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Abstract
This paper is devoted to recursive constructions of small regular graphs of given degree 𝑘 and girth 𝑔, called (𝑘, 𝑔)-graphs,
using Cayley graphs, perfect matchings and/or voltage graph constructions. First, we consider an analog of the canonical
double cover construction, which produces (𝑘, 𝑔 + 1)-graphs of even girth from (𝑘, 𝑔)-graphs of odd girth by relying on
Cayley graphs and/or voltage lifts. By considering Moore bounds, we show that there is no universal recursive construction
of (𝑘, 𝑔 + 1)-graphs from (𝑘, 𝑔)-graphs of even girth 𝑔 that would produce graphs whose order is a constant multiple of
the order of the original graph. Further, we introduce a novel approach for obtaining (𝑘 + 1, 6)-graphs from (𝑘, 6)-graphs
using perfect matchings and the voltage graph construction and compare our results with previously known results. We
conclude our paper with a discussion of the potential of computer assisted searches relying on our constructions, and present
a link between (𝑘, 6)-graphs and applications in communication systems.
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1. Introduction
We define a (𝑘, 𝑔)-graph as a 𝑘-regular graph of girth
𝑔. One of the fundamental problems addressed in Ex-
tremal Graph Theory is the so-called Cage Problem; the
problem of finding a smallest (𝑘, 𝑔)-graph for a given
pair of parameters 𝑘, 𝑔 ≥ 3. It is a hard optimization
problem over a well-defined infinite class of graphs. This
problem has been widely studied since the pioneering
work of Erdős and Sachs [7] and that of Hoffman and
Singleton [15]. The first pair of authors showed that for
any given integers 𝑔 ≥ 3, 𝑘 ≥ 2, there exist infinitely
many (𝑘, 𝑔)-graphs [7]. However, determining a smallest
(𝑘, 𝑔)-graph in this infinite class has proven to be a much
harder problem.

In this paper, we consider recursive constructions of
two kinds, both starting from a given (𝑘, 𝑔)-graph and
resulting in a new larger graph.

First, we attempt to increase the second parameter,
the girth 𝑔, while keeping 𝑘 fixed. This type of con-
struction can be traced back to the work of Erdős and
Sachs [7]. Using a construction called a canonical double
cover, starting from a (𝑘, 𝑔)-graph of odd girth 𝑔, they
constructed a new graph of the same degree and higher
girth, whose order is twice the order of the original graph,
thereby proving the following:
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Theorem 1 ([7]). For any integer 𝑘 ≥ 3 and odd 𝑔 ≥ 3,

𝑛(𝑘, 𝑔 + 1) ≤ 2𝑛(𝑘, 𝑔).

In a recent development, Balbuena et al. [2] improved
this bound as expressed below.

Theorem 2 ([2]). Let 𝑘 ≥ 3 and 𝑔 ≥ 5 odd. Then,

𝑛(𝑘, 𝑔 + 1) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2𝑛(𝑘, 𝑔)− 2

(︂
𝑘(𝑘−1)

𝑔−3
4 −2

𝑘−2

)︂
,

𝑖𝑓 𝑔 ≡ 3 (mod 4)

2𝑛(𝑘, 𝑔)− 4

(︂
2(𝑘−1)

𝑔−1
4 −1

𝑘−2

)︂
,

𝑖𝑓 𝑔 ≡ 1 (mod 4).
(1)

Graphs whose orders match these results are also ob-
tained using the canonical double cover construction (on
a subgraph of the original (𝑘, 𝑔)-graphs). In Section 2,
we illustrate the canonical double cover of graphs with
examples and provide two different constructions, which
produce the same graphs as the canonical double cover
but rely on Cayley graphs and voltage lifts.

It is important to note that the canonical double cover
construction produces (𝑘, 𝑔 + 1)-graphs from (𝑘, 𝑔)-
graphs of odd girth 𝑔 which are always twice as large
as the original graph. Unfortunately, this construction
only works for odd girth 𝑔. For this reason, we investi-
gate the possibility of a recursive construction starting
from a (𝑘, 𝑔)-graph of even girth using the parametric
analysis of the Moore bound; a lower bound on the order
of (𝑘, 𝑔)-graphs: 𝑀(𝑘, 𝑔) ≤ 𝑛(𝑘, 𝑔), for all 𝑘, 𝑔 ≥ 3.
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Definition 1. For 𝑘 ≥ 2, 𝑔 ≥ 3, the Moore bound
𝑀(𝑘, 𝑔) of the (𝑘, 𝑔)-graph is given by

𝑀(𝑘, 𝑔) =

⎧⎪⎨⎪⎩
1 +

∑︀ 𝑔−3
2

𝑖=0 𝑘(𝑘 − 1)𝑖, 𝑔 odd,

2
∑︀ 𝑔−2

2
𝑖=0 (𝑘 − 1)𝑖, 𝑔 even.

(2)

Our analysis shows that there is no constant 𝛼 such
that for any given pair 𝑘, 𝑔 ≥ 3, 𝑔 even, one could start
from a (𝑘, 𝑔)-graph and obtain a (𝑘, 𝑔+1)-graph whose
order is at most an 𝛼 multiple of the order of the original
graph. For more details on the Moore bounds and cages
we refer the reader to the dynamic cage survey paper by
Exoo and Jajcay [8].

Next, we try to increase the degree 𝑘 of the obtained
graph while keeping its girth 𝑔 constant. In the oppo-
site direction, Gács and Héger in 2008 built on the work
of Brown [4] and presented recursive constructions for
𝑔 = 6, 8, 12, which resulted in graphs of smaller degrees
[12]. Namely, they considered incidence graphs of gen-
eralized 𝑛-gons and obtained smaller regular subgraphs
by removing/adding some edges and vertices. To achieve
this, for any given generalized 𝑛-gon (𝒫,ℒ), they de-
fined a 𝑡-good structure of lines and points to delete in
order to obtain a smaller (𝑘, 𝑔)-graph of smaller degree.
They proved the following: (1) For any prime power 𝑞
and 1 ≤ 𝑡 ≤ 𝑞, there is a (𝑞 + 1 − 𝑡, 6)-regular graph
whose order is 2(𝑞2 + 𝑞 + 1 − (𝑡𝑞 + 1)) with the size
of the 𝑡-good structure 𝑡𝑞 + 1. (2) For any 𝑞 for which
a projective plane exists, there exists a (𝑘, 6)-graph of
order 2(𝑞2 − 1). (3) For any square prime power 𝑞 and
1 ≤ 𝑡 ≤ 𝑞 − √

𝑞, there is a (𝑘, 6)-graph whose order
is 2(𝑞2 + 𝑞 + 1 − 𝑡(𝑞 +

√
𝑞 + 1)) with the size of the

𝑡-good structure equal to 𝑡(𝑞 +
√
𝑞 + 1). However, their

result is restricted to degrees 𝑘 which are prime powers,
and the resulting graphs are of smaller degrees than the
starting point-line incidence graphs. To the best of our
knowledge, until now there was no universal approach
proceeding from an arbitrary (𝑘, 6)-graph to a (𝑘+1, 6)-
graph.

Proceeding through the paper, we present several re-
cursive constructions. Two of them are shown to be
equivalent to the canonical double cover construction
but rely on Cayley graphs. Another construction gives
(𝑘+1, 6)-graphs from (𝑘, 6)-graphs. This construction is
a new approach to obtaining (𝑘, 6)-graphs of an increas-
ing degree with a fixed girth. Our approach makes it pos-
sible to move from a smaller (𝑘, 6)-graph to a (𝑘+1, 6)-
graph. It is opposite to the construction of Gács and
Héger [12] which starts from a bigger (𝑘, 6)-graph and
produces a smaller (𝑘 − 𝑡, 6)-graph. We rely on the fact
that every regular bipartite graph has a perfect matching
and voltage graph construction to construct the desired
graph of higher degree.

Our paper is organized as follows: Section 2 contains
an explanation of the concept of voltage graph construc-
tion with examples. Section 3 contains two analogs of the
canonical double cover construction starting with Cayley
graphs with some examples again. In Section 4, we give
a parametric analysis of the Moore bound. Our recursive
construction using perfect matchings is presented in Sec-
tion 5, while the comparison of our construction with
existing constructions is presented in Section 6. Finally,
in Sections 7 and 8 we discuss computer assisted methods
and an application of (𝑘, 6)-graphs in communication
systems.

2. Voltage Graph Construction
Let Γ be a finite graph, not necessarily simple (possibly
with multiple edges and loops), and𝐷(Γ) the set of darts
of Γ obtained by replacing each edge 𝑒 of Γ by a pair of
opposing darts (arcs) 𝑒 and 𝑒−1. A voltage assignment on
Γ is any mapping𝛼 : 𝐷(Γ) → 𝐺 satisfying the condition
that 𝛼(𝑒−1) = (𝛼(𝑒))−1 for all 𝑒 ∈ 𝐷(Γ), where 𝐺 is a
group called the voltage group. For the purposes of our
construction, we will always assume that 𝐺 is finite. The
voltage graph (also called the derived graph or the lift)
of Γ with respect to 𝛼, denoted by Γ𝛼, is a new graph
with vertex set 𝑉 (Γ𝛼) = 𝑉 (Γ)×𝐺 and edge set 𝐸(Γ𝛼)
defined by making vertices 𝑢𝑎 and 𝑣𝑏 adjacent in Γ𝛼 if
𝑒 = (𝑢, 𝑣) ∈ 𝐷(Γ) and 𝑏 = 𝑎𝛼(𝑒). For any voltage
graph Γ𝛼, we define the net voltage of a walk in Γ𝛼 as
the product of the group elements assigned to the edges
of the walk in the corresponding order.

We say that Γ̃ is a covering graph of Γ if there exists
a map 𝜓 : 𝑉 (Γ̃) −→ 𝑉 (Γ) called the covering map of
Γ such that for every 𝑣 ∈ 𝑉 (Γ̃), the set of neighbours
of 𝑣 denoted by 𝒩Γ̃(𝑣) is mapped one-to-one onto the
neighborhood 𝒩Γ(𝜓(𝑣)). We also say that Γ̃ is a lift of
Γ if there exists a covering map from 𝑉 (Γ̃) to 𝑉 (Γ), and
we call the lift an 𝑛-lift of Γ if the preimages 𝜓−1(𝑣)
consist of 𝑛 elements. Clearly, the voltage lift Γ𝛼 is a
|𝐺|-lift of Γ.

We say that Γ𝛼 is a canonical double cover of Γ if the
voltage group is Z2 and each edge of Γ receives the volt-
age assignment 1 ∈ Z2. This is a very special type of
voltage graph construction, and it has been used by many
authors [2, 11, 16, 19]. In what follows, we shall apply
the canonical double cover to illustrate how to obtain a
larger graph of even girth from a graph of odd girth.

Let Γ be a graph with odd girth 𝑔. Take Z2 = {0, 1} as
the voltage group and define 𝛼(𝑒) = 1, for all 𝑒 ∈ 𝐸(Γ).

Example 1. For𝐶4 and Pentagon, canonical double covers
are respectively given below.

Example 2. Let Γ be the base graph of five vertices and
girth three shown in Figure 2. The canonical double cover



Figure 1: Canonical Double Covers of 𝐶4 and Pentagon

of Γ has 10 vertices and girth 4.

Figure 2: Canonical Double Cover of Γ

Example 3. The canonical double cover of the Petersen
graph of girth 5 is the Desargues graph, which has 20
vertices and girth 6.

Based on the above examples, it is easy to deduce the
following [11].

Lemma 1. Let Γ𝛼 be the canonical double cover of a graph
Γ, then

1. |𝑉 (Γ𝛼)| = 2× |𝑉 (Γ)|, |𝐸(Γ𝛼)| = 2× |𝐸(Γ)|;
2. Γ𝛼 is a bipartite graph;
3. Γ𝛼 is connected if and only if Γ is connected and

non-bipartite;
4. If 𝐶 is a cycle in Γ of odd length 2𝑟+1, the preim-

age of 𝐶 in Γ𝛼 (the lift of 𝐶 in Γ𝛼) is a cycle of
the double length 4𝑟 + 2;

5. If 𝐶 is a cycle in Γ of even length 2𝑟, the lift of 𝐶
in Γ𝛼 is a pair of cycles of length 2𝑟;

6. If Γ is 𝑘-regular, Γ𝛼 is also 𝑘-regular.

To this end, we see that Theorem 1 of Erdős and Sachs is a
consequence of the canonical double cover construction.
In other words, the canonical double cover of a 𝑘-regular
graph of odd girth 𝑔 is a 𝑘-regular graph of even girth
greater than 𝑔.

Next, we present two analogs of the canonical double
cover construction by utilizing the idea of a Cayley graph
and voltage lift.

3. Recursive Constructions from
Odd to Even Girth Starting from
Cayley Graphs

Let𝐺 be a finite group with a generating set𝑆 = 𝑆−1 not
containing the identity and closed under inverses. The
Cayley graph Γ = 𝒞(𝐺,𝑆) is a regular graph of degree
|𝑆| that has 𝐺 as its set of vertices, and its adjacency is
defined by making each vertex 𝑔 ∈ 𝐺 adjacent to all the
vertices in the set 𝑔𝑆 = {𝑔𝑠 | 𝑠 ∈ 𝑆}. Alternatively, for
any two vertices 𝑔, ℎ ∈ 𝐺, 𝑔 is adjacent to ℎ if and only
if ℎ−1𝑔 ∈ 𝑆. Note that the fact that 𝑆 is closed under
inverses makes the resulting graph undirected. The graph
Γ = 𝒞(𝐺,𝑆) is connected if and only if 𝑆 generates 𝐺.

3.1. Direct Product Construction
Our first construction is essentially just another way of
looking at the canonical double cover of a Cayley graph,
which might sometimes prove useful. It shows that the
canonical double cover of a Cayley graph is a Cayley
graph again. The proof is left to the reader.

Theorem 3. Let Γ = 𝒞(𝐺,𝑆), 𝑆 =
{𝑠1, 𝑠2, . . . , 𝑠𝑘}. The Cayley graph Γ =
𝒞(𝐺 × Z2, {(𝑠1, 1), (𝑠2, 1), . . . , (𝑠𝑘, 1)}) is the
canonical double cover of Γ.

3.2. Dipole Lift Construction
Let 𝒞(𝐺,𝑆) be a Cayley graph. Consider the base graph
Γ = (𝑉,𝐸) which is a dipole consisting of two vertices
and |𝑆| multiple parallel edges. Take 𝐺 to be the voltage
group, and let𝛼 assign to each edge ofΓ a unique element
of 𝑆. Consider the lift Γ𝛼.

Example 4. Consider a complete graph 𝐾4 which is
a Cayley graph 𝒞(𝐺,𝑆) with 𝐺 = Z2

2 and 𝑆 =
{(1, 0), (0, 1), (1, 1)}. The dipole lift graph Γ𝛼 is shown
in Figure 3.

Example 5. Let 𝒞(𝐺,𝑆) a be Cayley graph with𝐺 = 𝑆3

and 𝑆 = {(12), (13), (23)}. Then, the dipole lift graph
Γ𝛼 is shown in Figure 4.



Figure 3: Lift Graph of 𝐾4 Viewed as a Cayley Graph

Figure 4: Lift Graph of Cayley Graph Using 𝐺 = 𝑆3

Theorem 4. Let 𝒞(𝐺,𝑆) be a Cayley graph. The lift
of the dipole graph with |𝑆| parallel edges obtained via
Construction 3.2 is isomorphic to the canonical double cover
of 𝒞(𝐺,𝑆).

Proof. The proof is again straightforward. It is easy to
see that the preimage sets {𝑢𝑔 | 𝑔 ∈ 𝐺}, {𝑣𝑔 | 𝑔 ∈ 𝐺},
of the two vertices 𝑢, 𝑣 of the dipole (called fibers) are
independent and that the edges of the constructed graph
connect 𝑢𝑔 to 𝑣ℎ if and only ℎ = 𝑔𝑠, for some 𝑠 ∈ 𝑆.

To conclude the section, it is interesting to note that the
connectedness of the graphs constructed via Construc-
tion 3.2 is expressed differently from that of the canonical
double cover stated in Condition 3 of Lemma 1.

Lemma 2. Let 𝒞(𝐺,𝑆) be a Cayley graph. The lift of
the dipole graph with |𝑆| parallel edges obtained via Con-
struction 3.2 is connected if and only if the subgroup of all
elements of 𝐺 that can be expressed as a product of ele-
ments from 𝑆 consisting of an even number of generators
is equal to 𝐺.

4. Parametric Analysis of the
Moore Bound

All the preceding constructions start with an odd-girth
graph and construct an even-girth graph of larger girth
and order twice the order of the original graph. In view
of the usefulness of this construction, it is natural to
ask whether there might exist an analogous universal
construction starting from an even-girth graph and re-
sulting in an odd-girth graph of larger girth and order an
𝛼-multiple of the order of the original graph.

Here, we present a parametric analysis of the Moore
bound with a view to understanding the feasibility of
obtaining a recursive construction from even to odd girth.
The aim is to understand the rate at which 𝑛(𝑘, 𝑔) varies
with a continuous change in 𝑔 or 𝑘 or both. In other
words, we are looking for the best possible 𝛼 and 𝛽 for
which these inequalities hold

𝑛(𝑘, 𝑔 + 1) ≤ 𝛼𝑛(𝑘, 𝑔) 𝑎𝑛𝑑 𝑛(𝑘 + 1, 𝑔) ≤ 𝛽𝑛(𝑘, 𝑔)

in case of even 𝑔.
Since 𝑀(𝑘, 𝑔) ≤ 𝑛(𝑘, 𝑔), ∀ 𝑘, 𝑔 ≥ 3, we approach

this question by considering the Moore bound. Obtaining
constants 𝛼′, 𝛽′ for which 𝑀(𝑘, 𝑔+1) ≤ 𝛼′𝑀(𝑘, 𝑔) or
𝑀(𝑘 + 1, 𝑔) ≤ 𝛽′𝑀(𝑘, 𝑔) is sufficient for determining
lower bounds for the rate of growth of 𝑛(𝑘, 𝑔).

To analyze the parameters 𝑘 and 𝑔, we first simplify
the expression in Equation (2) by substituting the formula
for the sum of the 𝑛th term of the geometric progression
to obtain

𝑀(𝑘, 𝑔) =

⎧⎪⎪⎨⎪⎪⎩
𝑘(𝑘−1)

𝑔−1
2 −2

𝑘−2
, 𝑔 𝑜𝑑𝑑

2(𝑘−1)
𝑔
2 −2

𝑘−2
, 𝑔 𝑒𝑣𝑒𝑛.

(3)

For brevity, we use Equation 3 in our analysis, and the
following fundamental cases are considered.

Case 1. Let 𝑘 be fixed and 𝑔 = 2𝑟 − 1. Define 𝛼𝑘,𝑔 as
the ratio between two successive Moore bounds for 𝑔 and
𝑔 + 1. Then,

𝛼𝑘,𝑔 =
𝑀(𝑘, 𝑔 + 1)

𝑀(𝑘, 𝑔)
=

2(𝑘 − 1)𝑟 − 2

𝑘(𝑘 − 1)𝑟−1 − 2

>
2(𝑘 − 1)𝑟 − 2(𝑘 − 1)

𝑘(𝑘 − 1)𝑟−1



=
2(𝑘 − 1)

𝑘
− 2

𝑘(𝑘 − 1)𝑟−2

≥ 2(𝑘 − 1)

𝑘
− 1

This result is in line with the canonical double cover
construction from odd to even girth, and the bound
𝑛(𝑘, 𝑔+1) ≤ 2𝑛(𝑘, 𝑔), 𝑔 odd, as presented by Erdős and
Sachs in 1963. It is also easy to see why it was possible
to improve this original bound as was done by Balbuena
et al. in [2]. For completeness, we compare the results of
Balbuena et al. as stated in in Theorem 2 with the known
record (𝑘, 𝑔)-graphs listed in [8] in Table 4. The wide
gap between the record graph and the upper bound from
Theorem 2 suggests that a further improvement might
be possible.

Table 1
Comparison of the best known (3, 𝑔)-graphs and the upper
bound by Balbuena et al. [2].

Girth 𝑔 Record 𝑛(3, 𝑔) [2]

12 126 204
14 384 474
16 960 1196
18 2560 4228
20 5376 8556
22 16206 31804
24 35640 88076

Case 2. Let 𝑘 be fixed and 𝑔 = 2𝑟. Define 𝛼𝑘,𝑔 as the
ratio between two successive Moore bounds for 𝑔 and 𝑔+1.
Then,

𝛼𝑘,𝑔 =
𝑀(𝑘, 𝑔 + 1)

𝑀(𝑘, 𝑔)
=

𝑘(𝑘 − 1)𝑟 − 2

2(𝑘 − 1)𝑟 − 2

>
𝑘(𝑘 − 1)𝑟 − 2

2(𝑘 − 1)𝑟

=
𝑘

2
− 2

2(𝑘 − 1)𝑟

>
𝑘

2
− 1

Comparing the lower bound for 𝛼𝑘,𝑔 to that of 𝛼𝑘,𝑔 , it
is immediately clear that the transition between the odd
and even girth 𝑔 and that of the even and odd girth 𝑔 are
of a different character. As a consequence, we obtain the
following theorem.

Theorem 5. There is no 𝛼 ∈ R such that for any 𝑘 ≥ 3
and even 𝑔 ≥ 4, 𝑛(𝑘, 𝑔 + 1) ≤ 𝛼𝑛(𝑘, 𝑔).

Proof. Suppose for a contradiction, that there exists an
𝛼 ∈ R such that 𝑛(𝑘, 𝑔 + 1) ≤ 𝛼𝑛(𝑘, 𝑔), for all 𝑘 ≥

3 and all even 𝑔 ≥ 4. If that were the case, an easy
induction would yield the upper bound:

𝑛(𝑘, 2𝑟) ≤ 2𝑟−2𝛼𝑟−2𝑛(𝑘, 4) = 2𝑟−2𝛼𝑟−22𝑘,

for all 𝑘 ≥ 3. At the same time, the above analysis yields
the lower bound:

𝑀(𝑘, 2𝑟) = 𝛼𝑘,2𝑟−1𝛼𝑘,2𝑟−2 . . . 𝛼𝑘,5𝛼𝑘,4𝑛(𝑘, 4)

≥
(︂
2(𝑘 − 1)

𝑘
− 1

)︂𝑟−2 (︂
𝑘

2
− 1

)︂𝑟−2

2𝑘.

It is easy to see that for sufficiently large 𝑘, 2𝑟−2𝛼𝑟−2 <(︁
2(𝑘−1)

𝑘
− 1

)︁𝑟−2 (︀
𝑘
2
− 1

)︀𝑟−2
, and hence, for suffi-

ciently large 𝑘 and sufficiently large 𝑔, 𝑛(𝑘, 𝑔) <
𝑀(𝑘, 𝑔), which is a contradiction.

In summary, there is no analogue to the canonical
double cover construction starting from an even girth
graph. As suggested in the above Case 2, any universal
construction of an odd girth graph from an even girth
graph has to have the property that the order of the
resulting graph should be roughly proportional to the 𝑘

2

multiple of the original graph. However, the precise ratio
also depends on how close is the order of the smallest
(𝑘, 𝑔)-graph, 𝑔 even, to the corresponding Moore bound
𝑀(𝑘, 𝑔).

5. A Recursive Construction of
(𝑘 + 1, 6)-Graphs from
(𝑘, 6)-Graphs Using Perfect
Matching

Our last construction is again recursive. It starts with
a 𝑘-regular bipartite Γ = (𝑉,𝐸) and a selected perfect
matching for Γ whose existence is guaranteed by the
following well-known result.

Theorem 6 ([17]). Every regular bipartite graph has a
perfect matching.

Select a perfect matching for a bipartite 𝑘-regular Γ,
and let Γ̃ be the multigraph obtained from Γ by adding a
parallel edge to each of the edges of the perfect matching
of Γ. It follows from the properties of a perfect matching
that Γ̃ is a (𝑘+1)-regular multigraph. In what follows, we
shall refer to the added edges of Γ̃ as the new edges and to
the original edges of Γ as the old edges. To use the voltage
graph construction, let us further replace each edge of Γ̃
with a pair of opposing darts. Let 𝑉 (Γ̃) = 𝑉1∪𝑉2 be the
bipartite division of the vertices of Γ̃, and let𝐷(Γ̃) denote
the set of darts of Γ̃. Let our selected voltage group be
𝐺 = Z3, assign the voltage 0 to all darts originating from
the old edges of Γ̃ and assign the voltage 1 to either of



the two darts formed from the new edges of Γ̃ (and 2 to
the opposed dart). Consider the voltage graph Γ̃

𝛼
.

Lemma 3. Γ̃
𝛼

is a (𝑘 + 1)-regular bipartite graph.

Proof. Let 𝑉 𝛼
1 and 𝑉 𝛼

2 be the vertex sets of Γ̃
𝛼

formed as
unions of fibers of the elements of 𝑉1 and 𝑉2, respectively.
The two sets are clearly disjoint, while no two vertices
belonging to 𝑉 𝛼

1 and no two vertices belonging to 𝑉 𝛼
2

are adjacent. As the degree of the vertices in the voltage
lift is equal to the degree of the corresponding vertices
in the (𝑘+1)-regular base graph, the result follows.

Example 6. Let us apply the first step of the above volt-
age lift construction to the bipartite cubic Heawood graph
of order 14. Selecting a particular perfect matching and
adding the new parallel edges results in the multigraph
shown in Figure 5.

Figure 5: Heawood Graph with Doubled Perfect Matching

The following lemma is the key to obtaining a recursive
construction of graphs of girth 6.

Lemma 4. If Γ is a bipartite 𝑘-regular graph of girth 6,
then Γ̃

𝛼
is a (𝑘 + 1)-regular graph of girth 6 and order

the 3-multiple of the order of Γ.

Proof. Let 𝛼 be as defined above. We begin by describing
the edges of Γ𝛼 as shown in Figure 6.

Figure 6: Base graph Γ̃ and lift graph Γ̃
𝛼

The edges of Γ𝛼 are of two types: the lifts of the old
edges, which we shall refer to as the horizontal edges,
and the lifts of the new edges, which shall be called ver-
tical edges. Since our voltage group is Z3, and all the
old edges of Γ̃ received the voltage 0 ∈ Z3, Γ̃

𝛼
contains

three parallel horizontal copies of 𝑉 (Γ). We call each of
such copy a layer. While the horizontal edges connect
vertices belonging to the same layer, vertical edges con-
nect vertices between distinct layers. If we denote the
vertices of Γ by 𝑢0, 𝑢1, . . . , 𝑢𝑛−1 (with 𝑛 representing
the order of Γ), all vertices of Γ𝛼 are of the form 𝑢𝑖,𝑗 ,
where 𝑖 indicates the position of the vertex in a layer and
𝑗 ∈ Z3 indicates the specific layer. Let us assume with-
out loss of generality that the new edges of the perfect
matching in Γ̃ connect the vertices 𝑢𝑖, 𝑢𝑖+1, with 𝑖 even.
Under these assumptions, all the vertical edges in Γ𝛼 are
of the form 𝑢𝑖,𝑗𝑢𝑖,𝑗+1, with 𝑖 even, and 𝑗 + 1 calculated
modulo 3. The three layers of Γ̃

𝛼
, its vertical edges, and

the corresponding base graph Γ̃ are pictured in Figure 6.

Figure 7: Possible cycles of length 4

Next, we prove that the girth of Γ̃
𝛼

is 6. Since, for
𝑖 even, the vertices (𝑢𝑖+1,0), (𝑢𝑖,0), (𝑢𝑖+1,1), (𝑢𝑖,1),
(𝑢𝑖+1,2), (𝑢𝑖,2), (𝑢𝑖+1,0) form a 6-cycle, the girth of Γ̃

𝛼

is at most 6 (of course, all the original 6-cycles of Γ also
lift into 6-cycles of Γ̃

𝛼
). Thus, it suffices to show that the

girth of Γ̃
𝛼

is not smaller. Note that since Γ̃
𝛼

is bipartite,
it contains no cycle of odd length.

To complete this proof, we show that Γ̃
𝛼

contains
no cycles of length 4. Suppose the existence of a
4-cycle 𝒞 in Γ̃

𝛼
. Then, 𝒞 can either be contained in

one of the layers or contains vertices from two or



more layers. Since each layer is a copy of Γ, which
is of girth 6, no cycle fully contained in a horizontal
layer is of length 4. If 𝒞 is contained in two or more
layers, then 𝒞 must be of one of the three forms
{(𝑢𝑖,𝑗), (𝑢𝑖+1,𝑗), (𝑢𝑖+1,𝑗+1), (𝑢𝑖+2,𝑗+1), (𝑢𝑖,𝑗)}, or
{(𝑢𝑖+1,𝑗), (𝑢𝑖,𝑗), (𝑢𝑖+1,𝑗+1), (𝑢𝑖+2,𝑗+1), (𝑢𝑖+1,𝑗)},
or {(𝑢𝑖+1,𝑗), (𝑢𝑖,𝑗), (𝑢𝑖+1,𝑗+1), (𝑢𝑖,𝑗+1), (𝑢𝑖+1,𝑗)};
pictured in Figure 8.

Suppose 𝒞 is a cycle of the first type. In this case, two
incident edges (𝑢𝑖, 𝑢𝑖+1) and (𝑢𝑖+1, 𝑢𝑖+2) belong to the
perfect matching, which is a contradiction. Similarly,
the second case implies that two edges (𝑢𝑖, 𝑢𝑖+1) and
(𝑢𝑖+1, 𝑢𝑖+2) with a common vertex 𝑢𝑖+1 are in the per-
fect matching, which is again impossible. The last case
would result in forcing a cycle (𝑢𝑖−1, 𝑢𝑖, 𝑢𝑖+1, 𝑢𝑖+2) in
the base graph. This is impossible since Γ is assumed to
be of girth 6. It follows that the girth of Γ̃

𝛼
is indeed 6.

Example 7. Consider the graph in Figure 5 obtained from
Heawood graph. Applying Lemma 4 yields the graph below.

Figure 8: Γ̃𝛼
of Γ̃ in Figure 5

Recall that Heawood graph is a bipartite 3-regular
graph of girth 6 and order 14. Note also that the graph
Γ̃
𝛼

constructed from a bipartite 𝑘-regular graph of girth
6 is bipartite (𝑘 + 1)-regular of girth 6. Thus, relying
repeatedly on Theorem 6 and starting from the Heawood
graph, we obtain the following.

Theorem 7. Let 𝑘 ≥ 3. Then,

𝑛(𝑘, 6) ≤ 3𝑘−3 · 14.

Clearly, the above upper bound is not particularly
strong. This is due to the fact that we do not know
whether (𝑘, 𝑔)-cages for even 𝑔 must necessarily be bi-
partite. If that was the case, we would obtain the stronger
result 𝑛(𝑘 + 1, 𝑔) ≤ 3𝑛(𝑘, 𝑔), for all 𝑘 ≥ 3 and even
𝑔 ≥ 4. Interestingly, the bipartiteness of the (𝑘, 𝑔)-cages
for even 𝑔 has been repeatedly conjectured by various
authors [8].

Even performing a detailed analysis of the rate of
growth of the Moore bound in case of a fixed even girth
𝑔 yields a much weaker rate of growth for 𝑛(𝑘, 𝑔) than
the one stated in Theorem 7:

Case 3. Let 𝑔 = 2𝑟 be fixed. Define 𝛾𝑘,𝑔 as the following
ratio:

𝛾𝑘,𝑔 =
𝑀(𝑘 + 1, 𝑔)

𝑀(𝑘, 𝑔)
=

(2𝑘𝑟 − 2)(𝑘 − 2)

(2(𝑘 − 1)𝑟 − 2)(𝑘 − 1)

≥ (𝑘𝑟 − 1)(𝑘 − 2)

((𝑘 − 1)𝑟 − 1)(𝑘 − 1)

Thus, regardless of the girth, lim𝑘→∞ 𝛾𝑘,𝑔 = 1, and
unlike the case of the transition from even girth to odd,
there might exist a constant 𝛾 and a universal construc-
tion of a (𝑘 + 1, 𝑔)-graph from a (𝑘, 𝑔)-graph which
yields (𝑘 + 1, 𝑔)-graphs of orders proportional to a 𝛾
multiple of the order of the original (𝑘, 𝑔)-graph with 𝛾
smaller than 3.

6. Comparison with Existing
Constructions

In literature, one can find several constructions of (𝑘 −
1, 6)-graphs starting with a known (𝑘, 6)-graph [1, 2, 4,
12]. In this section, we compare our construction with a
recursive construction for girth 6 introduced by Gács and
Héger [12] which is the best recursive construction for
(𝑘, 6)-graphs. Like our construction, their construction
generates an infinite family of (𝑘, 6)-graphs using the
idea of the 𝑡-good structure. However, Gács and Héger’s
construction works in a way that is opposite to ours.
Namely, it starts from a point-line incidence graph of a
projective plane which is a (𝑝𝑒 + 1, 6) Moore graph of
degree equal to a prime power plus 1, and recursively
constructs graphs of smaller degrees by removing or
adding vertices and edges (as we discussed earlier in
the Introduction). As it is well known, the gap between
two consecutive prime powers can be arbitrarily large.
Since the ratio of the number of prime powers to that
of prime numbers converges to 1, prime powers grow
asymptotically at the same rate. Thus, the orders of (𝑘, 6)-
graphs constructed by removing 𝑡-good structures for
𝑘’s which are only slightly larger than a prime power but



are quite a bit smaller than the next prime power may be
very far from the orders of corresponding cages.

In comparison, our constructions produce (𝑘 + 1, 6)-
graphs from (𝑘, 6)-graphs for any degree 𝑘. This means
that, especially in the case of 𝑘’s described at the end
of the previous paragraph, our constructions require a
smaller number of recursions (as we may start from the
closest smaller prime power than 𝑘). Nevertheless, our
construction does not outperform that of Gács and Héger,
and should be therefore viewed as the basis for another fu-
ture construction that might eventually produce smaller
graphs; at least in cases of 𝑘’s just a bit larger than a
prime power.

7. Computer Assisted Methods
All the construction methods considered so far were de-
terministic in the somewhat loose sense that they did not
require searching a large space of possible constituents.
In this section, we will briefly discuss methods for im-
proving the girth of a voltage lift graph using computer
assisted searches. The key lemma we will rely on is the
following:

Lemma 5. [9, Lemma 2.1.] Let Γ be a finite graph and
𝛼 : 𝐷(Γ) → 𝐺 be a voltage assignment of Γ. The girth of
the voltage graph lift Γ𝛼 is equal to the length of a shortest
closed non-backtracking walk 𝒲 in Γ of net voltage 1𝐺.

A closed non-backtracking walk in 𝐺 is a closed walk
which does not contain an edge travelled in one direction
followed immediately by the same edge travelled in the
opposite direction. It is easy to see that the length of a
closed non-backtracking walk in 𝐺 of girth 𝑔 must be at
least 𝑔, and also that a closed non-backtracking walk in
𝐺 of length 𝑔 must in fact be a cycle. The net voltage of
a closed walk 𝑒1𝑒2 . . . 𝑒𝑛, 𝑒𝑖 ∈ 𝐷(𝐺) is the product of
the voltages of its darts in the order determined by the
walk, i.e., the net voltage of the above walk is the product
𝛼(𝑒1)𝛼(𝑒2) . . . 𝛼(𝑒𝑛) ∈ 𝐺. Our observations together
with Lemma 5 yield the following corollary.

Corollary 1. Let Γ be a finite graph of girth 𝑔 and 𝛼 :
𝐷(Γ) → 𝐺 be a voltage assignment for Γ. The girth of
the lift Γ𝛼 is greater than the girth of Γ if and only if the
net voltage of every 𝑔-cycle of Γ is different from 1𝐺.

When applying the above corollary to the canonical
double cover of an odd-girth base graph Γ, we quickly
observe that the net voltage of any 𝑔-cycle (as well as of
any odd-length cycle) in Γ is equal to 1, the non-identity
element of Z2. This is the basis of the proof of Lemma 1
as well as the argument that shows that the canonical
double cover of an odd-girth graph Γ has larger girth
than Γ itself. Applying Corollary 1 to graphs of even
girth is quite a bit trickier. Namely, the canonical double

cover voltage assignment clearly assigns the net volt-
age 0 ∈ Z2 to all cycles of even length, and hence, the
lift of an even-girth base graph is of the same girth as
the original girth. This does not necessarily mean that
no Z2-voltage assignment for an even girth base graph
can lead to a lift graph of larger girth. As long as the
order of the lift of a (𝑘, 𝑔)-graph Γ does not violate the
Moore bound for 𝑘 and 𝑔′ > 𝑔, a Z2-voltage assignment
having the property that the net voltage of no 𝑔-cycle
of Γ equals 0 might exist. Obviously, any such voltage
assignment would lead to a (𝑘, 𝑔′)-graph of twice the
order of the base graph. However, one must not forget
the results of Section 4 where we proved that there must
exist even girth (𝑘, 𝑔)-graphs for which no Z2-voltage
assignments have the above property (as otherwise there
would exist a ‘universal’ construction doubling the or-
der and increasing the girth of all even girth graphs).
More specifically, the results of Section 4 suggest that
in order to obtain a voltage graph lift of an even-girth
𝑘-regular graph of larger girth, one has to use voltage as-
signments using groups of orders proportional to 𝑘

2
. This

suggests the following computational approach to obtain-
ing (𝑘, 𝑔′)-graphs from (𝑘, 𝑔)-graphs using the voltage
graph construction (we will assume that 𝑔 is even and
𝑔′ > 𝑔).

Let Γ be a 𝑘-regular graph of even girth 𝑔, and let 𝐺
be a finite group of order close to 𝑘

2
or larger. A brute

force approach to answering the question whether there
exists a voltage assignment 𝛼 : 𝐷(Γ) → 𝐺 that leads to
a (𝑘, 𝑔′)-graph Γ𝛼 of girth 𝑔′ > 𝑔 is to consider all pos-
sible 𝐺-voltage assignments of Γ and for each of them to
test whether the net voltages of all girth cycles in Γ differ
from 1𝐺. Should one find such a voltage assignment, the
answer to the above question would be positive, other-
wise the answer would be a no. In case of a no answer,
one might next consider other groups of the same order
as 𝐺 or groups of orders larger than |𝐺|. It is useful
to point out that considering larger and larger groups
will eventually lead to a voltage assignment for which
the net voltages of all girth cycles in Γ differ from 1𝐺.
An easy proof of this fact uses the voltage assignment
𝛼 : 𝐷(Γ) → Z|𝐸(Γ)|

2 assigning to each pair of opposing
darts of Γ a different unit basis vector �⃗�𝑖 and the fact
that there are no repeated edges in girth cycles of Γ (and
hence all girth cycles in Γ have a non-trivial voltage). Un-
fortunately, the number of possible voltage assignments
𝛼 : 𝐷(Γ) → 𝐺 is equal to |𝐺||𝐸(Γ)|, and using brute
force becomes very quickly infeasible.

8. Application of (𝑘, 6)-Graphs in
Communication Systems

The problem of communicating reliably over a noisy
channel has been in existence for many decades. One



approach to solving this problem is using error-correcting
codes. An error-correcting code (ECC) is an encoding
scheme that transmits messages as binary strings, in such
a way that the message can be recovered even if some
bits are erroneously flipped. It is done by introducing
redundant (parity check) bits to the message to minimize
the effect of the noise. Codes that form a subspace of
the vector space Z𝑛

2 are called linear codes and are of
particular importance. A key concept in the study of
linear error correcting codes is the parity-check matrix.
A parity-check matrix is a matrix that, when multiplied
by a binary string of appropriate length viewed as a vec-
tor, produces as the result of the multiplication the zero
vector if and only if the string represents a code word
(equivalently, the rows of a parity-check matrix of a lin-
ear code constitute a basis for the space orthogonal to the
code space). It can also be used in decoding a message
as well as in deciding whether a particular vector is a
codeword. If 𝐻 is a parity check matrix, a code word 𝑐
belongs to a linear code block 𝐶 if and only if 𝑐𝐻𝑇 = 0
(for further details, the reader might consult the standard
textbook [14]).

We say that a code 𝐶 is a low-density parity-check
(LDPC) code if its parity-check matrix 𝐻 contains only
a small number of 1’s. LDPC codes have an excellent
performance with iterative decoding, which is very close
to the Shannon limit over Additive White Gaussian Noise
(AWGN) channels. These codes are constructed using
bipartite graphs called Tanner graphs [18]. The Tanner
graph of an LDPC code is composed of two sets of ver-
tices (nodes); namely, variable vertices and check vertices.
Each variable and check vertex correspond to the num-
ber of a codeword and a parity symbol, respectively. If
a variable vertex is constrained by a check vertex, then
there is an edge connecting the two vertices. In addition,
Tanner graphs are used to construct longer codes from
smaller ones.

Example 8. We consider the parity check matrix 𝐻 used
in the study of the girth of a Tanner graph of an LDPC
code from [6]. By studying the Tanner graph of 𝐻 , we
discovered that the graph of 𝐻 is the (3, 6)-cage, which is
the Heawood graph.

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1 0
1 0 1 0 1 0 0
0 0 1 1 0 0 1
1 1 0 0 0 0 1
0 0 0 0 1 1 1
1 0 0 1 0 1 0
0 1 0 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Importantly, the girth of a Tanner graph giving rise

to an LDPC code is an important factor that determines
how good an LDPC code is, especially for regular LDPC
codes, Quasicyclic LDPC codes, etc. For the regular LDPC

codes, the girth of its Tanner graph is a lower bound of
its minimum distance. In other words, it is a threshold
to overcome the noise. Therefore, the bigger the girth,
the better the LDPC codes. Recently, researchers have
studied a class of LDPC codes with large girths, which
they called Tanner (J, L)-regular QC-LDPC codes [20].
Their results showed that most Tanner (3, 5)-, (5, 7)-,
(5, 11)- and (5, 13)-regular QC-LDPC codes have girths
6, 8 and 10 [20].
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