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Abstract

The paper presents work in progress attempting to solve a text-to-ontology mapping problem. While ontologies are being
created as formal specifications of shared conceptualizations of application domains, different users often create different
ontologies to represent the same domain. For better reasoning about concepts in scientific papers, it is desired to pick the
ontology which best matches concepts present in the input text.

We have started to automatize this process and attack the problem by utilizing state-of-the-art NLP tools and neural
networks. Given a specific set of ontologies, we experiment with different training pipelines for NLP machine learning
models with the aim to construct representative embeddings for the text-to-ontology matching task. We assess the final result
through visualizing the latent space and exploring the mappings between an input text and ontology classes.
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1. Introduction

The FAIR (Findable, Accessible, Interoperable and
Reusable) research data management needs a consistent
data representation in ontologies, particularly for repre-
senting the data structure in the specific domain [1]. The
application of ontologies varies from a domain-specific
vocabulary and a translation reference up to an environ-
ment for logical reasoning and property inference.
Despite their purpose of standardizing the knowledge
conceptualization, there still may exist several ontologies
within the same domain [2]. Creating and managing an
ontology is a manual process often performed by many
domain experts. As each expert works on different prob-
lems, they also might have different conceptualizations
of their respective knowledge. However, approaches to
automate the knowledge conceptualization also face their
challenges, as a machine cannot easily create semantics
without human input (e.g. scientific theses, which are
created by humans). A constant demand for a knowl-
edge database expansion and utilizing of already available
knowledge leads to the problem of ontology alignment
and merging, which is a research field on their own.
Another problem faced by domain experts is how to
choose a proper ontology for a certain task. Different
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ontologies can focus on different sub-domains as well as
on different levels of abstraction. Choosing the ontology
which best corresponds to an input text is an important
step towards reasoning about it.

In the reported work in progress, we focus on the latter
problem. One of the possible ways to address the task is
to consider it as matching input texts with an existing
text collection. Such a formulation allows to employ
already existing rich text processing pipelines, as well as
powerful pretrained models.

2. Related Work

2.1. Entity linking

The problem is closely related to the concept normaliza-
tion and entity linking tasks. The algorithms encountered
in this context include dictionary lookup [3, 4], condi-
tional random fields and tf-idf vector similarity [5], word
embeddings and syntactical similarity [6].

The vector similarity approaches either employ tf-idf
vectors or dense word embeddings. The tf-idf vector is
a document vector of the size of the considered vocabu-
lary, where each element is the number of occurrences of
the term in a document, multiplied by the logarithmized
reciprocal value of the number of the documents where
this term appears. These vectors are well-interpretable
(high values indicate the rare term which appears in par-
ticular document often), but very sparse, which impedes
the performance of machine learning algorithms. On
contrary, word embeddings generated by representation
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learning algorithms are dense, but provide no direct in-
terpretation.

The mentioned systems share a common pipeline—
at the first step, they use an external algorithm to find
potential concepts in a scientific text. After that, they
link proposals with concepts using retrieval techniques,
such as dictionary lookup or vector distance.

2.2. Natural Language Processing

Entity linking techniques relying on vector similarity
may either use tf-idf vectors or word embeddings. The
latter may be beneficial due to the dense vector structure
and an ability to be produced by high-capacity language
models, trained on large corpora.

fastText [7] is a representation learning algorithm pro-
ducing word-level embeddings. A neural network with
a single hidden layer is being trained to predict a word
given its context, and the learned word representations
are then being used as word embeddings.

Another widely used representation learning algo-
rithm is BERT [8]. A deep sequence processing neu-
ral network is trained on two objectives—predicting a
masked word in a sentence and predicting the order of
two given sentences.

Compared to the fastText, BERT embeds the whole
input sequence at once and produces contextual embed-
dings for each token—the same token in different con-
texts will be embedded differently. This allows it to
achieve state-of-the-art results in text classification [8]
and named entity recognition [9] tasks. Another benefit
of BERT is that its Transformer architecture demonstrates
impressive transfer-learning capabilities [10], which can
be useful for fine-tuning the model for tasks laying out-
side pretraining data distribution.

3. Matching Texts to Ontologies

3.1. Problem definition

Within the proposed framework, we define an ontology
O as a directed attributed multi-graph, where vertices
represent classes, edges represent relationships between
them, and both vertices and edges can have attributes.
Given a set of specific ontologies K = {O1,...,0,}
and an input text 7' € T, the task is to predict the ontol-
ogy that best matches the content of T'. A predictor may
be either a "hard" mapping f : T — K or a scoring func-
tion f : T x K +— R which allows to order ontologies
by relevance.
There are several complications of the task:

Given ontologies are the only source of supervision.
No text-to-ontology mapping labels are provided. This

is the key difference from many other works, which rely
on ground-truth either for training or evaluation.

Ontologies may significantly differ in size. This
can lead to very outbalanced datasets when generating
them from ontologies.

These difficulties should be considered in the first place
when choosing a solution method.

3.2. Text Similarity Strategy

Ontologies typically provide annotations for most of their
classes and relations, potentially generating supervised
datasets for ML algorithms. But before employing a text
similarity approach, we have to make several strong as-
sumptions:

« The distribution of input texts is the same as the
distribution of annotation texts. It means that
the input sentences should follow the same gen-
eral structure, length and vocabulary as ontology
annotations to avoid prediction skewing for irrel-
evant reasons.

+ The best matching ontology is the one which pro-
vides annotations most similar to the input text.
Since the considered methods are text-based, they
will not rely on structures or hierarchies created
by ontology classes and input text terms.

For methods mentioned below in this subsection, we
will employ fastText and BERT models trained on texts
from related domains, which will serve as a backbone for
further processing. Following the notation introduced
in the Subsection 3.1, we consider a "hard" mapping
f T — K directly to the space of ontologies of interest.

3.2.1. Zero-shot classification

The method consists of assigning an ontology consid-
ering a similarity between annotation embeddings and
an embedding of an input text. The method is simple
and does not require model fine-tuning, which allows to
quickly establish a baseline for other experiments. The
common choices of similarity measures are Euclidean
or cosine distances — we choose the latter in our experi-
ments. The reason is that for some embedding algorithms
vector length may be influenced by the input text size,
so vectors corresponding to semantically close texts may
generally point in the same direction but be dissimilar in
terms of Euclidean distance.

3.2.2. Supervised classification based on ontology
annotations

This method relies on a supervision provided by ontol-
ogy annotation attributes. Given an ontology set K, we



can generate a dataset of annotation-ontology label pairs
and use it for supervised training. Under the aforemen-
tioned assumptions we can directly assign input texts to
ontologies using the trained model.

3.2.3. Negative sampling

This method extends the method above by adding a
"None" class, denoting that the input text does not relate
to any of given ontologies. The annotation dataset is
extended by:

« Sentences extracted from scientific papers from
unrelated domains and labeled with the "None"
label.

« Sentences extracted from papers from related do-
mains with a different objective during training.
For related input texts, instead of maximizing the
model output scores for a ground truth class we
minimize the output scores for the "None" class.
This method is intended to partially counter the
possible input distribution difference between on-
tology annotations and scientific texts.

4. Experiments

4.1. Setup

We conduct our experiments on a set of five ontologies
related to the chemical domain (Table 1). The ontolo-
gies NCIT, CHMO and Allotrope are considered to be the
closest to it, while Chemical Entities of Biological Inter-
est (CHEBI) has only a subset of relevant entities. The
SBO was selected as it contains some general laboratory
and computational contexts, which can be seen as some
kind of a test, whether the tools used can also identify
ontologies not fitting to the text content.

We also selected 28 scientific papers as inputs for as-
sessment, consisting of 25 research and 3 review papers.
Those papers deal with the topic of methanation of CO2
and consist in sum of 1,3M symbols.

Table 1
Sizes of considered ontologies

Ontology Classes | Annotations
CHEBI [11] 171058 51095
NCIT [12] 170300 133478
Allotrope [13] 2893 2677
CHMO [14] 3084 2895
SBO [15] 693 692

We use the pretrained fastText model by [16] and the
recobo/chemical-bert-uncased [17] checkpoint of
a BERT implementation [18] from the HuggingFace
repository. For preprocessing we use spaCy [19] with

a scispaCy [20] model en_ner_bc5cdr_md. For the re-
maining machine learning models, PyTorch implementa-
tions were used. For 3D visualization method Uniform
Manifold Approximation and Projection for Dimension
Reduction (UMAP) [21], we used the implementation
described in [22].

Due to the lack of ground truth matching data, we
assess the performance primarily through inspecting the
resulting input sentence-annotation pairs.

4.1.1. Text preprocessing

We employ the following text preprocessing pipeline
before constructing input embeddings:

1. *Split an input text into sentences with a spaCy
model.

2. *Filter valid sentences, which contain at least two
nouns and a verb.

3. “Filter out sentences with non-paired parenthesis
and ill-parsed formulas or composed terms.

4. (BERT) Tokenize with a tokenizer coming with
the model.

4. (fastText) Convert to lowercase and split into
words

The points marked with an asterisk are meant to be
applied to new sentences from scientific papers only.

4.2. Text Similarity

Zero-shot setup. We start with representation learn-
ing of annotations using the fastText and BERT algo-
rithms and inspecting the embeddings produced. For
the dimensionality reduction, we use the UMAP algo-
rithm with the number of neighbors set to 15, minimum
distance 0.5 and cosine metric. We have found that 3-
dimensional embeddings preserve substantially more in-
formation (allowing to separate clusters that may be in-
separable in 2D). The result is illustrated in Figure 1, three
example sentences together with annotations assigned
to them by fastText and BERT are in Table 3.

Table 2
Zero-shot statistics for the distances of sentences to the closest
ontology annotations.

Embeddings | Closest distance Closest distance
mean standard deviation

fastText 0.846 0.086

BERT 0.605 0.038

Those visualizations and Table 2 allow to suppose that
the model embeds input papers separately from ontol-
ogy annotations, which may indicate a distribution shift
between sentences and annotations.



Table 3

Sentence pairs of a new sentence from the scientific papers and the closest ontology annotation. The "carbon dioxide"
annotation was assigned by BERT to all three above example new sentences. While BERT embeddings are more discriminative
for the ontology classification task, the assigned sentences and low-dimensional embeddings on Figure 3 indicate that this

approach is more sensitive to the distribution shift problem.

New sentence

Also there is an upper limit of
operation above which thermal
decomposition will occur.

The difference is the main ad-
sorption species during the re-
action.

This enhancement of the Ni dis-
persion is very relevant because
as reported in the literature [78]
NiO sites [...]

fastText closest

An end event specification is an
event specification that is about
the end of some process.

Reaction scheme where the
products are created from the
reactants [...]

The name of the individual
working for the sponsor respon-
sible for overseeing the activi-
ties of the study.

BERT closest

Carbon dioxide gas is a gas that
is composed of carbon dioxide
molecules.

Carbon dioxide gas is a gas that
is composed of carbon dioxide
molecules.

Carbon dioxide gas is a gas that
is composed of carbon dioxide
molecules.
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Figure 1: A 3-dimensional projection of annotation embed-
dings produced by fastText and BERT. In the case of fastText,
SBO, Allotrope, and CHMO annotations are located in tiny
areas, primarily close to the center of the image.

Ontology matching as text classification. As we
mentioned in the Subsection 3.2, another potential strat-
egy to solve the problem is to treat it as a classification
task. If the distributions of input texts and correspond-
ing ontologies are the same, we can train a classifier on
ontology annotations and apply it on input texts.

We implement this by embedding ontology annota-
tions with BERT and training over them a shallow fully-
connected multilayer perceptron (MLP) with a single

768-dimensional hidden layer. Due to the significant dif-
ference in sizes between ontologies, we proportionally
oversample minority data points. The classifier reaches
0.987 validation accuracy after the single-shot validation
on the annotations from all the classes, which indicates
their good separability for different ontologies, cf. Fig-
ures 2 and 3.

However, if we preprocess input texts and embed them
in this way, the inspection will show that their distribu-
tion significantly differs from the distribution of ontology
annotations. The visualizations in Figures 2 and 3 show a
dense separate cluster of sentences parsed from scientific
papers.

Negative sampling. As an attempt to counter the is-
sue, we introduced scientific texts into training data. We
sampled 400 scientific texts from the chemical domain (as
positive examples) and 400 from unrelated domains (as
negatives). During training, the model is being trained
on two objectives:

1. Cross-entropy loss if the input is an ontology
annotation (same as before)

2. Binary cross-entropy loss if the input is a sentence
from a scientific paper. The model minimizes the
probability of a special "Negative" class output
for a related scientific text, and maximises it for
unrelated.

In this setting we train the head over BERT until con-
vergence first, leaving the backbone frozen. Considering
only ontology annotations and leaving aside sampled
sentences, the model reaches 0.984 validation accuracy,
which is very similar to the performance of the classifier
described above.

After that, we fine-tune the whole BERT model. The
model reaches 0.958 validation accuracy after single-shot
validation on the combined annotation and paper sen-
tence dataset, with the confusion matrix on Figure 4. As
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(a) The progress of training and validation accuracy
during training. The blue (above) and orange (be-
low) lines indicate the training and validation ac-
curacy respectively.
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Figure 2: Training plot and a 3-dimensional projection of the
embeddings produced by BERT in the classification approach.
The visualization gives an intuition of the distribution gap
between the scientific texts for which we would like to find
the most relevant ontology, and ontology annotations.

we will show later, mixing sampled sentences in from
both relevant and irrelevant scientific texts allowed to
improve classification accuracy over the classifier on top
of BERT.

Despite the good separability of individual ontologies
and the additional optimization criterion, the UMAP em-
beddings look similar to the previous setup in terms of
clustering input sentences into a separate subspace.

It is worth to note that the classifier and negative sam-
pling models produce softmax scores, which can be in-
terpreted as a class probability distribution. However,
neural networks tend to be overconfident in their out-
puts [23], so additional calibration is needed before using
the outputs for relevance estimation.

Statistical results. To compare the models, we con-
duct the Friedman test first to check if the models perform
the same. We perform a stratified split of the validation
dataset with the ontology annotations into 50 samples
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(b) 3-dimensional projection of the activities of the
hidden layer of the MLP trained over BERT

Figure 3: Visualization of the BERT embedding phase and the
MLP classification phase of the ontology classification task
with the fine-tuned BERT in the negative sampling setting.

and test the following hypothesis:

Hypothesis H; (Null): All the six models perform the
same on the validation splits.

The Friedman test resulted in the null hypothesis rejec-
tion on the significance level of 5%. To further compare
the models, we perform the Wilcoxon signed-rank test on
each pair of models. We make the following assumptions
about the algorithms:

« For a larger k the kNN classifier can work the
same or better than the 1INN.

+ The neural network model can fit training data
the same or better than the KNN.

+ The negative sampling results in a non-decrease
or an improvement in the model generalization.

Hypothesis H, (Null for ANN models): The 10NN mod-
els perform the same as their INN variants.

While the 1NN is a common setting for many NLP
systems, it may produce complex decision boundaries
and lead to overfitting. We test a larger k versus one to
determine whether this is an issue in our setup.
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Figure 4: Confusion matrix of the MLP classification over
fine-tuned BERT for a dataset consisting of the annotations
from all five considered ontologies and the sentences of the
additional 400 related and 400 unrelated scientific papers..

Hypothesis H; (Null for neural network classifier): The
NN classifier performs the same as the kNN models both
on BERT/fastText embeddings.

The assumption behind this hypothesis is that a neural
network as a universal approximator can fit data better
than a nearest-neighbour classifier.

Hypothesis H; (Null for the fine-tuned model with nega-
tive sampling): The fine-tuned BERT with negative sam-
pling performs the same as other considered models.

We suppose that additional sampled sentences would
allow to improve the model performance and help to
avoid overfitting when fine-tuning the whole model in-
stead of head only.

Hypothesis Hs (Null for the rest): In each remaining
pair, both models have the same performance.

We indicate the relative model performance on Fig-
ure 5. Considering the 5% significance level, the test
rejected all the null hypotheses except the H,, which was
rejected only for the fastText embeddings. To explain
that, we can note that there is a relatively sharp boundary
between individual classes on UMAP embeddings. If it
holds so for the original space, larger k may suppress
outlier noise but decrease classification accuracy near it.

BERT NN

BERT 1-MM BERT 10-NN  FT 1.NN

FT10-NN  BERT NS

FT 1-NMN  BERT 10-NN BERT 1-NN

BERTNS  FT 10-NN

BERT NN

Figure 5: The comparison matrix of the six considered models.
The i, j-th element indicates an amount of splits where the
i-th model performed better than j-th. Except the one- and
ten-nearest-neighbor over BERT embeddings, all the models
demonstrate statistically significant differences. BERT NN
denotes a neural network classifier trained over BERT embed-
dings.

5. Conclusion and Further
Research

We are not aware of other works on unsupervised text-
to-ontology mappings, so we are not able to discuss them
and compare the proposed approach with previous meth-
ods.

The reported work in progress revealed that the dis-
tribution of the scientific texts substantially differs from
the one of ontology annotations. In spite of the high
classification accuracy both for the annotations from the
considered ontologies and the sentences of the additional
800 scientific papers, this leads to mapping into separate
subsets of the embedding space. This is true even for the
most sophisticated of the three investigated settings —
with the BERT fine-tuned using both the ontology anno-
tations and scientific texts from (un-)related domains.

To avoid such a loss of generality, the future research
could include an intermediate step of entity recognition.
Using such recognized entities instead of raw text can
help to separate the information in scientific papers that
is directly related to concepts from ontologies and unre-
lated words, sentences and other parts of text not elimi-
nated during preprocessing.
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