
Computer Verifications of Regular Representations of
Groups of Orders Smaller than 33 via 𝑘-Hypergraphs
Dominika Mihálová

Comenius University, Faculty of Mathematics, Physics and Informatics, Department of Applied Informatics, Bratislava, Slovakia

Abstract

Given a finite group 𝐺, the hypergraphical regular representation problem asks about the existence of a hypergraph whose

full automorphism group is equal to 𝐺 acting regularly on the set of its vertices. In our paper, we work with 𝑘-hypergraphs

which are hypergraphs in which each hyperedge is of the same size 𝑘. Since the existence or non-existence of hypergraphical

regular representations for groups of the order exceeding the value 32 has been proved theoretically, our focus is on a

computational verification of hypergraphical regular representation via 𝑘-hypergraphs for groups of order smaller than or

equal to 32. For all groups of order less than or equal to 32, except for the group Z5
2 , we computationally proved a conjecture

stating that if a group 𝐺 admits a hypergraphical regular representation via some 𝑛-hypergraph, it admits the hypergraphical

regular representation for every 𝑘-hypergraph in the range 𝑛 ≤ 𝑘 ≤ |𝐺| − 𝑛. To obtain our results, we created and

implemented algorithms in the computational system GAP.

Keywords
regular representation, k-kypergraphs, computer verification

1. Introduction
Throughout this paper, we consider all groups to be fi-

nite. The automorphism of a graph Γ is a permutation

𝜑 of the vertex set 𝑉 (Γ), such that the pair of vertices

(𝑢, 𝑣) form an edge if and only if the pair (𝜑(𝑢), 𝜑(𝑣))
also form an edge. The set of all automorphisms of Γ
together with the operation of composition form the au-

tomorphism group 𝐴𝑢𝑡(Γ) of the given graph Γ. The

graphical regular representation (GRR) of a group 𝐺 is

a graph Γ with the set of vertices 𝑉 (Γ) and the set of

edges 𝐸(Γ) having the property that the automorphism

group of the graph 𝐴𝑢𝑡(Γ) is the group 𝐺 in its regular

action. Frucht in [1] proved that every finite group 𝐺 has

a graphical representation whose automorphism group is

isomorphic to 𝐺, but the representation is not necessarily

regular.

The GRR problem has been intensely studied over

the years. First, Sabidussi [2] and Chao [3] proved the

non-existence of GRR for abelian groups with exponent

greater than 2. The list of groups with no GRR’s was sup-

plemented by McAndrew [4] and Imrich [5] for groups

Z𝑛
2 , where 𝑛 = 2, 3, 4. Later, Imrich and Watkins [6]

showed the existence of GRR’s for abelian groups with

exponent equal to 2.

The search for the GRR’s for non-abelian groups

started with Nowitz [7], later joined by Watkins [8, 9]

who established the result that a group 𝐺 has a GRR

if 𝐺 is a non-abelian cyclic extension of an abelian

ITAT’22: Information technologies – Applications and Theory, Septem-
ber 23–27, 2022, Zuberec, Slovakia
$ dominika.mihalova@fmph.uniba.sk (D. Mihálová)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

group and the order of the group is relatively prime

to 6. Their method was generalised by Imrich [10]

who discovered that non-abelian groups whose order

is odd and not less than 37 · 54 admit a GRR. Later,

Watkins [11] summarised the previous findings that

were subsequently supplemented by Godsil [12]. Grad-

ually, a list of groups that do not admit a GRR has been

formed and today we have a complete classification in

the form of the following list: abelian groups with ex-

ponent greater than 2, generalised dicyclic groups and

groups isomorphic to one of 13 groups whose order is

not greater than 32 Z2
2, Z3

2, Z4
2, D3, D4, D5, A4, Q×

Z3, Q × Z4, ⟨𝑎, 𝑏, 𝑐 | 𝑎2 = 𝑏2 = 𝑐2 = 1, 𝑎𝑏𝑐 =
𝑏𝑐𝑎 = 𝑐𝑎𝑏⟩, ⟨𝑎, 𝑏 | 𝑎8 = 𝑏2 = 1, 𝑏−1𝑎𝑏 =
𝑎5⟩, ⟨𝑎, 𝑏, 𝑐 | 𝑎3 = 𝑏3 = 𝑐2 = 1, 𝑎𝑏 = 𝑏𝑎, (𝑎𝑐)2 =
(𝑏𝑐)2 = 1⟩, ⟨𝑎, 𝑏, 𝑐 | 𝑎3 = 𝑏3 = 𝑐3 = 1, 𝑎𝑐 = 𝑐𝑎, 𝑏𝑐 =
𝑐𝑏, 𝑏−1𝑎𝑏 = 𝑎𝑐⟩.

A variation of the GRR problem is a digraphical regular

representation (DRR) problem, which deals with directed

graphs. A directed graph 𝑋 is a pair of the set of ver-

tices 𝑉 (𝑋) and the set of edges 𝐸(𝑋), where each edge

𝑒 ∈ 𝐸(𝑋) is an ordered pair of vertices 𝑢, 𝑣 ∈ 𝑉 (𝑋).
The DRR of a group 𝐺 is a directed graph 𝑋 whose auto-

morphism group 𝐴𝑢𝑡(𝑋) preserves the direction of the

edges and is isomorphic to the group 𝐺 acting regularly

on the set of vertices of 𝑋 . The problem was studied by

Babai [13], who showed that every finite group admits a

DRR except for the five groups Z2
2,Z3

2,Z4
2,Z2

3,Q8. Just

as a side note we would like to point out a consequence

which will be the subject of future research. Babai proved

that for a group 𝐺 of order 𝑛 there exists a commutative

semigroup of order less than or equal to 2𝑛+ 2 with an

automorphism group isomorphic to 𝐺.

In the present work, we focused on the problem of

mailto:dominika.mihalova@fmph.uniba.sk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

hypergraphical regular representation motivated by the

original GRR problem of which it is a generalization. The

hypergraphical regular representation problem is inter-

esting mainly due to the more complex structure of the

hypergraphs. Section 2 covers the definition of the hy-

pergraphical regular representation problem with a brief

review of all necessary concepts and an overview of the

previous results. At the end of the section, we present

the hypergraphical regular representations problem that

we computationally verified and a conjecture about the

spectrum of possible parameters. In Section 3, we de-

scribe our computational approach in details. We specify

the used computational system GAP that is important

for reaching our proposed goals. Further, we present

an implementation of algorithms in the computational

system with a description of the theoretical background

for each operation. In Section 4, we present different

types of applied optimizations used to decrease the com-

putational time and the amount of used memory of the

implemented algorithms. We describe each optimization

with the theoretical background supporting it. Further,

we introduce pseudocode that implements operations

from the mentioned optimizations. Section 5 presents

the results of the computational verification of the two

main goals introduced in Section 2. The first goal is the

verification of the existence or non-existence of HRR’s

via a 𝑘-hypergraphs for groups of orders not exceeding

32. The second goal is the proof of the veracity of the

conjecture about the spectrum for groups of orders not

exceeding 32. We also describe interesting observations

concerning our computations with regard to the minimal

needed number of combinations of orbits to acquire a

HRR of a group. We compare the runnings of our al-

gorithm in computational systems GAP and Magma in

terms of the computational time and the memory usage.

2. Preliminaries
A hypergraph 𝐻 is a combinatorial structure defined as

an ordered pair of the set of its vertices 𝑉 (𝐻) and the

set of its hyperedges 𝐸(𝐻), sometimes called blocks,

which are sets of the vertices. Each hyperedge 𝑒 ∈ 𝐸(𝐻)
is a nonempty subset of the set of vertices of 𝐻 and

in general, it contains any number of hypergraph ver-

tices. A degree of a vertex is the number of hyperedges

to which the vertex belongs. A hypergraph is called a

𝑘-uniform if all hyperedges are of the same size 𝑘, i.e.

∀𝑒 ∈ 𝐸(𝐻) : |𝑒| = 𝑘. In our paper, we focus on 𝑘-

uniform hypergraphs to which we will refer in short as

𝑘-hypergraphs from now on. A regular 𝑘-hypergraph
is a 𝑘-hypergraph, where each vertex has the same de-

gree. The automorphism group of 𝑘-hypergraph 𝐻 is

the group of permutations of 𝑉 (𝐻) that preserve the

𝑘-hyperedges, i.e., permutations 𝜑 ∈ 𝑆𝑦𝑚𝑉 with the

property ∀𝑒 ∈ 𝐸(𝐻) : 𝜑(𝑒) ∈ 𝐸(𝐻). Based on previ-

ous definitions, the 2-hypergraph is also the non-oriented

graph Γ from Section 1. A 𝑘-hypergraph is a regular rep-
resentation (HRR) of a group 𝐺 for 0 ≤ 𝑘 ≤ |𝐺| if and

only if for every two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐻) there exists

exactly one automorphism 𝜙(𝑢) = 𝑣 from the automor-

phism group of the 𝑘-hypergraph 𝐴𝑢𝑡(𝐻), i.e. 𝐴𝑢𝑡(𝐻)
acts regularly on the set of vertices 𝑉 (𝐻). An important

concept that will be used is a group action of a group 𝐺
on a set 𝐴 which is a map · : 𝐺 × 𝐴 ↦→ 𝐴 (written as

𝑔 · 𝑎, ∀𝑔 ∈ 𝐺, 𝑎 ∈ 𝐴) such that ∀𝑔1, 𝑔2 ∈ 𝐺, 𝑎 ∈ 𝐴 :
𝑔1 · (𝑔2 · 𝑎) = (𝑔1𝑔2) · 𝑎 and ∀𝑎 ∈ 𝐴 : 1𝐺 · 𝑎 = 𝑎.

The orbit of a hyperedge 𝑒 ∈ 𝐸(𝐻) is the set of hy-

peredges in 𝐸(𝐻) to which 𝑒 can be moved by the ele-

ments of group 𝐺, where 𝐺 is acting on the set 𝐸(𝐻),
i.e. 𝐺(𝑒) = {𝑔 · 𝑒 ∈ 𝐸(𝐻) : 𝑔 ∈ 𝐺}, where · is the

induced action of 𝐺 on 𝐸(𝐻).
Foldes and Singhi [14] were the first to study the HRR

problem and they stated that every finite group of the

odd order greater than or equal to 57 has a HRR via a

3-hypergraph. Later that year, Foldes [15] proved that

cyclic groups Z𝑛 for 𝑛 ̸= 3, 4, 5 have regular represen-

tation by a 3-hypergraph. In [16], Foldes and Singhi

introduced a polynomial lower bound 𝑝(𝑘) such that ev-

ery finite group of order greater than or equal to 𝑝(𝑘)
has a HRR via a 𝑘-hypergraph, where 𝑘 is the uniform

size of the 𝑘-hyperedges. The lower bound for the ex-

istence of regular representation by 𝑘-hypergraph for

𝑘 = 3 : 𝑝(3) > 26 and for 𝑘 ≥ 4 : 𝑝(𝑘) > 4𝑘 + 2.

Later, Jajcay [17] studied the HRR problem for general

hypergraphs. His solutions heavily depended on varying

sizes of the hyperedges. It is a more general approach

as hyperedges may be of different sizes. Thus the rules

for admitting a HRR via hypergraphs with varying sizes

of hyperedges are more relaxed than for 𝑘-hypergraphs.

Thus, if a group does not have a HRR via a hypergraph

with varying sizes of hyperedges, it can not have a HRR

via a 𝑘-hypergraph. For hypergraphs with varying sizes

of hyperedges, Jajcay moved the lower bound to 𝑝(𝑘) ≥ 6
and proved that only four finite groups Z3,Z4,Z4,Z2

2

do not have a HRR. The listed groups support the results

from [15]. Afterwards, Jajcay and Jajcayova [18] pub-

lished a list of groups without a HRR via 3-uniform hy-

pergraphs consisting of the previously mentioned groups

in [17] and the groups: Z3,Q8,Z3
2,Z3

4,Z3
5,D5 × Z5.

Based on the previous theoretical results, we know that

groups with orders greater than 32 admit a HRR. The

existence of HRR is not proven for groups with orders less

than or equal to 32 except for the few groups mentioned

above. We computationally verified which groups of the

order less than or equal to 32 have or do not have a HRR

via a 𝑘-hypergraph. Simultaneously, we partially proved

a conjecture mentioned by Jajcayova [19] in a generalised

version. It states that if a group 𝐺 admits a HRR via a 𝑛-

hypergraph then it admits HRRs via 𝑘-hypergraphs for all

𝑛 ≤ 𝑘 ≤ |𝐺| − 𝑛. The conjecture predicts a continuous

and symmetric spectrum of possible parameters 𝑘 for

which a group 𝐺 admits a HRR via 𝑘-hypergraphs.

3. Methods
For the computational verification of group regular rep-

resentations via 𝑘-hypergraphs, we decided to program

our algorithms in the system for computational discrete

algebra - GAP [20]. The system is free, open-source and

widely used in similar computational problems concern-

ing work with groups, graphs and other combinatorial

structures. It provides its own programming language

and implements functions for multiple algebraic algo-

rithms in importable packages. Throughout the imple-

mentation of our algorithms, we were using different

types of packages: GRAPE, loops and DESIGN. In the rest

of this section, I will give some technical information

about the used packages and commands. The algorithms

were implemented in the GAP with version 4.11.1.

The name of the package GRAPE [21] is an abbrevia-

tion for GRaph Algorithms using PErmutation groups and

is designed for computations, constructions and analysis

of graphs with relations to groups. The package con-

nects the graph structure with the group structure. Each

graph is stored as a structure with several components.

One of the components is a group of a graph which is a

specifically chosen subgroup of the graph automorphism

group. The loops package [22] allows computing with

algebraic structures: quasigroups and loops. We chose

to use this package because of the implementation of

group-theoretical algorithms, which were important in

our experiments. More precisely, we used an algorithm

for the left multiplication action. We firstly transformed

a group object into a quasigroup object and then per-

formed the action of the left multiplication. Lastly, the

DESIGN package [23] is made for constructing, classi-

fying, partitioning and studying block designs. In their

definition, a block design is an ordered pair of the set of

points and the set of blocks, where a point is an element

and a block is a set of elements. The condition for using

the package is an imported GRAPE package.

To find the implementation solution to the HRR prob-

lem, we firstly focused on proposing an algorithm to de-

tect the existence or non-existence of HRR’s for groups

via 2-hypergraphs. We tested our algorithm and verified

its correctness on the known theoretical results. We have

the list of all groups with orders not exceeding 32 ad-

mitting the GRR from the [12], which is the HRR via a

2-hypergraph in our case. After verifying the proposed

algorithm for groups on 2-hypergraphs, we modified the

algorithm to compute a HRR of groups via 3-hypergraphs

for the same set of groups of orders less than or equal

to 32. We observed the changes in the list of groups ad-

mitting the HRR’s. Lastly, we generalized the algorithm

for any given 𝑘 to obtain the list of groups with HRR

via any 𝑘-hypergraph to confirm the conjecture given by

Jajcayova [19].

As stated before, a group has a HRR if and only if

there is a 𝑘-hypergraph whose automorphism group acts

regularly on the set of its vertices. We implemented meth-

ods described and proved in [18]. The authors defined

𝑃𝑘(𝐺) as a set of all 𝑘-element subsets of a group 𝐺 and

𝐺𝐿 as the left multiplication of a group 𝐺. By [18], a

group 𝐺 has a HRR via a 𝑘-hypergraph whenever there

exists a 𝑘-hypergraph 𝐻 with the set of 𝑘-hyperedges

𝐸(𝐻) ⊆ 𝑃𝑘(𝐺) whose 𝐴𝑢𝑡(𝐻) = 𝐺𝐿, where 𝑉 (𝐻)
are elements of 𝐺.

We needed to search groups of small orders to use the

theory from [18] in computational implementation. The

above-mentioned theoretical result confirms the exis-

tence of 𝑘-hypergraphs, which are the HRR’s, for groups

exceeding the order of 32, thus our proposed algorithm

needed to go through all groups of order up to and

including 32. We used the for-loops for order ≤ 32
to go through all orders less than or equal to 32 and

for i ≤ NrSmallGroups(order) to get all possible

groups of given order, where NrSmallGroups()
returns the number of groups with the given order.

Subsequently, we created a group object with the

command G := SmallGroup(order, i), which

returns the 𝑖-th group of the given order. The results

above imply that the automorphism group of the

𝑘-hypergraph must be equal to the left multiplication of

the group from which the 𝑘-hypergraph was constructed.

According to Cayley’s theorem, we assigned to each

element of the group 𝑔𝑖 the permutation of the left

multiplication, such that 𝑔𝑖 · 𝑔𝑗 = 𝑔ℎ where 𝑔𝑗 and 𝑔ℎ
are also elements of the group. We used commands

from the loops package to get the left multiplication.

With the command quasi := IntoQuasigroup(G),

we transformed the default group object into a quasi-

group object from the loops package. We performed

perm := LeftMultiplicationGroup(quasi) to

obtain the permutation of the left multiplication for

each element of 𝐺. Based on the computed permu-

tations, we created orbits of 𝑘-hyperedges with the

command orb := Orbits(perm, Combinations
([1..order], k), OnSets), which returns a

duplicate-free list of orbits where each orbit is a set

of 𝑘-hyperedges. The command Combinations()
creates all possible 𝑘-hyperedges that are divided

into orbits depending on the permutations of the left

multiplication. Since the orbit for each 𝑘-hyperedge

contains a set of equivalent 𝑘-hyperedges, the orbits are

disjoint. By creating the combinations of orbits with

Combinations(orb), we obtained a 𝑘-hypergraph,

which either admits or does not admit a HRR for a given

group. The GAP system does not have a specific object

for a 𝑘-hypergraph. Thus, we decided to represent a

𝑘-hypergraph as an incidence structure which preserves

symmetries and its automorphism group is isomorphic

to the automorphism group of the 𝑘-hypergraph. We

depicted the incidence structure 𝐼 (Fig. 1) as a bipartite

graph where the left (black) set of vertices 𝑉𝐿(𝐼) are the

elements of a given group and the right (white) set of

vertices 𝑉𝑅(𝐼) are 𝑘-hyperedges of the 𝑘-hypergraph, i.e.

each 𝑣 ∈ 𝑉𝑅(𝐼) is a 𝑘-subset of 𝑉𝐿(𝐼). An edge between

two vertices 𝑢 ∈ 𝑉𝐿(𝐼), 𝑣 ∈ 𝑉𝑅(𝐼) is constructed if and

only if 𝑢 ∩ 𝑣 ̸= ∅. In the GAP, we constructed the graph

1

2

3

4

5

6

(1, 2, 5)

(1, 2, 6)

(1, 3, 4)

(2, 3, 4)

(3, 5, 6)

(4, 5, 6)

(1, 3, 6)

(2, 4, 5)

(2, 3, 5)

(1, 4, 5)

(1, 4, 6)

(2, 3, 6)

Figure 1: Incidence structure of the 3-hypergraph generated
from group of order 6

object, i.e. the incidence structure of a 𝑘-hypegraph,

with the command I := Graph(Group(()),
[1..Size(vertices)], OnPoints, function
(x,y)return ((Length(vertices[x])= 1
and Length(vertices[y])<> 1)or (Length(
vertices[x])<> 1 and Length(vertices[y])=
1))and Length(IntersectionSet(vertices[

x], vertices[y]))>= 1; end, true) from the

GRAPE package, where vertices = 𝑉𝐿(𝐼) ∪ 𝑉𝑅(𝐼).
Consequently, we got the automorphism group of the

incidence structure with AutomorphismGroup(I). If

the automorphism group has the same order as the given

group, it means the group admits a HRR otherwise the

group does not admit a HRR.

4. Optimizations
We introduce the optimization methods used to improve

the computational time and the memory usage of the

original algorithms proposed in Section 3.

4.1. Left vs. right action
In the original algorithms, we used the outcome

of the left multiplication of the group given by

LeftMultiplicationGroup() to get the orbits con-

sisting of 𝑘-hyperedges. The left and the right group

actions are equivalent. Therefore, the orbits cor-

responding to the left and to the right multiplica-

tion actions are isomorphic. The difference between

the actions is in the order in which 𝑔𝑖 acts on 𝑔𝑗 .

The orbits of the 𝑘-hyperedges and the effective-

ness of the final algorithm are more important. In-

stead of using two commands IntoQuasigroup() and

LeftMultiplication() from the loops package in the

original algorithms, we used one command Action(G
, AsList(G), OnRight) which is by default in GAP,

i.e. we did not need to import additional package. The

command performs the group action of the right multi-

plication on the elements of the group. The results of

these two approaches are distinct in the arrangement

of vertices in the built graphs which is not relevant as

all the constructed graphs from the first approach are

isomorphic to all the graphs constructed by the second

approach.

4.2. Creating orbits
The original algorithms use the command Orbits() to

obtain a list of all orbits for all 𝑘-hyperedges without

duplications. With the increasing size of 𝑘 and the in-

creasing order of the group, the list of orbits takes a lot

of computational time. Instead of the Orbits() com-

mand, we used the command OrbitsDomain(perm,
Combinations([1..order], k), OnSets). The

difference between these two commands is in the ap-

proach to the set of 𝑘-hyperedges built by command

Combinations([1..order], k). The Orbits()
works with the set of 𝑘-hyperedges as seeds compare

to the OrbitsDomain() that works with the set of 𝑘-

hyperedges as a domain. The domain is a structured set

in GAP, which is closed under the action of the group 𝐺.

4.3. Creating and accessing orbit
combinations

In the original algorithms, we created all possible combi-

nations of orbits with Combinations(orb). Then, we

iterated through all of the combinations in a for-loop un-

til we found a regular representation via a 𝑘-hypergraph

for a given group. The orbits are represented as sets of 𝑘-

hyperedges thus the combinations of orbits are stored as

a set of sets of sets of 𝑘-hyperedges. The resulting object

of the Combinations() command is demanding on the

computational memory and becomes more complex with

the increasing 𝑘 which makes the approach not effective

in the way of the memory usage.

The first optimization changed the combinations of

orbits to the combinations of indexes of orbits. We used

command Combinations([1..Size(orb)]) that cre-

ates combinations on elements {1, .., |𝑜𝑟𝑏|} representing

the indexes of orbits in the orb object. The optimization

led to lower memory load since combinations of orbits

are saved as a set of sets. A disadvantage of the algorithm

is that it generates the combinations of orbits that are

not needed if we find the HRR for a group in the earlier

combinations.

We optimized the generated combinations of orbits by

decreasing the amount of computed and not-used com-

binations. We gradually created all combinations of size

𝑐, shortly called 𝑐-combinations, of indexes one by one,

where 𝑐 is in the range 1 ≤ 𝑐 ≤ |𝑜𝑟𝑏|. In the beginning,

we generated all 𝑐-combinations of orbits for 𝑐 = 1. We

looked if a group admits a HRR via a 𝑘-hypergraph con-

structed from one of the 𝑐-combinations. If we did not

find a HRR, we moved to (𝑐+ 1)-combinations of orbits.

We went one by one through the combinations of orbits

until we either found a HRR for a given group or we

reached 𝑐+ 1 > |𝑜𝑟𝑏|. With the optimization, we saved

the computational memory and the computational time

as we did not have to compute the combinations of or-

bit’s indexes above the 𝑐-combinations, where we found

the HRR of a group. Let us point out that we generated

all 𝑐-combinations, which is not necessary. If we found

a combination resulting in a HRR of a group earlier in

the 𝑐-combinations, the rest of the combinations are not

used.

To avoid the computation of not-used combinations

of orbits, we decided on another optimization with the

command IteratorOfCombinations(orb) which re-

turns an iterator object through all combinations of the

set of orbits. The iterator provides the possibility to loop

over the combinations without the repetition and with-

out the need to store all the combinations of orbits. With

the use of the iterator, we did not need to precompute

the combinations of orbits which makes a significant im-

provement in the usage of the computational memory

and the computational time of the algorithm.

4.4. Reducing number of orbit
combinations

As the graphs are being constructed based on the combi-

nations of orbits, we easily computed the number of all

possible graphs given by 𝑐-combinations of orbits with(︀|𝑜𝑟𝑏|
𝑐

)︀
, where |𝑜𝑟𝑏| is the total number of orbits. After

observing the original algorithms printouts for groups

that admit HRR’s, we noticed a given group starts to

admit a HRR from some 𝑐-combinations of orbits and

stops to admit a HRR from (|𝑜𝑟𝑏| − 𝑐)-combinations of

orbits. The smallest number of 𝑘-hypergraphs that are

the regular representations of a group is at the starting

𝑐-combinations of orbits, i. e. the 𝑐-combination from

which the group starts to admit a HRR. The number

of 𝑘-hypergraphs which are a HRR’s increases from the

starting 𝑐 up to
|𝑜𝑟𝑏|
2

and decreases from
|𝑜𝑟𝑏|
2

to |𝑜𝑟𝑏|−𝑐,

where it is also on its minimum. The maximum number

of HRR’s via 𝑘-hypergraphs are obtained at the
|𝑜𝑟𝑏|
2

-

combinations of orbits. Following these observations, we

conjectured that if a given group did not admit a HRR at

the
|𝑜𝑟𝑏|
2

-combinations of orbits, it could not be found at

any 𝑐-combinations of orbits, i.e. the given group does

not have a HRR. Based on the conjecture, we reduced

the number of constructed graphs from 2|𝑜𝑟𝑏| to

(︀ |𝑜𝑟𝑏|
|𝑜𝑟𝑏|

2

)︀
which improved the computational time, in particular for

groups not admitting HRR’s. We computed the specific

𝑐-combinations of orbits with the iterator object men-

tioned in Section 4.3 by specifying the extra parameter 𝑐:

IteratorOfCombinations(orb, c).

4.5. Correcting the graph object
To create the graph object expressing the incidence struc-

ture in the original algorithms, we used the Graph()
command from the GRAPE package. However, we ob-

served a significant flaw with using the command as it

interchanges the sets of vertices 𝑉𝐿(𝐼) and 𝑉𝑅(𝐼). With

the interchange, the original algorithms found more au-

tomorphisms of the created graph, i.e. automorphism

group with a bigger order, as it should be.

We decided to use a command BlockDesign(order,
hyperedges) from the DESIGN package where order

is the set 𝑉𝐿(𝐼) and hyperedges is the set 𝑉𝑅(𝐼). Even

though we needed to import an extra package, the new

command prevented: interchanging the sets of vertices

𝑉𝐿(𝐼) and 𝑉𝑅(𝐼), mistakes in writing the correct condi-

tion in the graph creating function and was more efficient

in the computational time.

4.6. Optimized algorithm
Regarding the above-mentioned optimizations, we were

able to implement a more effective algorithm shown in

Algorithm 1. The input to the algorithm is a parameter 𝑘
for the 𝑘-hypergraph. The optimization from Section 4.1

concerning the change in the group action is used in Op-

eration 5. Next optimization in the way of computing the

orbits from Section 4.2 was applied in Operation 6. Opti-

mizations considering the combinations of orbits from

Sections 4.3 and 4.4 is showed in Operation 7. The last op-

timization of constructing the graph object is presented

in Operation 8.

5. Results
The algorithms were implemented and executed in the

GAP computational system. From several runnings of

the algorithms, we were able to get results described in

the following subsections.

Algorithm 1 Pseudocode: Optimized algorithm

1: function (k)

2: for 𝑜𝑟𝑑𝑒𝑟 ≤ 32 do
3: for 𝑖 ≤ NrSmallGroup(order) do
4: G = SmallGroup(order, i)

5: perm = Action(G, AsList(G), OnRight)

6: orb = OrbitsDomain(perm, Combina-

tions([1..order], k), OnSets)

7: for comb in IteratorOfCombinations(orb,

Int(Size(orb)/2)) do
8: graph = BlockDesign(order, comb)

9: if Size(AutomorphismGroup(graph)) = or-

der then
10: return ’group has HRR’

11: break
12: end if
13: end for
14: return ’group does not have HRR’

15: end for
16: end for
17: end function

5.1. Groups with or without HRR
The first goal of our computational verification was to

find which groups of orders less than or equal to 32 ad-

mit or do not admit HRR’s via 𝑘-hypergraphs, where

𝑘 is in the range 0 ≤ 𝑘 ≤ |𝐺|. We obtained re-

sults for all groups of orders less than or equal to 32
with their respective values of 𝑘 except for the group

Z5
2. We were able to compute the existence or non-

existence of HRR via 𝑘-hypergraph for group Z5
2 only

for 𝑘 = 3, 4, 5, 28, 29, 30, 31, 32. All mentioned groups

with an associated value of 𝑘 admit a HRR except groups

that are shown in Table 1. With the increasing 𝑘 and the

increasing order of the group, the computations became

more complex considering the computational time and

the computational memory. The most challenging was

to compute a HRR of a group for the 𝑘 around the middle

of the range, i.e., for 𝑘 around
|𝐺|
2

, due to a large number

of orbits. Especially, the computations for the group Z5
2

got exhaustive, because of an enormous number of orbits.

We are still working on computing the results for the

group Z5
2 and values of 𝑘 in the range 6 ≤ 𝑘 ≤ 27.

5.2. Proved conjecture
One of the main goals was to prove a conjecture by Ja-

jcayova [19]. Based on the results from the previous

subsection and Table 1, we proved the conjecture for all

groups of orders less than or equal to 32 except the group

Z5
2 as we do not have results for all values of 𝑘 in the

range 0 ≤ 𝑘 ≤ |𝐺|. Thus if a group 𝐺 of order not ex-

ceeding 32, except Z5
2, admits a HRR via a 𝑛-hypergraph,

it also admits HRR’s via 𝑘-hypergraphs, where the 𝑘 is

in the range 𝑛 ≤ 𝑘 ≤ |𝐺|−𝑛. In other words, if a group

Table 1
Groups of order less than or equal to 32 not admitting HRR’s
via 𝑘-hypergraphs for 𝑘 in the range 0 ≤ 𝑘 ≤ |𝐺|, where |𝐺|
is an order of a given group

k Groups
3 groups of orders 3, 4, 5, and Q8,Z3

2

4 groups of orders 4, 5, 6
5 groups of orders 5, 6, 7, and Q8,Z3

2

6 groups of orders 6, 7, 8
7 groups of orders 7, 8, 9
8 groups of orders 8, 9, 10
9 groups of orders 9, 10, 11
10 groups of orders 10, 11, andZ12,Z3⋊Z4,A4,Z2×

Z6

11 groups of orders 11, 12, 13
12 groups of orders 12, 13, and Z14

13 groups of orders 13, 14, 15
14 groups of orders 14, 15, andZ16,Z2

4,Z4⋊Z4,Z2×
Z8,Z8⋊3Z2,Q16,Z2

2×Z4,Z2×Q8,Z4 ∘D4,Z4
2

15 groups of 𝑜𝑟𝑑𝑒𝑟 = 15, 16, 17

16 groups of 𝑜𝑟𝑑𝑒𝑟 = 16, 17 and Z18,Z3⋊, S3,Z3 ×
Z6

17 groups of 𝑜𝑟𝑑𝑒𝑟 = 17, 18, 19

18 groups of 𝑜𝑟𝑑𝑒𝑟 = 18, 19 and Z20,Z5⋊2Z4,Z2×
Z10

19 groups of 𝑜𝑟𝑑𝑒𝑟 = 19, 20 and Z21

20 groups of 𝑜𝑟𝑑𝑒𝑟 = 20, 21 and Z22

21 groups of 𝑜𝑟𝑑𝑒𝑟 = 21, 22, 23

22 groups of 𝑜𝑟𝑑𝑒𝑟 = 22, 23 and Z24,Z3 ⋊Q8,Z2 ×
(Z3 ⋊ Z4),Z2 × Z12,Z3 ×Q8,Z2

2 × Z6

23 groups of 𝑜𝑟𝑑𝑒𝑟 = 23, 24, 25

24 groups of 𝑜𝑟𝑑𝑒𝑟 = 24, 25 and Z26

25 groups of 𝑜𝑟𝑑𝑒𝑟 = 25, 26 and Z27,Z3 × Z9,Z2
3 ⋊

Z3,Z3
3

26 groups of 𝑜𝑟𝑑𝑒𝑟 = 26, 27 and Z28,Z7 ⋊ Z4,Z2 ×
Z14

27 groups of 𝑜𝑟𝑑𝑒𝑟 = 27, 28, 29

28 groups of 𝑜𝑟𝑑𝑒𝑟 = 28, 29 and Z30

29 groups of 𝑜𝑟𝑑𝑒𝑟 = 29, 30, 31

30 groups of 𝑜𝑟𝑑𝑒𝑟 = 30, 31 and Z32,Z4 ×
Z8,Z2.Z8,Z2 × Z16,Q32,Z2 × Z2

4,Z2 × Z4 ⋊
Z4,Z2 × (Z8 ⋊3 Z2),Z4 ⋊ Q8,Z2

2 × Z8,Z2 ×
Q16,Z3

2 × Z4,Z2
2 ×Q8

31 groups of 𝑜𝑟𝑑𝑒𝑟 = 31, 32

32 groups of 𝑜𝑟𝑑𝑒𝑟 = 32

starts to admit a HRR via some 𝑛-hypergraph, it admits

HRR’s via 𝑘-hypergraphs until the 𝑘 ≥ |𝐺| − 𝑛. For ex-

ample, the group Z7 admits a HRR via a 𝑘-hypergraph for

𝑘 = 3, 4 and does not admit a HRR via a 𝑘-hypergraph

for 𝑘 = 0, 1, 2, 5, 6, 7. The range from the conjecture

applied to the group Z7 gives the range 3 ≤ 𝑘 ≤ 4
which satisfies the conjecture. We continue with our

experiments for the remaining open case of the group

Z5
2.

5.3. Minimal c-combinations of orbits
needed for HRR

We performed several runs of the implemented algorithm

and analysed the printouts about the minimal needed 𝑐-

combinations, where we can find the first 𝑘-hypergraph

satisfying the HRR conditions for a given group. From

Section 5.2, we know that if a group starts to have a HRR

via a 𝑛-hypergraph, it admits a HRR via 𝑘-hypergraph

as far as 𝑘 ≤ |𝐺| − 𝑛. The 𝑐 for the minimal needed

𝑐-combinations to construct a HRR is at its maximum for

the 𝑛-hypergraph, i.e. the starting 𝑘-hypergraph, and

also for the (|𝐺| − 𝑛)-hypergraph. The development

of the 𝑐 decreases from 𝑛 to
|𝐺|
2

and consequently in-

creases from
|𝐺|
2

to |𝐺| − 𝑛. The greatest starting 𝑐 for

𝑐-combinations we obtain so far is 𝑐 = 6 for the group

Z2
4.Z2. In most of the cases, groups admit HRR ’s with

𝑐-combinations where 𝑐 = 1, 2. Based on the small 𝑐,

we speeded up our computation for some groups and

instead of having

(︀ |𝑜𝑟𝑏|
|𝑜𝑟𝑏|

2

)︀
possible combinations of orbits,

we have only

(︀|𝑜𝑟𝑏|
1

)︀
or

(︀|𝑜𝑟𝑏|
2

)︀
combinations of orbits.

An interesting observation was made with regard

to the cyclic groups, where we noticed that cyclic

groups of 𝑜𝑟𝑑𝑒𝑟 = 6, 7, 8 start to admit HRR’s with

a 2-combinations of orbits and cyclic groups of orders

greater than or equal to 9 start to admit HRR’s with a

1-combinations of orbits. To obtain HRR’s for the di-

hedral groups via a 3-hypergraph, we always needed a

2-combinations of orbits.

5.4. Magma vs. GAP
We had the opportunity to run our algorithm on the

same computer in Magma and GAP. Magma is a com-

putational algebra system that provides an environment

to work with various mathematical structures and pre-

programmed mathematical algorithms. When we ran

our algorithm in Magma, the algorithm did not have yet

incorporated an optimization from Section 4.4. Never-

theless, we executed the not fully optimized algorithm

through Magma and GAP on the same computer. We

found out that Magma has a better computational time

than GAP. However, Magma has a problem completing

the computation of the existence or non-existence of HRR

via 3-hypergraph for a group of order 30, because it ran

out of the computational memory.

Acknowledgments
I would like to thank Ján Karabáš from the Matej Bel Uni-

versity for his advice about managing orbits in Section

4.3 and for the possibility to work with Magma in Section

5.4. I would also like to thank Grahame Erskine from the

Open University for his very useful suggestion to use

the command BlockDesign() to describe the graph ob-

ject in Section 4.5. I would like to thank my supervisor

Tatiana Jajcayová for her guidance, suggestions and cor-

rections throughout the writing process. The work was

partially supported by G-22-173-00 and VEGA 1/0423/20.

References
[1] R. Frucht, Herstellung von Graphen mit

vorgegebener abstrakter Gruppe, Compositio Math-

ematica 6 (1939) 239–250. URL: http://eudml.org/

doc/88709.

[2] G. Sabidussi, Vertex-transitive Graphs, Monat-

shefte für Mathematik 68 (1964) 426–438.

[3] C.-Y. Chao, On a theorem of Sabidussi, 1964.

[4] M. A. McAndrew, On graphs with transitive auto-

morphism, Notices of the American Mathematical

Society 12 (1965) 575.

[5] W. Imrich, Graphs with transitive abelian auto-

morphism group, Combinat. Theory Appl., Colloq.

Math. Soc. János Bolyai 4, 651-656 (1970)., 1970.

[6] M. E. Watkins, W. Imrich, On automorphism groups

of Cayley graphs, Periodica Mathematica Hungar-

ica 7 (1976) 243–258.

[7] L. A. Nowitz, On the non-existence of

graphs with transitive generalized dicyclic groups,

Journal of Combinatorial Theory 4 (1968) 49–

51. URL: https://www.sciencedirect.com/science/

article/pii/S0021980068800869. doi:https://doi.
org/10.1016/S0021-9800(68)80086-9.

[8] L. A. Nowitz, M. E. Watkins, Graphical Regular

Representations of Non-Abelian Groups, I, Cana-

dian Journal of Mathematics 24 (1972) 993–1008.

doi:10.4153/CJM-1972-101-5.

[9] L. A. Nowitz, M. E. Watkins, Graphical Regular

Representations of Non-Abelian Groups, II, Cana-

dian Journal of Mathematics 24 (1972) 1009–1018.

doi:10.4153/CJM-1972-102-3.

[10] W. Imrich, On graphical regular representations of

groups, Infinite finite Sets, Colloq. Honour Paul

Erdös, Keszthely 1973, Colloq. Math. Soc. Janos

Bolyai 10, 905-925 (1975)., 1975.

[11] M. E. Watkins, The state of the GRR problem, Re-

cent Adv. Graph Theory, Proc. Symp. Prague 1974,

517-522 (1975)., 1975.

[12] C. D. Godsil, GRR’s for non-solvable groups, Alge-

braic methods in graph theory, Vol. I, Conf. Szeged

1978, Colloq. Math. Soc. Janos Bolyai 25, 221-239

(1981)., 1981.

[13] L. Babai, Finite digraphs with given regular auto-

morphism groups, Periodica Mathematica Hungar-

ica, 1980.

[14] S. Foldes, N. M. Singhi, Regular representation of

http://eudml.org/doc/88709
http://eudml.org/doc/88709
https://www.sciencedirect.com/science/article/pii/S0021980068800869
https://www.sciencedirect.com/science/article/pii/S0021980068800869
http://dx.doi.org/https://doi.org/10.1016/S0021-9800(68)80086-9
http://dx.doi.org/https://doi.org/10.1016/S0021-9800(68)80086-9
http://dx.doi.org/10.4153/CJM-1972-101-5
http://dx.doi.org/10.4153/CJM-1972-102-3

Abelian groups by 3-uniform hypergraphs, Ars

Comb. 3 (1977) 15–20.

[15] S. Foldes, Symmetries, 1977.

[16] S. Foldes, N. M. Singhi, Regular Representation of

Finite Groups by Hypergraphs, Canadian Journal

of Mathematics 30 (1978) 946–960. doi:10.4153/
CJM-1978-082-9.

[17] R. Jajcay, Representing Finite Groups As Regu-

lar Automorphism Groups Of Combinatorial Struc-

tures, Ars Comb. 62 (2002).

[18] R. Jajcay, T. Jajcayová, k-hypergraphs with

regular automorphism groups, Acta Mathe-

matica Universitatis Comenianae 88 (2019) 835–

840. URL: http://www.iam.fmph.uniba.sk/amuc/ojs/

index.php/amuc/article/view/1257.

[19] T. Jajcayová, Regular actions of groups and in-

verse semigroups on combinatorial structures,

url: https://ciencias.ulisboa.pt/sites/default/files/

fcul/public/CSA2016-Jajcayova.pdf, 2016.

[20] GAP system for computational discrete alge-

bra, 1986. URL: https://www.gap-system.org/index.

html.

[21] L. H. Soicher, GRAPE, 1993. URL: https://www.

gap-system.org/Packages/grape.html.

[22] G. P. Nagy, P. Vojtěchovský, loops, 2015. URL: https:

//www.gap-system.org/Packages/loops.html.

[23] L. H. Soicher, DESIGN, 2006. URL: https://www.

gap-system.org/Packages/design.html.

http://dx.doi.org/10.4153/CJM-1978-082-9
http://dx.doi.org/10.4153/CJM-1978-082-9
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1257
http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/amuc/article/view/1257
https://ciencias.ulisboa.pt/sites/default/files/fcul/public/CSA2016-Jajcayova.pdf
https://ciencias.ulisboa.pt/sites/default/files/fcul/public/CSA2016-Jajcayova.pdf
https://www.gap-system.org/index.html
https://www.gap-system.org/index.html
https://www.gap-system.org/Packages/grape.html
https://www.gap-system.org/Packages/grape.html
https://www.gap-system.org/Packages/loops.html
https://www.gap-system.org/Packages/loops.html
https://www.gap-system.org/Packages/design.html
https://www.gap-system.org/Packages/design.html

	1 Introduction
	2 Preliminaries
	3 Methods
	4 Optimizations
	4.1 Left vs. right action
	4.2 Creating orbits
	4.3 Creating and accessing orbit combinations
	4.4 Reducing number of orbit combinations
	4.5 Correcting the graph object
	4.6 Optimized algorithm

	5 Results
	5.1 Groups with or without HRR
	5.2 Proved conjecture
	5.3 Minimal c-combinations of orbits needed for HRR
	5.4 Magma vs. GAP

