules,
only transited, or a new object with semantic information
is created.

The control layer keeps the state of the P System (ref-
erences to membranes and rules) and other information
– topics, subscriptions etc. And it makes interventions
to the membrane layer (adding new objects, picking up
some other objects etc.).

Each device communicates with one assigned compo-
nent from the control layer, and each component is con-
nected to one assigned membrane from the membrane
layer. The devices do not communicate directly with
each other, nor do the components, only the membranes
forward objects to each other.

The separation of the data transfer itself into the mem-
brane layer has another positive effect: it is not necessary
for all devices to use the same protocol and provide data
with the same meta-information, the control layer can
perform reconciliation.

3.1. Membrane Layer
Figure 2 shows the membrane structure of an example
IoT system with one controller and several components.

'

&

$

%

Controller (Server)

'
&

$
%

Comp1

𝑝(1, south.temp, 1, 34)

'
&

$
%

Comp2

𝑝(2, north.temp, 1, 18)

𝑠(2, time)

'
&

$
%

Comp3

𝑠(3, south.temp)

𝑠(3, north.temp)

'
&

$
%

Comp4

𝑐(4, doorbell, secure12345)
𝑝(1, south.temp, 1, 33)

Figure 2: Example of IoT Membrane Structure

The components Comp1 and Comp2 are thermometers,
the first one on the south side of a house and the second
one on the north side of a house (see the names of the
topics to which they contribute). Both thermometers gen-
erate temperature data at regular intervals, which means
that the object 𝑝 appears regularly in the corresponding
membranes. In the next step, this object is transferred to
the outer membrane using a rule.

The length of the interval is set on the given device, it
can be different on each device. In our case, the object
for the first component is generated in each step of the
membrane system operation; the second component has
a bit longer interval.

Comp2 is a more sophisticated device that can also
display time, it sent an order to synchronize the time
data (however, there is no component in the system yet
that would serve as a publisher for the given topic).

Comp3 is a display that has just been activated and it
is sending an order for data of the first two components
(temperature topics).

The fourth component is being activated – an object
𝑐 has appeared in the skin membrane environment for
connecting this membrane to the system (activating the
corresponding device). According to the semantic data
of the object, it may be a doorbell.

In Figure 2 we can see several objects in various mem-
branes. Each of the objects also has properties. The
objects passing through membranes represent messages
sent between components. We use the following types
of objects in our system:

• 𝑐(ID, credentials) is sent to negotiate a connec-
tion to the controller. The sending component
(with the present ID) can act as a publisher and/or
subscriber after the connection is established.

• 𝑡(ID) is sent by the component when terminating
the connection.

• 𝑠(ID, topic) is used to order messages belonging
to a specific topic. It is received by the controller
and the sending component is put to subscribers
for the topic.

• 𝑢(ID, topic) is sent by the given subscriber to
unsubscribe from the given topic.

• 𝑝(ID, topic, retain, data) represents the “Publish”
message sent by the given publisher in the first
stage of the path, that is, from the membrane of
the publishing component to the controller. The
third parameter “retain” takes the value 0 or 1.
The value 1 means that the data for the given topic
should be stored, and forwarded to a component
that sends order just after the publication of this
data.

• 𝑑(publisherID, subscriberID, topic, retain, data)
represents the same message, but in the second
stage. The controller creates this type of object
for each subscriber for the topic and adds the
second parameter.

The objects 𝑐 and 𝑡 are intended for activation and de-
activation of components. In the real world, this means
establishing a session between a component and the con-
troller (𝑐, connect) and terminating the session (𝑡). When
establishing a session, the component authenticates itself
(must pass credentials).

The object 𝑠 is intended for ordering a subscription to
a selected topic, and the object 𝑢 serves to unsubscribe.
Both objects need the sender’s ID, and 𝑠 contains the
topic name to subscribe.

The objects 𝑝 and 𝑑 are used for the publish operation.
We need two types of objects for this operation because
we need to distinguish the two phases of the message
path (from the publisher to the controller and from the
controller to the subscriber). In the second phase, the sub-
scriberID property is added to the object. The properties
of 𝑝 and 𝑑 correspond to the publish message type: the
sender’s ID (publisherID), the topic to contribute. One
of the properties is the “retain” value that determines
whether the published data should be stored for newly
connected subscribers, not just forwarded to current sub-
scribers. And of course the data. For 𝑑 we need one
additional property, the target (subscriberID).

The use of the denoted objects is shown in Figure 3.
Let us define the evolution rules for each membrane.

The rules are used to transport objects between mem-
branes.

Assume that the controller has a database (denoted
as subscriptionsDB) of all subscribers for each topic. For
simplicity, we represent the mentioned database as a set
of ordered pairs (topic, subscriber). Each topic can have
multiple subscribers and each subscriber can subscribe
to multiple topics.

Any
component

-𝑐(. . .)

𝑡(. . .)
Controller

Controller �𝑠(. . .)

𝑢(. . .)
Subscriber

Publisher -𝑝(. . .)
Controller -𝑑(. . .)

Subscriber

Figure 3: Objects for the operations connect/disconnect, sub-
scribe/unsubscribe, publish

For the skin membrane (controller) we need the fol-
lowing set of rules: for each publisher 𝑖 publishing in
a topic 𝑡 with the retain value 𝑟

𝑝(𝑖, 𝑡, 𝑟, data) →
⋃︀

𝑠 𝑑(𝑖, 𝑠, 𝑡, 𝑟, data)ℎ𝑒𝑟𝑒
∀(𝑡, 𝑠) ∈ subscriptionsDB

𝑑(𝑖, 𝑠, 𝑡, 𝑟, data) → 𝑑(𝑖, 𝑠, 𝑡, 𝑟, data)𝑖𝑛𝑠

∀ subscribers 𝑠

For each component 𝑖, topic 𝑡 and retain value 𝑟:

𝑝(𝑖, 𝑡, 𝑟, data) → 𝑝(𝑖, 𝑡, 𝑟, data)𝑜𝑢𝑡
These rules can also exist for the topics in which the
component does not publish because the object on the
left side of the rule appears in the membrane only when
the component starts publishing data to the topic.

For each component 𝑖 and each topic 𝑡

𝑠(𝑖, 𝑡) → 𝑠(𝑖, 𝑡)𝑜𝑢𝑡

We create these rules again for all possible topics.
Similarly, we need to transport other objects from the

components 𝑖:

𝑐(𝑖, credentials) → 𝑐(𝑖, credentials)𝑜𝑢𝑡
𝑡(𝑖) → 𝑡(𝑖)𝑜𝑢𝑡
𝑢(𝑖, 𝑡) → 𝑢(𝑖, 𝑡)𝑜𝑢𝑡 for all possible topics 𝑡

3.2. Control Layer
The role of the control layer is to mediate communication
between the membrane system and devices.

If a device sends the message to establish a connection
with the controller, the control layer creates an object
with the device index and credentials in the correspond-
ing membrane. If a device produces data and sends the
“produce” message, the control layer creates an object
with the appropriate parameters in the corresponding
membrane. The procedure is similar when any other
message occurs.

If an object indicating a message for the corresponding
device appears in a membrane, the control layer reacts
again: it removes the object from the membrane and
passes the relevant message to the given device.

Algorithm 1: Messages and corresponding objects

// Parental message/object with one common
property, all messages have a sender:

message:
type, // publish, deliver,. . .
ID; // ID of the source component

// Object generated by a publisher, going to the
controller (the first phase of publishing message):

publish (child of: message): 𝑝
topic,
retain, // 0 or 1
data;

// Object transformed by the controller, going to
a subscriber (the second phase):

deliver (child of: publish): 𝑑
subscriberID;

// Subscribing message with an order:
subscribe (child of: message): 𝑠

topic; // topic to subscribe

// Unsubscribing message for some topic:
unsubscribe (child of: message): 𝑢

topic; // topic to unsubscribe

// Connection message for a component:
connect (child of: message): 𝑐

credentials; // e.g. username, password

// Disconnection message for a component:
disconnect (child of: message) 𝑡

The control layer does not deal with the forwarding of
messages or the transfer of objects, the membrane system
is in charge of these operations.

All the messages sent between components and their
corresponding objects are shown in Algorithm 1. Each
message/object has its sender, so all messages (objects)
have the property ID (sender’s ID) inherited from the par-
ent message/object “message”. Other properties depend
on the type of message/object.

Algorithm 2 shows the properties of the controller and
individual components. Each component can publish
into one topic (publishTopic) and subscribe data to mul-
tiple topics (orderedTopics). All components have their
corresponding membranes inherited into the skin mem-
brane.

The controller registers topics that can be subscribed to
(topicsDB), and all current subscriptions (subscriptionsDB).
The corresponding membrane is the skin membrane.

In Algorithm 3 and 4 we can find the functions of
the components and the controller. The components as
the part of the control layer only perform the transfor-
mation between representation in the object form (for

Algorithm 2: Entities – properties
topic:

topic,
lastPublisher,
lastValue; // last published data

order:
topic,
subscriberID;

// Parental object for all entities:
entity:

ID, // identification number
membrane, // ref. to the corresp. membrane
device; // ref. to the corresp. device

component (child of: entity):
turnedOn, // 0 (false) or 1 (true)
// Properties for publishing:
publishTopic,
publishRetain, // 0 or 1
// Property for subscribing:
topic[] orderedTopics;

controller (child of: entity):
component[] components,
authenticator,
topic[] topicsDB, // registered topics
order[] subscriptionsDB; // subscriptions

membranes) and the message form (for devices). For the
publish message, if the protocol used by the given device
does not provide working with topics, we can use the
property publishTopic.

In contrast, the controller does not perform transfor-
mations, but works with databases whose list can be seen
in Algorithm 2. If the controller device itself does not
provide authentication, the control layer can do it. For
new subscriptions, it is possible to use the retain property,
and we can also add additional functionality if required.

The transformation between the objects 𝑝 and 𝑑 is
made inside the membrane layer using the appropriate
rule, not inside the control layer.

3.3. Membrane Firewall
A firewall is a traffic filter, i.e. it defines which communi-
cation is allowed and which is not. In our system, we can
implement the firewall at any layer, it depends on where
we want it to interfere with traffic. Putting the firewall in
the membrane layer has the advantage that the firewall
is harder to detect for a potential attacker and we have
access to all traffic. However, we need the possibility to
interfere with the evolution rules of membranes.

Algorithm 3: Components – functions

// An object received from the membrane:
function component.receiveObject(obj)
begin

if obj.type = = 𝑑 then
device^.processMessage(deliver,
obj.publisherID, obj.topic, obj.retain, obj.data) ;

end

// A message received from the device:
function component.receiveMessage(mes)
begin

switch mes.type do
case connect do

membrane^.createObject(c, mes.ID,
mes.credentials);

case disconnect do
membrane^.createObject(t, mes.ID);

case subscribe do
membrane^.createObject(s, mes.ID,
mes.topic);

case unsubscribe do
membrane^.createObject(u, mes.ID,
mes.topic);

case publish do
membrane^.createObject(p, mes.ID,
mes.topic, mes.retain, mes.data);

end
end

In the previous sections, we assumed that all compo-
nents can publish in any topic and can subscribe to any
topic. Thus, a natural implementation of a firewall can
simply be to restrict the set of evolution rules for certain
topics and certain components according to the specified
requirements. We can proceed in one of the following
ways:

1. We intervene in the rule replacing object 𝑝 with
a set of objects 𝑑 inside the skin membrane. The
𝑑 object for a given subscriber and topic will or
will not be generated.

2. We add or remove the rule transferring the object
𝑑 into the membrane of the target component. In
this case, it is advisable to create a deletion rule
for the given object.

Whichever option we choose, the firewall does not de-
lay traffic in any way. The published object is either
transferred, ignored or deleted, always within one rule.
Suppose we choose the first option.

The firewall must also be managed by adjusting evo-
lution rules. We can provide this functionality in the
control layer. The controller contains a database with set-
tings for the firewall, according to which it reacts when

Algorithm 4: Controller – function

// An object received from the membrane:
function controller.receiveObject(obj)
begin

switch obj.type do
case c do

if (authenticator.check(obj.ID,
obj.credentials)) and
(device^.processMessage(connect,
obj.ID, obj.credentials)) then

components[obj.ID].turnOn();
case d do

device^.processMessage(disconnect,
obj.ID);

components[obj.ID].turnOff();
case s do

device^.processMessage(obj.ID, obj.topic);
subscriptionsDB.add(obj.topic, obj.ID);
if topicsDB.retainSet(obj.topic) then

membrane^.createObject(d,
topicsDB.lastPublisher(obj.topic),
obj.ID, obj.topic, 1,
topicDB.lastValue(obj.topic));

case u do
subscriptionsDB.remove(obj.topic, obj.ID);
device^.processMessage(obj.ID, obj.topic);

case p do
if obj.retain then

topicsDB.storeData(obj.topic, obj.data);
else topicsDB.unsetRetain(obj.topic) ;

end
end

receiving an object 𝑠 (subscription):

if firewall.allow(obj.ID, obj.topic) then
membrane^.adjustRules_addSubscription(obj);

The consequence is a modification of all the relevant rules
transforming the object 𝑝 with the given topic into sets
of objects 𝑑 (the object 𝑑 for the given subscriber and
topic is added).

Furthermore, for disconnect messages, the given object
needs to be removed from the relevant rule. Therefore, if
any rule transforming object 𝑝 to 𝑑 in the skin membrane
is applied, only such 𝑑 objects intended for any allowed
communication are created.

4. Discussion
In this paper, we comply with the message types and
overall functionality of the MQTT protocol, but only
in a simplified way. The mentioned protocol actually

uses other types of messages (including confirmations),
which of course can also be implemented as objects in
membranes. Unfortunately, there is not enough space for
the complete modeling of this communication.

The proposed firewall could be enriched with a quar-
antine membrane, and rules for the skin membrane that
forward “suspicious” traffic to the quarantine membrane.
A supervisor could regularly check this membrane and
would gain an overview of risky traffic.

The goal of this paper is to use a mechanism indepen-
dent of, although inspired by, specific existing protocols
to propose communication between IoT devices. A mem-
brane system was used as a basis, which can be further
elaborated: there are programming languages for imple-
menting membrane systems, and other languages for
network applications can be used as well.

Acknowledgments
This work was supported by the project no.
CZ.02.2.69/0.0/0.0/18_054/0014696, “Development
of R&D capacities of the Silesian University in Opava”,
co-funded by the European Union.

References
[1] G. Păun, Membrane Computing: An Introduction,

Springer, Heidelberg, 2002.
[2] G. Păun, G. Rozenberg, A guide to membrane com-

puting, Theor. Comp. Science 287 (2002) 73–100.
[3] G. Păun, G. Rozenberg, A. Salomaa, The Oxford

Handbook of Membrane Computing, Oxford Uni-
versity Press, New York, 2010.

[4] M. Villari, M. Fazio, S. Dustdar, O. Rana, R. Ran-
jan, Osmotic computing: A new paradigm for
edge/cloud integration, IEEE Cloud Computing
3 (2016) 76–83.

[5] V. Sharma, K. Srinivasan, D. N. K. Jayakody, O. Rana,
R. Kumar, Managing service-heterogeneity using
osmotic computing, in: International Conference
on Communication, Management and Information
Technology (ICCMIT 2017), Warsaw, Poland, 2017.

[6] A. Buzachis, D. Boruta, M. Villari, J. Spillner, Mod-
eling and emulation of an osmotic computing
ecosystem using osmotictoolkit, in: 2021 Aus-
tralasian Computer Science Week Multiconference,
ACSW ’21, Association for Computing Machinery,
New York, NY, USA, 2021. URL: https://doi.org/
10.1145/3437378.3444366. doi:10.1145/3437378.
3444366.

[7] S. K. Datta, C. Bonnet, Next-generation, data centric
and end-to-end iot architecture based on microser-
vices, in: IEEE International Conference on Con-

sumer Electronics – Asia (ICCE-Asia), 2018, pp. 206–
212. doi:10.1109/ICCE-ASIA.2018.8552135.

[8] S. Vavreckova, Modeling communication in in-
ternet of things network using membranes, in:
CEUR Proceedings of the 21st Conference Infor-
mation Technologies - Applications and Theory
(ITAT 2021), 2021, pp. 195–201.

[9] J. E. Hopcroft, J. D. Ullman, Introduction to
Automata Theory, Languages and Computation,
Addison-Wesley, 1979.

[10] N. Busi, Causality in membrane systems, Mem-
brane Computing (2007) 160–171.

[11] W. Kassab, K. A. Darabkh, A–z survey of internet
of things: Architectures, protocols, applications,
recent advances, future directions and recommen-
dations, Journal of Network and Computer Appli-
cations 163 (2020). URL: https://doi.org/10.1016/j.
jnca.2020.102663.

[12] J. Dizdarević, F. Carpio, A. Jukan, X. Masip-Bruin,
A survey of communication protocols for internet
of things and related challenges of fog and cloud
computing integration, Association for Computing
Machinery 51 (2019). URL: https://doi.org/10.1145/
3292674. doi:10.1145/3292674.

[13] P. R. Egli, MQTT – Message Queueing Teleme-
try Transport, Zurich University of Applied
Sciences, Zurich, 2017. doi:10.13140/RG.2.2.
13210.54721.

https://doi.org/10.1145/3437378.3444366
https://doi.org/10.1145/3437378.3444366
http://dx.doi.org/10.1145/3437378.3444366
http://dx.doi.org/10.1145/3437378.3444366
http://dx.doi.org/10.1109/ICCE-ASIA.2018.8552135
https://doi.org/10.1016/j.jnca.2020.102663
https://doi.org/10.1016/j.jnca.2020.102663
https://doi.org/10.1145/3292674
https://doi.org/10.1145/3292674
http://dx.doi.org/10.1145/3292674
http://dx.doi.org/10.13140/RG.2.2.13210.54721
http://dx.doi.org/10.13140/RG.2.2.13210.54721

	1 Introduction
	2 Preliminaries
	2.1 Membrane Systems
	2.2 Internet of Things

	3 Model of System
	3.1 Membrane Layer
	3.2 Control Layer
	3.3 Membrane Firewall

	4 Discussion

