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Abstract
This paper provides an insight into the possibility of how to find ontologies most relevant to scientific texts using artificial
neural networks. The basic idea of the presented approach is to select a representative paragraph from a source text file,
embed it to a vector space by a pre-trained fine-tuned transformer, and classify the embedded vector according to its relevance
to a target ontology. We have considered different classifiers to categorize the output from the transformer, in particular
random forest, support vector machine, multilayer perceptron, k-nearest neighbors, and Gaussian process classifiers. Their
suitability has been evaluated in a use case with ontologies and scientific texts concerning catalysis research. From results we
can say the worst results have random forest. The best results in this task brought support vector machine classifier.
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1. Introduction
A domain ontology defines a set of representational prim-
itives with which to model a domain of knowledge or
discourse. The representational primitives are typically
classes, attributes, and relationships. The definitions of
the representational primitives include information about
their meaning and constraints on their logically consis-
tent application. Classes can be defined in two ways:
by annotating their definitions, or by connecting classes
with each other and with properties. Each domain ontol-
ogy typically uses domain-specific definitions of terms
denoting its primitives.

The FAIR research data management (Findable, Access-
able, Interoperable, and Reuseable) needs a consistent
data representation in ontologies, particularly for rep-
resenting the data structure in the specific domain [34].
Since different ontologies are written by different people,
they are often incompatible, even within the same do-
main. As systems that rely on domain ontologies expand,
it is often needed to merge domain ontologies by man-
ual tuning. The same is true for enhancing an ontology
with information available in domain-related texts. Merg-
ing and enhancing ontologies is thus a largely manual
process and therefore time-consuming and expensive.
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The need to find a suitable ontology for an input text
can help in classifying the information presented within
the text as well as to connect the input text with data. This
would allow for automated selection of ontologies and
respective classification of the text. Different text data
could thus be compared automatically in an understand-
able way and connected with corresponding research
data. Ontologies represent "a formal specification of a
shared conceptualization" [7] and can thus be used to
express knowledge and data in a formalized, standard-
ized description language to specify terms and relations
between those terms.

Current ontology recommenders, such as the NCBO
ontology recommender [8], score annotations based on
words similar to preferred and alternate labels of ontol-
ogy classes and term frequency. In contrast to this, this
work aims to use text representation learning in order to
not only search for words also contained in ontologies
but also to find concepts with similar semantic meaning
between text and ontology.

This paper is devoted to a specific problem encoun-
tered during enhancing ontologies and sometimes during
their merging: to decide which of several available on-
tologies is most relevant to given domain-related piece of
text. Our solution to the problem relies primarily on arti-
ficial neural networks (ANNs), in particular on natural
language processing (NLP).

The next section surveys the applicability of artificial
neural networks to ontologies. Section 3 recalls the em-
ployed methods of text preprocessing. There have been
used modules for text extractions from PDF files, for
transforming extracted files to pure text and for elimi-
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nating irrelevant paragraphs. In the section is described
text representation learning, as well as the principles of
the employed classifiers. In section 4, an application of
the proposed methodology to catalysis is described and
evaluated.

With regard to sources we have studied described in
part 2 of this article, we are not aware that classifiers
learned from the results of representational learning have
ever been used to determine the most relevant of a given
set of ontologies.

2. Applicability of Artificial Neural
Networks to Ontologies

In connection with learning and extending ontologies, ar-
tificial neural networks (ANNs) have been primarily used
for identification of concepts, relations and attributes
[10, 15, 18]. With respect to relations, some ANN-based
methods have been developed specifically for subsump-
tion relations needed for the construction of taxonomies
[11, 14, 21, 30]. In connection with integration of on-
tologies, they have been primarily used for ontologies
matching aka ontologies alignment [12, 13, 16, 33]. The
variety of employed kinds of ANNs is rather large. It
includes traditional multilayer perceptrons (MLPs) [19],
adaptive resonance theory (ART) networks [17] and asso-
ciative memories [23], as well as the modern deep convo-
lutional networks (CNNs) [12, 20], deep belief networks
[10], long short term memory (LSTM) networks together
with their bidirectional variant (BiLSTM) [24] and gated
recurrent units (GRU) networks [28, 29]. The dependence
of ontologies on texts led to using networks developed
for text and natural language representation learning,
most importantly BERT [22, 26], the bidirectional en-
coder representations from transformers, and word2vec
[25], the most traditional network for embedding text
into an Euclidean space. The close relationship of on-
tologies to knowledge graphs led to using also RDF2Vec
[21, 29], which was originally proposed for knowledge
graphs [31]. In connection with word2vec and RDF2Vec,
it is on similar principles, the network OWL2Vec was
proposed for embedding of ontologies [32]. Finally, the
graph-like structure of ontologies brought usage graph
neural networks (GNNs) [16, 33].

Closest to the proposed project is the way ANNs have
been recently used in connection with translating into
OWL [27, 28], with predicate chaining and restriction
[23], and with taxonomy extraction from knowledge
graphs [21]. In [27], ontology learning is tailored as a
transductive reasoning task that uses two recurrent neu-
ral networks to translate text in natural language into
OWL specifications in description logic. That approach
was further developed in [28], resulting in a system based
on a single recurrent network of GRU type. It uses an

encoder-decoder configuration and translates through
syntactic transformation a subset of natural language
into the description logic language ALLQ. Moreover, the
system generalizes over different syntactic structures,
and has the ability to tolerate unknown words through
copying input words as extralogical symbols to the out-
put, as well as the ability to enrich the training set with
new annotated examples. In [23], a mapping is estab-
lished between ontologies and a pair of interacting as-
sociative memories. One of them stores assertions, and
the other stores entailment rules. The most recent work
[21] describes a method for the specific task of extracting
a taxonomy from an embedding of a knowledge graph.
Over that embedding, which can be obtained for exam-
ple with RDF2Vec, hierarchical agglomerative clustering
is performed, first without using type information, and
then injecting types into the hierarchical clustering tree.
In addition, an axiom induction algorithm is applied to
each cluster in the resulting tree, which allows to identify
new classes corresponding to those axioms that describe
their respective clusters accurately enough.

Neural networks are often used due to their strengths
in natural language processing task. Ontology construc-
tion rely very much on texts, which suggest the applica-
bility of artificial neural networks (ANNs) in this context.

3. Methodological Background
This section describes details of used methods to reach
requested target. In the first part we need receive con-
tent from textural files, parse it into paragraphs and keep
only paragraphs fulfilling minimal length and relevant
content to the topic of the document. The second part
describes usage selected transformer and embedding in-
put paragraphs to classification numeric vectors. The
final part describes used classifiers, which use outputs
from the transformer for final classifications to target
ontology.

3.1. Text Preprocessing
For the problem scientific texts classification to the most
relevant existing ontology, we have been using docu-
ments in portable document files (PDFs). An issue with
PDFs is that they are optimized to print on physical
printer, thus they contain meta-information about the
contained text related to the position on the page. There-
fore, it is not easy to address a single paragraph. If the
file is read using the basic library for PDF files and the
newline mark is used as the splitter, it returns only a
single row, not the whole paragraph. Another issue is
connected with multi-column documents. If the docu-
ment does not include information about where the text
continues, software libraries for text extraction from PDF



usually continue with the next letter on the same row.
One solution to get text data from multi-column PDF

is to use Microsoft Word engine. Its engine is able to
solve both problems and parse text properly. It identifies
structural information in text such as headings, para-
graphs and sentences. Each document may contain texts
irrelevant to the topic of interest, for example references,
acknowledgement etc.

Specifications of the ontologies are most often stored
in OWL files. OWL [2] is a specific kind of XML for
ontologies. Text that describes classes and relations may
be stored in different tags, depending on the decision of
the ontology designer.

3.2. Text Representation Learning
For typical data analysis tasks like classification of clus-
tering, it is suitable to represent words or other parts of
text by vectors in an Euclidean space. Such representa-
tion is mostly the result of representation learning by
ANNs. In the area of text analysis and processing, the
probably most successful representation learning algo-
rithm is BERT (Bidirectional Encoder Representations
from Transformers)[3].

BERT needs to be trained using large amount of texts.
That is why some pretrained version is typically used,
and often subsequently fine-tuned using texts concerning
the considered topic. Such fine-tuning is often performed
even if the pretrained network was trained, apart from
general texts, also with texts from some broader relevant
domain (biology, medicine, chemistry, etc.).

Figure 1: BERT (Bidirectional Encoder Representations from
Transformers) architecture [3]. An input sentence is divided
into tokens and each token is encoded to number. The BERT’s
output contains one numeric vector per one token. The output
marked as C is used for final classification.

The basic schema of BERT is given in Figure 1. The
tokenized input at first passes through the encoder,
which embeds sentences to elements of an Euclidean
space. These vectors are used as input to the BERT
decoder. BERT returns one vector for each input. Each
input sequence contains a special token at the beginning
marked as CLS. Vectors embedding the tokens of an
input sequence can be arranged into a matrix. The
first row of the matrix is the embedding of the whole
input. Details of BERT are described in [3] and on the
https://huggingface.co/docs/transformers/model_doc/bert.
These embeddings of every input paragraph are taken
into account for the final assignment of the most relevant
ontology to the paragraph.

3.3. Classification
The embeddings obtained in BERT are used as inputs for
classifiers classifying a given input part of text (e.g., a
paragraph) with respect to its relevance to the consid-
ered ontologies. Those classifiers have been trained on
the embeddings of the annotations from the considered
ontologies because for them, the ground truth (i.e., the
ontology to which the annotation belongs) is known.

We have decided to select five classifiers implemented
in scikit-learn [4]. They are the following:

1. Random forest (RF): An ensemble classifier that
fits a number of classification trees on various
sub-samples of the training data and uses some
aggregation function to improve the predictive
accuracy and control over-fitting. Usually, each
tree in the ensemble is built using a sample drawn
with replacement (i.e., a bootstrap sample) from
the training set. Furthermore, when splitting each
node during the construction of a tree, the best
split is found using either all input features or
a random subset of a given size. The purpose is
to decrease the variance of the forest estimator.
Indeed, individual decision trees typically exhibit
high variance and tend to overfit. The injected
randomness in forests yield decision trees with
somewhat decoupled prediction errors. By taking
an average of those predictions, some errors can
cancel out. RFs achieve a reduced variance by
combining diverse trees, sometimes at the cost of
a slight increase in bias. Typically, the variance
reduction yields an overall better model [35].

2. Support vector machine (SVM): It is a classifier de-
signed specifically to achieve the lowest possible
predictive error, using a known relationship be-
tween generalization error and margin of the sep-
arating hyperplane. It uses only training points
on both support hyperplanes of the margin (sup-
port vectors), so it is also memory efficient. A

https://huggingface.co/docs/transformers/model_doc/bert


simple SVM can be used only for linearly separa-
ble classes. For linearly nonseparable classes, the
data must be first transformed to linearly separa-
ble sets of functions in a high-dimensional vector
space of functions using a suitable kernel. The
SVM classification has multiclass support handled
according to a one-vs-one or one-vs-rest scheme
[36].

3. Gaussian Process (GP): It has been designed pri-
marily for regression problems. A Gaussian Pro-
cess Classifier (GPC) implements a collection of
random variables indexed by an Eucliedan space
for classification purposes through placing a GP
prior on latent functions. Its purpose is to al-
low a convenient formulation of the classifica-
tion through a logistic link function. GPCs sup-
port multi-class classification by performing ei-
ther one-versus-rest or one-versus-one training
and prediction. A crucial ingredient of each GPC
is the covariance functions of the underlying GP.
It encodes the assumptions on the similarity of
Gaussian distributions corresponding to different
points [37].

4. K nearest neighbors: Neighbors-based classifica-
tion simply stores instances of the training data.
A query point is assigned the data class which has
the most representatives within the nearest neigh-
bors of the point. The nearest neighbors classifi-
cation can use uniform weights, that means, the
value assigned to a query point is computed from
a simple majority vote of the nearest neighbors.
In some cases, it is better to weight the neighbors
in such a way that nearer neighbors contribute
more to the fit. For example, when an unknown
point’s class is computed from two nearest points
and one of this two is nearer than second, in
weighted case is result class same as the nearer
point. The distance 𝑑 between two points can
be computed as: 𝑑(𝑥, 𝑦) = (

∑︀𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|𝑐)

1
𝑐 ,

where 𝑛 is the dimension of each point and 𝑐 ≥ 1,
if 𝑐 = 1, this is the Manhattan distance and in
case 𝑐 = 2, this is the Euclidean distance [38].

5. Multi-layer Perceptron (MLP): Given a set of fea-
tures and a target, it can learn a non-linear func-
tion approximator for either classification or re-
gression. It is different from logistic regression,
because between the input and the output layer,
there can be one or more non-linear hidden lay-
ers. The input layer consists of a set of neurons
representing the input features. Each neuron in
the hidden layer transforms the values from the
previous layer with a weighted linear summation,
followed by a non-linear activation function. The
output layer receives the values from the last hid-
den layer and transforms them into output values.

The advantages of MLP are capability to learn
non-linear models and capability to learn models
in real-time (on-line learning). But the MLP with
hidden layers have a non-convex loss function
where there exists more than one local minimum.
Therefore, different random weight initializations
can lead to different validation accuracy. A MLP
requires tuning a number of hyperparameters
such as the number of hidden neurons, layers,
and iterations. Moreover, it is sensitive to feature
scaling [39].

4. Case Study in Catalysis
A catalyst is some chemical that is not consumed in the
process of a chemical reaction. Using a catalyst in a chem-
ical reaction usually allows said reaction to take place
faster and allows for more moderate reaction conditions.
Catalysis-based chemical synthesis is applied at roughly
90% of chemical processes in chemical industry. The sci-
entific domain of catalysis is highly interconnected to
other sciences and thus spans over many topics from
material sciences to process design [5, 6].

4.1. Used Data
The texts that have been used for fine-tuning BERT, have
been taken from scientific papers in catalysis. These
articles have been by PowerShell script extracted to Mi-
crosoft Word documents. Thanks to its engine, para-
graphs and titles are marked properly, so paragraphs
with relevant texts have been extracted and with BERT
embedding prepared for classification.

We conduct our experiments on a set of five ontologies
from the chemical domain (Table 1) gathered within the
NFDI4Cat project [34]. The ontologies NCIT, CHMO and
Allotrope have a close connection to the chemical domain.
However, according to their names, the chemical entities
of biological interest (CHEBI) and the system biology
ontology (SBO) are expected to be further away from the
chemical domain. This does not hold necessarily true for
the CHEBI as it describes a plethora of chemical entities,
also relevant in the chemical and not only biological do-
main. The SBO was selected as it contains some general
laboratory and computational contexts. It also can be
seen as some kind of a test, whether the tools used can
also identify ontologies not fitting to the text content.

Hence, these ontologies are classes to which classifiers
assign new parts of text. The data have been divided into
training and testing datasets in stratified proportion 1:1.
The testing dataset has been divided into 20 disjoint sub-
sets, assuming that disjointness is a sufficient condition
for their independence. The training dataset have been
under-sampled in order to mitigate overfitting during

https://nfdi4cat.org/en/services/ontology-collection/


Table 1
Types and counts of labels in the used OWL files

Ontology
name XML classes Number

of classes

Allotrope
Literal

rdfs:comment
rdfs:label

2773

NCIT
rdfs:comment

rdfs:label
1169

SBO
Literal

rdfs:comment
rdfs:label

534

CHEBI
obo:IAO_0000115

rdfs:label
35067

CHMO
obo:IAO_0000115

rdfs:comment
rdfs:label

2521

training part.

4.2. Experimental Setting
At first, the PDFs were transformed into Microsoft Word
using PowerShell scripts. The output files have been pro-
cessed by a python library for parsing docx files. As a
result relevant paragraphs have been extracted for clas-
sification according to the most relevant ontology. The
irrelevant paragraphs contained acknowledgement, ref-
erences, titles and too short paragraphs (shorter than 100
letters) have been skipped.

The annotations in the specifications of given ontolo-
gies have been extracted using XML parser for python
named BeautifulSoup. Extracted paragraphs have also
been used for BERT fine-tuning. The chosen version of
the BERT was recobo/chemical-bert-uncased from the
Huggingface portal [9]. Using the fine-tuned BERT, every
paragraph has been transformed into a 768-dimensional
numeric vector.

The extraction of annotations from OWL files has been
performed using a python XML parser. Individual annota-
tions have been again embedded into the 768-dimensional
vector space using the fine-tuned BERT.

For the employed classifiers, their implementations
in ScikitLearn [4] has been used. The optimal values
of hyperparameters of each classifier were determined
using a 5-fold cross-validation applied to a grid-search
with the grid values listed in Table 2. In order to miti-
gate overfitting, training data have been undersampled.
Statistic computations have used the scipy, statsmodels
and pingouin python libraries.

4.3. Comparison of Important Classifiers
on Considered Ontologies

Summary statistics of the predictive accuracy of classi-
fying all 20 testing datasets are in Table 3. The table is
complemented with boxplots (Figure 2), where the fol-
lowing quality measures are presented for each classifier:
accuracy, F1 score, precision and recall. The random
forest classifier had the worst results of all experiments.
Other models had significantly better results. The best
accuracy had the Gaussian process, its mean accuaracy
was 97.5 % with very low standard deviation.

The differences between the considered classifiers
were tested for significance by the Friedman test. The
basic null hypothesis that the mean accuracy for all 5 clas-
sifiers coincides was strongly rejected, with the achieved
significance 𝑝 = 3.02 × 10−12. For the post-hoc anal-
ysis, we employed the Wilcoxon signed rank test with
two-sided alternative for all 10 pairs of the compared
classifiers, because of the inconsistence of the more com-
mon mean ranks post-hoc test, as pointed out in [40].
For correction to multiple hypotheses testing, we used
the Holm method. The results are given in Table 4, good
results has Support vector machine and Gaussian process
classifier.

4.4. Classification of Scientific Texts with
respect to Relevant Ontologies

For this experiment, we had no ground truth as to which
of the available ontologies is the most relevant for each
considered paragraph of text. We employed two collec-
tions of scientific papers from the area of catalysis. The
small one are papers dealing with the topic of methana-
tion of CO2, it consists of 28 PDFs, from which we have
extracted 1 485 relevant paragraphs. The large one is
the digital archive of papers (co-)authored by scientists
from the Leibniz Institute of Catalysis (with the excep-
tion of very few papers with read protection), it consists
of 3 450 PDFs, from which we have extracted 144 490
relevant paragraphs. The BERT embeddings of those
paragraphs were classified by the five trained classifiers.
The confidence is probability over all classes, that source
paragraphs fits into target class. Every paragraph can
be classified to more than one target class with specific
confidence. The sum of confidences of each paragraph
is one. In this experiment were used models trained in
previous experiment.

4.4.1. Results for the small dataset

Figure 3 shows how many paragraphs each classifier as-
signed to each ontology. The Gaussian process, k-nearest
neighbor, MLP and SVM assigned almost all paragraphs
to the NCIT ontology. The random forest is most uncer-

https://www.crummy.com/software/BeautifulSoup/


Table 2
Hyperparameters of individual classifiers that were determined through grid-search on combinations of considered values.
In the column Selected are values, that have been selected using a random stratified 5-fold cross-validation applied to a
grid-search with the Considered values

Classifier Hyperparameter Considered values Selected

Random
forest

maximal depth {5, 7, 9, 11} 11
criterion {entropy, gini} gini
count of estimators {5, 10, 15, 20, 25, 30} 20
fraction of features
used in each split

{0.5, 0.7} 0.5

bootstrap samples {false, true} true

Support
vector
machine

slack trade-off
constant (C)

{1, 10, 100, 1000} 100

kernel type {linear, radial basic} radial basic
kernel coefficient
gamma

[0.001, 0.0001] 0.001

Gaussian
process

kernel
{radial basic, dot product, mattern,
rational quadratic, white kernel}

matern

random state {0, 50} unapplicable

K nearest
neighbors

number of considered
neighbors

{1, 5, 9, 13, 17} 9

weights {uniform, distance} distance
algorithm {auto, ball tree, kd tree, brute} auto
distance metric exponent {1, 2, 3, 4, 5} 2

Multi-layer
perceptron

random state {0, 1} 0
activation function {identity, logistic, tanh, relu} tanh
optimizer {lbfgs, sgd, adam} adam
hidden layer size {1, 4, 16, 64} 4
strength of L2
regularization term

{0.0001, 0.05} 0.05

learning rate for
weights update

{constant, adaptive} constant

Table 3
Quality measures of the considered classifiers aggregated over all 20 testing datasets (mean [%] ± standard deviation [%]),
where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝐹𝑃+𝑇𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝐹𝑁+𝑇𝑃
and 𝐹1 = 2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛·𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

Accuracy F1 Precision Recall
Gaussian process 97.46± 0.39 89.48± 1.38 85.70± 1.35 95.88± 1.21
K-nearest neighbor 96.66± 0.67 87.60± 2.41 84.36± 2.69 92.73± 2.04
Multi-layer perceptron 96.99± 0.67 87.84± 1.59 84.03± 1.54 94.97± 1.58
Random forest 94.63± 0.69 82.00± 2.29 76.30± 2.34 90.76± 2.58
Support vector machine 97.16± 0.53 88.72± 1.85 84.64± 1.89 95.85± 1.69

tain among all classifiers, assigning most paragraphs to
the CHEBI ontology, but some pragraphs also to each of
the remaining four.

Figure 4 uses instead of the count of class predictions
their confidences. The confidence of the SVM and MLP
is very high, whereas that of the Gaussian process and
random forest is substantially lower. The k-nearest neigh-
bors classifier has rather high confidence also.

In Figure 5, the margin between the confidence of the

predicted ontology and the second highest class confi-
dence is shown. Again, the highest values are achieved
by the SVM and MLP, whereas the Gaussian process
and random forest have only small margin between the
predicted and second most confident ontology, and the
k-nearest neighbor has quite a high margin, but not so
high as SVM or MLP.



Figure 2: Box plots comparing the distribution of quality measures of the considered classifiers on testing datasets

Table 4
Comparison of accuracy results on all 20 testing sets with ontology annotations. The values in the table are counts of datasets,
in which the model in the row has a higher accuracy compared to the model in the column. If the difference is not significant
in the Wilcoxon test then the count is in italic. If the difference is significant, then the higher count is in bold.

Random
forest

Support
vector
machine

Gaussian
process

K-nearest
neighbors

Multi-layer
perceptron

Summary
score

Random forest - 0 0 0 0 0
Support vector machine 20 - 2 15 13 50
Gaussian process 20 16 - 17 19 72
K-nearest neighbors 20 3 3 - 5 31
Multi-layer perceptron 20 4 1 14 - 39

4.4.2. Results for the large dataset

Figure 6 depicts the count of paragraphs from the large
dataset that each classifier assigned to each ontology.
The Gaussian process, k-nearest neighbor, MLP and SVM
assigned almost all paragraphs to the NCIT ontology.
The random forest is most uncertain among all classifiers,
assigning most paragraphs to the CHMO ontology, but
some pragraphs also to each of the remaining four.

Figure 7 using confidences of class predictions shows,
that the confidence of the SVM is very high, whereas that
of the Gaussian process and random forest is substantially
lower. A rather high confidence have also the MLP and

the k-nearest neighbors classifier.
In Figure 8, the margin between the confidence of the

predicted ontology and the second highest class confi-
dence is shown. Again, the highest values are achieved
by the SVM, whereas the Gaussian process and random
forest have only small margin between the predicted
and second most confident ontology, and the MLP and
k-nearest neighbor have quite a high margin, but not so
high as SVM.

Figure 3: Counts of paragraphs of the small collection of scientific papers predicted by highest confidence to target class



Figure 4: Sum of prediction confidences for the small collection of scientific papers

Figure 5: Sum of margins between top two confidences for the small collection of scientific papers

4.4.3. Summary results for both datasets

From results in the first experiment we can say SVM has
good results on testing data in many metrics. The results
for both datasets show that the SVM classifier has very
high confidences and very high margins between top
two confidences. Hence, the results indicate that for a
large majority of the unknown scientific texts, the most
relevant ontology is NCIT.

5. Conclusion
This paper provides an insight into the possibility to auto-
matically determine ontologies most relevant to scientific

texts. Successful processing input texts and ontologies
often requires a quite hard and laborious job. Here have
been used classifiers in combination with the representa-
tion learning by BERT, that may help make this process
faster. Our idea was to use embedding of each paragraph
from PDFs as input to classifiers. We used a pretrained
BERT that have been fine-tuned using chemical articles.
The output embeddings from fine-tuned BERT were used
as an input to the classifiers. We have experimented with
five different classifiers, in particular random forest, sup-
port vector machine, multilayer perceptron, k-nearest
neighbors, and Gaussian process. The random forest was
not successful, its accuracy was the worst of all models.
The best results had Gaussian process and support vector

Figure 6: Counts of paragraphs of the large collection of scientific papers predicted by highest confidence to target class



Figure 7: Sum of prediction confidences for the large collection of scientific papers

Figure 8: Sum of margins between top two confidences for the large collection of scientific papers

machine.
In second experiment the considered classifiers have

been tested and compared on scientific papers from the
domain of catalysis. The ground truth was not known
there. The k-nearest neighbor and Gaussian process had
very low margin between first and second highest con-
fidence. The highest confidence among all classifiers
had the support vector machine. It had also the highest
margin among them.

The biggest weakness of this article is the lack of
ground truth for the classification of scientific articles,
which makes it impossible to evaluate this classification.
Therefore, we plan to use methods for reducing the im-
pact of unknown ground truth. Our idea is to use inter-
polation between annotations using GPT-2 and GPT-3
networks. GPT (Generative Pre-trained Transformer)
[41] stands for a series of pre-trained language models,
which have been developed by OpenAI. They have been
trained with a large dataset of textual information and
can be applied to deal with specific language-related tasks.
BERT, which was trained with Wiki and books data that
contains over 3.3 billion tokens, is popular in natural
language understanding tasks, e.g., text classification.
However, BERT as a masked language model can only
learn contextual representation of words but not orga-
nize and generate language, which makes it unsuitable
for design concept generation task. On the other hand,
GPTs are autoregressive language models that are trained

to predict the next token based on all tokens before it.
In future research, it is desirable to try different trans-

formers. We would like to extract knowledge from ANNs
in the context of learning. The main direction of our re-
search is extending and integrating ontologies. We plan
to use also graph neural networks to incorporate them
into representation learning.
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