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Abstract
A 5-cycle cluster is a connected subgraph of a cubic graph, where each edge belongs to some 5-cycle. It turns out, that 5-cycle
clusters provide a very useful and efficient tool for the structural analysis of cubic graphs, mostly with respect to colourings
problems. In this work, we develop necessary theory regarding 5-cycle clusters and describe algorithms for generating
5-cycle clusters and analysing them in cubic graphs. Finally, we present applications of our methods in the structural analysis
of all snarks, that is cubic graphs with no 3-edge colouring, up to order 36 and in generation of uniquely 3-edge-colourable
cubic graphs.
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1. Introduction
In 1880, as one of the first attempts to prove the four
colour theorem, Tait [1] proved that each planar graph
is 4-vertex-colourable if and only if each 2-connected
planar cubic graph is 3-edge-colourable. Later on, cubic
2-connected graphs that are not 3-edge-colourable were
named snarks [2]. The class of snarks appeared in the
study of other famous conjectures regarding colourings,
flows and cycle covers, like the Tutte’s 5-flow conjec-
ture [3], Seymour’s [4] and Szekeresz’s [5] cycle dou-
ble cover conjecture or the Berge-Fulkreson conjecture
[6, 7]. One can easily prove that all of them are true
for 3-edge-colourable cubic graphs. Thus any potential
counterexample lies in the family of snarks.

Although the essential property of snarks is the
absence of their 3-edge-colouring, many authors put
stronger requirements on snarks to avoid some “triv-
ial” cases. Typical nontriviality criteria consist of higher
girth, that is the length of a shortest cycle, and cyclic
edge-connectivity, where a cubic graph 𝐺 is cyclically
𝑘-edge-connected if 𝐺 contains no edge-cut consisting of
fewer than 𝑘 edges that separates two cycles of 𝐺. Ac-
cording to perhaps the most common requirements, we
call a snark nontrivial if it is cyclically 4-edge-connected
and has girth at least 5.

Beside the absence of a 3-edge-colouring, the number
of all possible 3-edge-colourings for a given cubic graph is
also studied. Cubic graphs that have up to a permutation
of colours only one 3-edge-colouring, also called uniquely
3-edge-colourable, are connected to a potential minimum
counterexample for the cycle double cover conjecture
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[8]. Uniquely 𝑘-edge-colourable graphs, a more general
notion, were studied by Greenwell and Kronk [9], and
characterised by Thomasson [10] except the case 𝑘 = 3.

Moreover, Kászonyi [11] studied, for a given snark 𝐺
and its edge 𝑒, the value denoted by 𝜓(𝐺, 𝑒) which is the
number of 3-edge-colourings of the cubic graph 𝐺 ∼ 𝑒
obtained from𝐺 by removing the edge 𝑒 and suppressing
the resulting two vertices of degree 2. According to one
of his results [11] (see also [12]), if 𝑒 and 𝑓 are edges of
the same 5-cycle in a snark 𝐺, then 𝜓(𝐺, 𝑒) = 𝜓(𝐺, 𝑓).
This result leads us to study connected subgraphs of
snarks where each edge lies on some 5-cycle which are
called 5-cycle clusters. Thus, the value 𝜓(𝐺, 𝑒) is equal
for all the edges 𝑒 of a 5-cycle cluster in a snark 𝐺.

In this paper, we show how the 5-cycle clusters can be
used for structural analysis of cubic graphs, especially
snarks and uniquely 3-edge-colourable cubic graphs.
Firstly in Section 2, we describe an algorithm using which
we generated all 5-cycle clusters up to order 20. Then
in Section 3 we analyse structural and colouring prop-
erties of small 5-cycle clusters with emphasis on those
contained in the Petersen graph. In Section 4 we describe
algorithms for finding and identifying 5-cycle clusters
in a given cubic graph. Finally, in Section 5, we present
applications of our results.

At the end of this section, we clarify some notions we
shall use. By a graph we always mean a graph without
loops and parallel edges. The distance between the ver-
tices 𝑢 and 𝑣 in a graph 𝐺, denoted by dist𝐺(𝑢, 𝑣) is the
length (that is number of edges) of a shortest 𝑢-𝑣-path.
The distance of two edges 𝑒 and 𝑓 is defined as a minimal
value of dist𝐺(𝑢, 𝑣) where 𝑢 and 𝑣 are some end points
of 𝑒 and 𝑓 , respectively.

2. Generation of 5-cycle clusters
Firstly, since we want to analyse 5-cycle clusters in cubic
graphs, we need to know all possible 5-cycle clusters
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up to a certain order and, eventually, also certain girth.
We developed an algorithm to generate all such 5-cycle
clusters.

Here, the union of graphs 𝐺1 ∪ 𝐺2 is the graph 𝐺
with vertex set 𝑉 (𝐺) = 𝑉 (𝐺1) ∪ 𝑉 (𝐺2) and edge set
𝐸(𝐺) = 𝐸(𝐺1) ∪ 𝐸(𝐺2). If we consider each 5-cycle
as a graph, then we can express every 5-cycle cluster as
a union of some 5-cycles.

Proposition 1. Let𝐻 =
⋃︀

1≤𝑖≤𝑘 𝐶𝑖 be a 5-cycle cluster
with girth 𝑔 consisting of 5-cycles𝐶1, 𝐶2, . . . , 𝐶𝑘 for some
𝑘 ≥ 2. Then there exists 𝑗 ∈ {1, 2, . . . , 𝑘} such that
𝐻 ′ =

⋃︀
1≤𝑖≤𝑘, �̸�=𝑗 𝐶𝑖 is a 5-cycle cluster with girth at

least 𝑔 and, if 𝐻 ′ ̸= 𝐻 , 𝐻 can be obtained form 𝐻 ′ by

(i) adding a 𝑢-𝑣-path of length 5− 𝑑 for some degree
2 vertices 𝑢 and 𝑣 in 𝐻 ′ that are connected by a
path of length 𝑑 ∈ {1, 2, 3, 4}; or

(ii) adding an edge 𝑢𝑥 and a 𝑣-𝑦-path of length 2 for
some degree 2 vertices 𝑢, 𝑣, 𝑥, and 𝑦 of 𝐻 ′ such
that 𝑢𝑣, 𝑥𝑦 ∈ 𝐸(𝐻 ′); or

(iii) adding edges 𝑢𝑥 and 𝑣𝑦 for some degree 2 vertices
𝑢, 𝑣, 𝑥, and 𝑦 of 𝐻 ′ such that 𝑢𝑣 ∈ 𝐸(𝐻 ′), and
𝑥 and 𝑦 are connected by a path of length 2.

Consider the graph 𝐺 on the vertex set 𝑉 (𝐺) =
{𝐶1, 𝐶2, . . . , 𝐶𝑘}, where the cycles 𝐶𝑖 and 𝐶𝑗 are con-
nected by an edge if and only if 𝐶𝑖 and 𝐶𝑗 share an edge
in 𝐻 . Since 𝐻 is a 5-cycle cluster, 𝐺 is connected and
also, 𝐺 contains a vertex 𝐶𝑗 that is not an articulation
(for instance, an end of a longest path). Thus the sub-
graph 𝐻 ′ =

⋃︀
1≤𝑖≤𝑘, �̸�=𝑗 𝐶𝑖 is also connected, hence it

is a 5-cycle cluster. Clearly, the girth of 𝐻 ′ cannot de-
crease with respect to 𝐻 . In the end, a straightforward
case analysis of the edges of 𝐶𝑗 that are not contained
in 𝐻 ′ leads to cases (i), (ii) and (iii).

Based on Proposition 1, we developed Algorithm 1 that
generates all 5-cycle clusters starting from the 5-cycle
by recursively adding paths according to cases (i), (ii)
and (iii). We store the generated 5-cycle clusters in a set
𝑆 together with their canonical representation sparse6
provided by nauty [13] to prevent generating isomorphic
5-cycle clusters, and also in a priority queue 𝑞 so we can
recursively construct new clusters always from a 5-cycle
cluster with the smallest order.

Using Algorithm 1 we generated all 91, 827 5-cycle
clusters up to order 20.

3. Small 5-cycles clusters
In this section, we describe most commonly used 5-cycle
clusters and their colouring properties. For this purpose,
it is useful to allow dangling edges, that is edges incident
with only one vertex. From now on, we will consider
that each vertex of a 5-cycle cluster is incident with three

Algorithm 1: Algorithm for generating all 5-
cycle clusters with girth at least 𝑔 up to order
𝑛
input :𝑛, 𝑔
output :A set 𝑆 of all pairwise non-isomorphic

clusters of 5-cycles up to order 𝑛 with
girth at least 𝑔

𝑞 ← priority queue containing only 𝐶5;
𝑆 ← {};
while 𝑞 is not empty do

𝐺← 𝑞.𝑝𝑜𝑝();
foreach {𝑢, 𝑣} ⊆ 𝑉2 do

foreach 𝑑 ∈ {1, 2, 3, 4}, there is a
𝑢-𝑣-path of length 𝑑 do

if 𝑑 = 4 ∧ 𝑢𝑣 /∈ 𝐸(𝐺) then
𝐻 = 𝐺 ∪ {𝑢𝑣}

else
𝐻 ← 𝐺 ∪
{𝑢𝑥1, 𝑥1𝑥2, . . . , 𝑥3−𝑑𝑥4−𝑑, 𝑥4−𝑑𝑣};

try_adding(𝐻);
if 𝑑 ∈ {1, 2} then

foreach {𝑥, 𝑦} ⊆ 𝑉2 − {𝑢, 𝑣} do
if 𝑑 = 1 then

try_adding(
𝐺 ∪ {𝑥𝑢, 𝑦𝑧, 𝑧𝑣});

try_adding(
𝐺 ∪ {𝑥𝑧, 𝑧𝑢, 𝑦𝑣});

if 𝑑 = 2 then
try_adding(𝐺∪{𝑥𝑢, 𝑦𝑣});

Procedure try_adding(𝐻)
if |𝐻| ≤ 𝑛 ∧ girth(𝐻) ≥ 𝑔 then

if 𝑆 contains no isomorphic copy of 𝐻
then
𝑆.add(𝐻);
𝑞.add(𝐻);

edges, one of them may be a dangling edge. This is
formally comprehended in the notion of the multipole,
introduced in [14], which we now define along with other
notions needed to describe colouring properties.

Multipoles and colourings
A multipole𝑀 consists of a vertex set 𝑉 (𝑀) and an edge
set 𝐸(𝑀). Each edge has two ends which may, or may
not, be incident with a vertex. An edge whose ends are
incident with two distinct vertices is called a link. If only
one end of an edge is incident with a vertex, then the



edge is a dangling edge or semiedge. Other types of edges
do not appear in this paper. The set of all semiedges is
denoted by 𝑆(𝑀). The order |𝑀 | of a multipole 𝑀 is
the number of its vertices. Note that we only consider
cubic multipoles where each vertex is incident with three
edge ends.

It is often convenient to partition the set 𝑆(𝑀) into
pairwise disjoint sets 𝑆1, 𝑆2 . . . , 𝑆𝑛 called connectors.
A multipole 𝑀 with 𝑛 connectors 𝑆1, 𝑆2, . . . , 𝑆𝑛 such
that |𝑆𝑖| = 𝑘𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑛} is denoted by
𝑀(𝑆1, 𝑆2, . . . , 𝑆𝑛) and called a (𝑘1, 𝑘2, . . . , 𝑘𝑛)-pole,
or simply a 𝑘1-pole if 𝑛 = 1.

A colouring of a multipole 𝑀 is a mapping which as-
signs to each edge a non-zero element from the Klein
group Z2 × Z2 in such a way that for each vertex
𝑣 ∈ 𝑉 (𝐺) the three edges incident to 𝑣 have assigned
pairwise distinct colours (or equivalently, colours with
zero sum). For brevity, we denote the elements of Z2×Z2

by 0 = (0, 0), 1 = (0, 1), 2 = (1, 0), and 3 = (1, 1).
One can easily observe that for a cubic graph 𝐺, a map-
ping 𝜙 : 𝐸(𝐺) → Z2 × Z2 − {0} is a colouring if and
only if 𝜙 is a nowhere-zero (Z2 × Z2)-flow for any ori-
entation of the edges of 𝐺.

For the purpose of the following definitions, we as-
sume that the set of semiedges of a multipole 𝑀 is lin-
early ordered. The type of a colouring 𝜙 of 𝑀 is the lexi-
cographically smallest sequence 𝑐1, 𝑐2, . . . , 𝑐𝑘 that can
be obtained from 𝜙(𝑒1), 𝜙(𝑒2), . . . , 𝜙(𝑒𝑘) by permuting
colours. The colouring set of a multipole 𝑀 is the set
containing the colouring types of each colouring of 𝑀 .
A 𝑘-pole 𝑀 is called colour-open if there exists a 3-edge-
colourable 𝑘-pole 𝑁 such that col(𝑀) ∩ col(𝑁) = ∅;
otherwise 𝑀 is called colour-closed.

The following well-known result restrict sequences
that can occur as colouring types.

[Parity lemma [15]] Let 𝑀 be a 𝑘-pole and let 𝑘1, 𝑘2,
and 𝑘3 be the numbers of semiedges coloured by 1, 2 and
3, respectively. Then

𝑘1 ≡ 𝑘2 ≡ 𝑘3 ≡ 𝑘 (mod 2).

For instance, the possible colouring types for a 4-pole
are 1111, 1122, 1212, and 1221.

Petersen 5-cycle clusters
Now, we are prepared to describe the structure and
colouring properties of small 5-cycle clusters. For the
purpose of the structural analysis of snarks, colour-open
5-cycle clusters are most relevant. Although a colour-
closed multipole𝑀 can also occur in a snark, it is possible
only when𝑀 is complemented with some multipole that
already admits no colouring.

We focus on those 5-cycle clusters that occur in the
smallest snark – the Petersen graph. Note that the Pe-
tersen graph is a 5-cycle cluster on its own. In what

follows, we present a complete list of all 5-cycle clusters
contained in the Petersen graph which, as we verified,
also coincides with a list of all colour-open 5-cycle clus-
ters up to order 10. This set of 5-cycle clusters is also
considered in [16] and it is sufficient to describe the struc-
ture of all snarks up to order 36.

Pentagon

The pentagon P is the smallest 5-cycle cluster. It consists
of a single cycle of length 5 together with 5 dangling
edges which in the order corresponding to the 5-cycle
form its unique connector (see Figure 1). It can be con-
structed from the Petersen graph by removing any 5-
cycle. The colouring set of the pentagon is

col(P) = {12333, 12223, 11123, 11231, 12311},

so the colour, which appears three times, is always as-
signed to three dangling edges incident with three con-
secutive vertices on the pentagon, respectively. The pen-
tagon is the only 5-cycle cluster with 5 vertices. It has 5
edges and 5 dangling edges.

Figure 1: Pentagon
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Figure 2: Double pentagon

Double pentagon

The double pentagon dP is a 5-cycle cluster containing
two 5-cycles sharing an edge. It can be obtained from the
Petersen graph by removing two adjacent vertices𝑢 and 𝑣
and severing an edge 𝑒 at distance 2 from 𝑢𝑣. The natural
distribution of semiedges turns it into a (2, 2, 2)-pole
dP(𝐴,𝐵,𝐶), shown in Figure 2, where the connectors
𝐴 and 𝐵 correspond to the vertices 𝑢 and 𝑣 respectively,
and 𝐶 corresponds to the edge 𝑒. By parity lemma, it
admits no colouring, where the colours in the connector
𝐴 are the same and the colours in 𝐵 and also in 𝐶 are
different. However, not all of the remaining colourings
satisfying parity lemma are admissible for dP. Precisely,
its colouring set is

col(dP) = {111111, 111122, 112211, 121121,
121211, 121222, 121323, 122133, 122221,

122313, 123132, 123231, 123312}.

The double pentagon is the unique 5-cycle cluster with 8
vertices, 9 edges and 6 dangling edges.



Dyad

The dyad D (or Petersen negator) is a 5-cycle cluster con-
sisting of two 5-cycles sharing a path of length 2. It
can be constructed by removing a path 𝑢𝑤𝑣 of length
2 from the Petersen graph. The natural distribution
of semiedges into connectors makes it a (2, 2, 1)-pole
D(𝐼,𝑂,𝑅), with 2-connectors 𝐼 and 𝑂 containing the
dangling edges formerly incident with 𝑢 and 𝑣 respec-
tively, and the 1-connector 𝑅 containing the only dan-
gling edge formerly incident with 𝑤 (see Figure 3). For
each colouring of dyad, the sum of the colours in exactly
one of the connectors 𝐼 or 𝑂 is zero. Thus its colouring
set is

col(D) = {11123, 11213, 11231, 12311, 12322, 12333}.

The dyad is the unique 5-cycle cluster with 7 vertices, 8
edges, and 5 semiedges.

I O

R

Figure 3: Dyad
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Figure 4: Isochromatic

Isochromatic

The isochromatic I is a 5-cycle cluster consisting of an
8-cycle 𝑣1𝑣2 . . . 𝑣8 with two additional edges 𝑣1𝑣5 and
𝑣3𝑣7. It can be constructed from the Petersen graph
by removing an edge 𝑢𝑣 together with its end ver-
tices. Isochromatic has two connectors containing the
semiedges formerly incident with 𝑢 and 𝑣, respectively.
Its colouring set is

col(I) = {1111, 1122},

so the edges from the same connector have always the
same colour. It is the unique 5-cycle cluster having 8 ver-
tices, 10 edges, 4 semiedges and girth 5. (There are also
two other 5-cycle clusters with 8 vertices and 4 semiedges
but they have girth 4.)

Triad

The triad T is a 5-cycle cluster formed by three 5-cycles
𝐶1, 𝐶2, and 𝐶3 such that 𝐶1 and 𝐶2 have exactly one
edge in common while 𝐶3 contains the common edge of
𝐶1 and𝐶2 and one additional edge of each𝐶1 and𝐶2. It
can be constructed from the Petersen graph by removing
one vertex and severing an edge not incident with it. The

natural distribution of semiedges into connectors turns
it into a (2, 3)-pole T(𝐵,𝐶), shown in Figure 5, where
the connector 𝐵 corresponds to the severed edge and
the connector 𝐶 corresponds to the removed vertex. The
sum of the colours in both connectors is non-zero for
each colouring of T, so

col(T) =

= {12333, 12113, 12223, 12131, 12232, 12311, 12322}.

Together with the triad, there are three 5-cycle clusters
having 9 vertices, 11 edges and 5 semiedges. One of them
has girth 4, the other two have girth 5 (see Figure 9 for
the other one). The triad is distinguishable by the fact
that it contains two pairs of dangling edges at distance 1.

D E

Figure 5: Triad

Heterochromatic

The heterochromatic is a 5-cycle cluster that arises from
the Petersen graph by severing two nonadjacent edges,
leaving a natural distribution of its 4 semiedges into 2
connectors containing the two dangling edges that arose
by severing the same edge. Two nonadjacent edges in
the Petersen graph can be at distance 1 or 2. Depending
on this there are two nonisomorphic heterochromatics
which are called heterochromatic 1 and heterochromatic
2 according to the distance of the severed edges (see
Figure 6). We denote them H1 and H2, respectively.
Each colouring of a heterochromatic assigns different
colours to the edges from the same connector, so

col(H1) = col(H2) = {1212, 1221}.

There are four 5-cycle clusters with 10 vertices, 13 edges,
4 dangling edges and girth 5, amongst them there are
H1 and H2 (see Figure 10 for the remaining two). The
distinguishing property of them is that H1 is the only
one having a pair of dangling edges at distance 1 and
H2 is the only one with distance 2 or 4 between any two
dangling edges.

Triple pentagon

The triple pentagon tP is a 5-cycle cluster consisting of
three 5-cycles, each pair having two edges in common. It
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Figure 6: Heterochromatic 1 (left) and 2 (right)

can be constructed from the Petersen graph by severing
three pairwise non-adjacent edges lying on a 6-cycle
in an alternating order, making the triple pentagon a
(2, 2, 2)-pole tP(𝐴,𝐵,𝐶) as depicted in Figure 7. Note
that the three severed edges cannot be extended to a
perfect matching of the Petersen graph. Due to parity
lemma, tP admits no colouring where in each connector,
its two semiedges have the same colour. Like the double
pentagon, this is not sufficient to describe the colouring
set of tP which is exactly

col(tP) = {111122, 111212, 112121, 112211,
112222, 112233, 121112, 121211, 121222,

121332, 122212, 122313, 122331, 123231}.

The triple pentagon has 10 vertices, 12 edges and 6 dan-
gling edges.
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Figure 7: Triple pentagon
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Figure 8: Tricell

Tricell

The tricell tC is a 5-cycle cluster containing three 5-
cycles 𝐶1, 𝐶2 and 𝐶3, where 𝐶1 and 𝐶2 share one edge,
𝐶2 and 𝐶3 share two edges, and 𝐶1 and 𝐶3 are disjoint.
Like the triple pentagon, it arises from the Petersen graph
by severing three pairwise non-adjacent edges, however,
in this case these edges do not lie on a 6-cycle and can
be extended to a perfect matching of the Petersen graph.
The 3-cell has a natural representation as a (2, 2, 2)-pole
tC(𝐴,𝐵,𝐶) as shown in Figure 8. Since it was also
constructed form the Petersen graph by severing three
edges like tP, we get the same restrictions on colourings
like for tP. However, there are some differences in the

colouring set, precisely

col(tC) = {111212, 111221, 112121, 121112,
121121, 121211, 121233, 121332, 122111,

122133, 122313, 122331, 123132, 123312, 123321}.

The only 5-cycle clusters with 10 vertices, 12 edges and
6 dangling edges are the triple pentagon and the tricell.
In contrast to the triple pentagon, the tricell has one
dangling edge whose distance to each other dangling
edge is at least 2.

Non-petersen 5-cycle clusters
There are 86 5-cycle clusters of order up to 10. We sum-
marised their numbers divided by order and girth in Table
1. Nine of them are colour-open and contained in the
Petersen graph, so there remain 77 colour-closed 5-cycle
clusters.

order 5 6 7 8 9 10

𝑔 = 3 1 3 3 7 13 12
𝑔 = 4 0 1 2 6 9 14
𝑔 = 5 1 0 1 2 3 8

Table 1
Distribution of the 5-cycle clusters up to order 10 according
to order and girth 𝑔.

Here, we describe only 5-cycle clusters that are most
relevant for our work – that is those with girth 5, because
5-cycle clusters with girth less than 5 can not appear in
nontrivial snarks. Also all Petersen 5-cycle clusters have
girth 5, so if we analyse snarks that may contain also
colour-closed multipoles, we need to distinguish between
colour-open (Petersen) and colour-closed 5-cycle clus-
ters. We mentioned these 5-cycle clusters in previous
subsection.

Among the 5-cycle clusters with girth 5 of order 9,
there is triad which shares the same number of dangling
edges with the 5-cycle cluster depicted in Figure 9. The re-
maining third 5-cycle cluster is the 3-pole obtained from
the Petersen graph by removing one vertex. Of order 10,
there are eight 5-cycle clusters: two heterochromatics,
the triple pentagon, the tricell, the Petersen graph, two
4-poles shown in Figure 10, and the 2-pole obtained from
the Petersen graph by severing an edge.

Number of colourings of 5-cycle clusters
Besides the colouring set of 5-cycle clusters, it is useful
to know also number of colourings of the small 5-cycle
clusters. The pentagon, double pentagon, dyad and triad
all admit only one colouring for each of their possible
types (up to permutation of colours). The triple pentagon



Figure 9: The non-petersen 5-cycle cluster with order 9, girth
5 and 5 dangling edges.

Figure 10: Two non-petersen 5-cycle clusters with order 10,
girth 5 and 4 dangling edges.

has two colourings of types 111122, 112211, 112222,
and 112233, and one colouring for the remaining types
from col(tP). Similarly, the tricell admits two colourings
of type 111221 and one for the remaining types from
col(tC).

The isochromatic and both the heterochromatics admit
two colouring for each of its types. Interestingly, we
found no colour-open 5-cycle cluster with 4 dangling
edges and an odd number of colourings for some type
(note that no colouring for some type is also an even
number). We state it in the following proposition which
we verified using a computer for all 5-cycle clusters with
4 dangling edges up to order 20 which we generated
using Algorithm 1.

Proposition 2. If𝑀 is a colour-open 5-cycle cluster with
4 dangling edges and at most 20 vertices, then it has an
even number of colourings for each colouring type. □

4. Algorithm for finding clusters
The first step in finding 5-cycle clusters is to find all 5-
cycles in a given cubic graph 𝐺. We represent a 5-cycle
of𝐺 as a sequence of 5 vertices. Since the automorphism
group of the 5-cycle, which is generated by rotations and
reflections, has order 10, each 5-cycle of 𝐺 can be rep-
resented using 10 different sequences. Thus, assuming
that the vertex set of𝐺 is a subset of integers, we restrict
ourselves to finding only sequences (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5)
in the form, where 𝑣1 is minimal and 𝑣3 < 𝑣4. This
representation is unique for every 5-cycle since only one
rotation leads to minimal 𝑣1 and only one reflection leads
to 𝑣3 < 𝑣4.

For each vertex 𝑣 of 𝐺, we find the array 𝑁1 of neigh-
bours of 𝑣 and the array 𝑁2 of the vertices that are at

distance 2 from 𝑣 (that is neighbours of the vertices from
𝑁1). We put in both 𝑁1 and 𝑁2 only vertices with num-
bers higher than 𝑣. This ensures that each found 5-tuple
for a 5-cycle starts with a vertex with the smallest num-
ber. Together with the requirement 𝑎 < 𝑏 we can con-
clude that the found 5-tuple is a canonical representation
of a 5-cycle. Thus, Algorithm 2 finds each 5-cycle ex-
actly once. The time complexity of Algorithm 2 is clearly
𝑂(|𝑉 (𝐺)|).

Algorithm 2: Algorithm for finding all 5-cycles
in a cubic graph

foreach 𝑣 ∈ 𝑉 (𝐺) do
𝑁1 = (𝑢 ∈ 𝑁(𝑣); 𝑢 > 𝑣);
𝑁2 = (𝑤 ∈ 𝑁(𝑢); 𝑢 ∈ 𝑁1 ∧ 𝑤 > 𝑣);
foreach {𝑎, 𝑏} ⊆ 𝑁2, 𝑎 < 𝑏 do

if 𝑎𝑏 ∈ 𝐸(𝐺) then
result.add((𝑣, 𝑝𝑎𝑟𝑒𝑛𝑡(𝑎), 𝑎, 𝑏, 𝑝𝑎𝑟𝑒𝑛𝑡(𝑏)));

Now we describe our algorithm for finding all maximal
5-cycle clusters in a given cubic graph.

1. Find all 5-cycles in 𝐺 using Algorithm 2.
2. Determine maximal 5-cycle clusters using union-

find algorithm.
3. Determine the type of each cluster according to

the properties described in Section 3.
4. Determine the connections between clusters and

remaining vertices of 𝐺.

In the third step, we firstly determine the order, num-
ber of dangling edges and girth of a cluster (if we do not
know that we have a cluster contained in some nontriv-
ial snark, hence with girth 5). If there is more than one
suitable 5-cycle cluster, we perform additional checks to
distinguish it. For that purpose and also for the purpose
of further identification, we compute distances between
every pair of dangling edges.

The last step is optional – sometimes it is sufficient to
know only which clusters are contained in a cubic graph.
For each cluster, we identify which of its dangling edges
belong to which connector. Then we create a multigraph,
were we contract each 5-cycle cluster 𝑀 in 𝐺 to a single
vertex and label the edge ends leaving 𝑀 according to
their connectors.

We illustrate the last two steps on an example. Assume
that we have a 5-cycle cluster 𝑀 with 10 vertices, 4
dangling edges and girth 5. To characterise this cluster,
further checks are needed. Say that we find two dangling
edges 𝑒 and 𝑓 at distance 1. Now we know that 𝑀 is the
heterochromatic 1. In the step 4, we find unique dangling
edges 𝑒′ and 𝑓 ′ at distance 4 from 𝑒 and 𝑓 , respectively.



Then the connectors of 𝑀 are then 𝐴 = {𝑒, 𝑒′} and
𝐵 = {𝑓, 𝑓 ′}.

An example of the output
At the end, we illustrate the output of our algorithm on
one snark which we denote𝐺34 of order 34. Its adjacency
list together with the output is shown in Figure 11. The
output firstly lists for each maximal 5-cycle cluster 𝑀
of 𝐺34 denotation and name of 𝑀 , and then for each
semiedge 𝑒 of 𝑀 a line consisting of the connector of 𝑒,
the number of the vertex incident with 𝑒 and the identifier
of the other end of 𝑒 in 𝐺34. Secondly, for each vertex
𝑣 contained in no maximal 5-cycle cluster, the output
contains one line listing the identifiers of the neighbours
of 𝑣. The identifier of a vertex 𝑣 (or equivalently edge
end) is its number or the denotation of the 5-cycle cluster
containing 𝑣 together with the connector the semiedge
incident with 𝑣 is in. We see that 𝐺34 consists of four
5-cycle clusters: two dyads 𝐷0 and 𝐷2, two triads 𝑇1

and 𝑇3, and two vertices 10 and 11 that are contained in
no 5-cycle cluster.

0: 18 12 14
1: 20 5 6
2: 16 32 11
3: 8 5 21
4: 32 28 15
5: 1 3 15
6: 1 10 7
7: 16 21 6
8: 19 3 14
9: 19 13 23
10: 18 11 6
11: 2 26 10
12: 0 27 22
13: 9 20 30
14: 0 8 24
15: 17 4 5
16: 2 29 7

17: 24 33 15
18: 0 25 10
19: 8 9 25
20: 1 13 21
21: 3 20 7
22: 28 12 31
23: 9 26 31
24: 17 14 25
25: 24 18 19
26: 27 11 23
27: 26 12 30
28: 4 29 22
29: 16 33 28
30: 27 13 31
31: 30 22 23
32: 33 2 4
33: 32 17 29

D0 (dyad):
B(3): D2-B
A(5): T1-D
B(6): 10
A(7): T1-D
R(20): T3-E
T1 (triad):
E(2): 11
D(15): D0-A
D(16): D0-A
E(17): D2-R
E(28): T3-E
D2 (dyad):
A(0): T3-D
B(8): D0-B
B(18): 10
A(19): T3-D
R(24): T1-E
T3 (triad):
D(9): D2-A
D(12): D2-A
E(13): D0-R
E(22): T1-E
E(26): 11
10: D2-B 11 D0-B
11: T1-E T3-E 10

Figure 11: An adjacency list of a snark of order 34 (left) and
output of our program (right).

Following this output one can easily draw 𝐺34

schematically as depicted in Figure 12. This drawing
does not hold complete information – we would obtained
the same multigraph if we, for instance, replaced the

D0 D2

T1 T3

10

11

A

B B

A

D

E

D

E

Figure 12: A schematic drawing of the snark 𝐺34

edges 5-15 and 7-16 with 5-16 and 7-15. However, this
representation of 𝐺34 still holds enough information to
prove, using the properties of dyads and triads from Sec-
tion 3, that𝐺34 is not 3-edge-colourable. Indeed, suppose
to the contrary that 𝐺34 is 3-edge-colourable. Then the
two colours in the connector 𝐴 of 𝐷0 are different, since
they come from the triad 𝑇1. Thus the colours in 𝐵 are
the same. Analogously, the two colours in the connector
𝐵 of 𝐷2 are the same, but then the vertex 10 is incident
with two edges of the same colour – a contradiction.
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Figure 13: A drawing of the snark 𝐺34

5. Applications
Finally, in this section we describe how we used analysis
of 5-cycle clusters in our research.

Structural analysis of snarks
In 2013, Brinkmann et al. [17] generated all nontrivial
snarks up to order 36. They revealed that vast majority



of snarks, at least up to order 36, has girth 5, so they can
be analysed using 5-cycle clusters.

Using this approach we described all snarks up to or-
der 36. We analysed the structure of all critical cyclically
5-edge-connected snarks, where a snark is critical if re-
moval of any two adjacent vertices produces a 3-edge-
colourable graph. Then we described a set of simple
operations using which we are able to construct all the
remaining snarks.

Moreover, we generalised the structure of these small
snarks to several infinite families, where we use instead of
the 5-cycle clusters larger multipoles with similar colour-
ing properties. Those multipoles, that are not necessary
5-cycle clusters, are constructed from other snarks in the
same way that the corresponding Petersen clusters are
constructed from the Petersen graph.

We illustrate these results on the following exam-
ple. Consider the infinite family of cubic graphs ℱ con-
structed as follows: Take three 5-poles 𝑁 , 𝑇1 and 𝑇2,
where 𝑁 is obtained from some snark by removing a
path of length 2, and each of 𝑇1 and 𝑇2 is constructed
from some snark (not necessary distinct) by severing an
edge and removing a vertex. We then connect 𝑁 , 𝑇1 and
𝑇2 as depicted in Figure 14. Note that if 𝑁 , 𝑇1 and 𝑇2

are all constructed from the Petersen graph, we obtain a
dyad and two triads.

We proved that 𝑁 has similar colouring properties
like the dyad and 𝑇1 and 𝑇2 have similar colouring prop-
erties like the triad, precisely col(𝑁) ⊆ col(D) and
col(𝑇1), col(𝑇2) ⊆ col(T). This implies that all graphs
inℱ are not 3-edge-colourable. Out of 2110 critical cycli-
cally 5-edge-connected snarks, we found out that 1718
of them are contained in the class ℱ . Although in most
cases not every one of the 5-poles 𝑁 , 𝑇1 and 𝑇2 is a
5-cycle cluster, in each of those snarks, at least two of
𝑁 , 𝑇1 and 𝑇2 are 5-cycle clusters due to the order not
exceeding 36. Thanks to this we were able to identify
them using 5-cycle clusters.

For further details and results of our analysis, we refer
the reader to [16].

T1 T2

N

Figure 14: A schematic drawing of snarks contained in the
family ℱ

Uniquely 3-edge-colourable graphs
Interestingly, the only know example of a cyclically 4-
edge connected uniquely 3-edge colourable cubic graph
is the generalized Petersen graph 𝑃 (9, 2) on 18 vertices
[18], although there are infinitely many instances con-
taining triangles [19] or cycle separating 3-edge-cuts
[20].

For the purpose of finding more uniquely 3-edge-
colourable cubic graph, it is useful to construct multipoles
that can be contained in them. We say that a multipole is
possibly uniquely 3-edge-colourable if it has exactly one
colouring for at least one of its types. By Proposition
2 we know that every 5-cycle cluster with 4 dangling
edges and at most 20 vertices is not possibly uniquely
3-edge-colourable. Hence it can occur in no uniquely
3-edge-colourable cubic graph.

Thus when one wants to construct a possibly uniquely
3-edge-colourable multipole from a graph𝐺 by removing
some vertices or severing some edges, one has to ensure
that the resulting multipole contains no 5-cycle cluster
of order at most 20 and 4 dangling edges. This can be
a useful heuristic in finding such multipoles – when we
know that a snark𝐺 contains some not possibly uniquely
3-edge-colourable multipole 𝑀 , we know that we need
to remove a vertex from 𝑀 or sever a link of 𝑀 which
narrows down possibilities of possible construction of
multipoles form 𝐺.
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