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Abstract
Deep learning has proved particularly useful for semantic segmentation, a fundamental image analysis task. However, the
standard deep learning methods need many training images with ground-truth pixel-wise annotations, which are usually
laborious to obtain and, in some cases (e.g., medical images), require domain expertise. Therefore, instead of pixel-wise
annotations, we focus on image annotations that are significantly easier to acquire but still informative, namely the size of
foreground objects. We define the object size as the maximum Chebyshev distance between a foreground and the nearest
background pixel. We propose an algorithm for training a deep segmentation network from a dataset of a few pixel-wise
annotated images and many images with known object sizes. The algorithm minimizes a discrete (non-differentiable) loss
function defined over the object sizes by sampling the gradient and then using the standard back-propagation algorithm.
Experiments show that the new approach improves the segmentation performance.
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1. Introduction
Semantic segmentation is the process of associating a
class label to each pixel of an image. With the advent of
deep learning, deep networks have achieved incredible
performance on many image processing tasks, including
semantic segmentation. Deep learning for semantic seg-
mentation has many benefits; for example, it is flexible
w.r.t. the model architecture and scales particularly well
[1, 2]. On the contrary, the standard deep learning de-
mands many ground-truth (GT) pixel-wise annotations to
prevent overfitting. Since a human expert annotator must
usually provide the GT annotations, acquiring a good-
quality training dataset can be difficult. To combat this
issue, we focus on learning from GT image annotations
that are easier to produce but still informative enough,
namely the sizes of foreground objects. In practice, our
approach assumes a training dataset that consists of rela-
tively few pixel-wise annotated images and many images
with known object sizes. We present a work-in-progress
solution.

1.1. Proposed approach
Suppose a standard convolutional network for image seg-
mentation (e.g., a U-Net [3]). Given an input image, we
feed it to the network and collect the output prediction.
The prediction is then thresholded to obtain a binary
mask, which is processed by a distance transform, assign-
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ing to each foreground pixel the shortest distance to the
background. Finally, the object size is defined as double
the maximum of the computed distances.

Due to the thresholding, the cost function is not differ-
entiable and it is therefore not possible to use the standard
gradient descent for learning. We overcome this obstacle
by adding random noise to the output of our network.
The predicted binary masks then become stochastic and
the gradient can be sampled. A detailed description of
our method is given later in Sec. 2 and 3.

1.2. Related work
Cano-Espinosa et al. [4] considered a similar learning
problem. They proposed a network architecture that
performs a biomarker (fat contents) regression and im-
age segmentation after being trained directly on images
annotated by biomarker values only. Similarly to ours,
their method derives the biomarker value from the pre-
dicted segmentation deterministically. The difference is
that their biomarker, equivalent to the foreground area,
can be obtained by a simple summation. Furthermore,
the method assumes that the foreground objects can be
roughly segmented using thresholding. Pérez-Pelegrí et
al. [5] took a similar approach. Although their method
does not involve thresholding to produce approximate
segmentation, it was tailored explicitly for learning from
images annotated by the foreground volume (as their
images are 3D).

Karam et al. [6] implemented a differentiable distance
transform via a combination of the convolution opera-
tions. The method is fast but exhibits numerical instabili-
ties for bigger images. Resolving the numerical instabili-
ties, Pham et al. [7] later proposed a cascaded procedure
with locally restricted convolutional distance transforms.
Nonetheless, both methods substitute the minimum func-
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tion with the log-sum-exp operation, which leads to inac-
curate results.

The way our method deals with a non-differentiable
cost function is borrowed from stochastic binary net-
works [8]. In a stochastic binary network, one needs to
deal with zero gradient after each layer of the network.
However, methods such as ARM [9] or PSA [10] are un-
necessarily complex. Instead, we employ a single sample
estimation, which has been discussed in [11].

2. Model
The proposed model consists of (1) a segmentation net-
work, 𝑓𝜃 , parametrized by 𝜃, and (2) a deterministic al-
gorithm to derive the object size based on distance trans-
form, denoted as 𝑔.

Given an input image 𝑥 = (𝑥1, . . . , 𝑥𝑉 ), the network
produces a pixel-wise segmentation

𝑎 = 𝑓𝜃(𝑥), (1)

such that 𝑎𝑖 ∈ R, 1 ≤ 𝑖 ≤ 𝑉 , where 𝑉 is the number
of pixels. The method does not make any assumptions
about the network’s technical details, except that it can be
trained using the standard back-propagation algorithm
and gradient descent. In our experiments, we always
employed a U-Net [3] with a residual network encoder
[12] and a mirroring decoder.

To obtain a binary mask 𝑦 ∈ {±1}𝑉 , the network
response 𝑎 is thresholded,

𝑦𝑖 = sign 𝑎𝑖. (2)

2.1. Object size
We use a distance transform of the binary mask to define
the object size (see Fig. 1). Distance transform assigns to
each pixel the shortest distance to the background, i.e.,

𝑑𝑖 = min
𝑗,𝑦𝑗=−1

𝛿(𝑖, 𝑗), 𝑖 = 1, . . . , 𝑉, (3)

where 𝛿(𝑖, 𝑗) is the Chebyshev ℓ∞ distance. After that,
we take double the maximum distance to define the object
size,

�̂� = 2 max
𝑖

𝑑𝑖. (4)

The composition of the distance transform and the
maximum aggregation determines the object size, de-
noted as 𝑔 : {±1}𝑉 → R,

𝑔(�̂�) = 2 max
𝑖

min
𝑗,𝑦𝑗=−1

𝛿(𝑖, 𝑗). (5)

𝑖

𝑑𝑖

�̃�

Figure 1: Illustrative example of an object and its derived size.
The object is outlined by the thick boundary line. The point 𝑖
denotes the foreground pixel whose shortest distance to the
background, 𝑑𝑖, is the highest among the pixels. The derived
object size �̂� = 2𝑑𝑖.

2.1.1. Implementation details

There is an efficient, two-pass algorithm that computes
the distance transform in Θ(𝑉 ) time. Furthermore, when
evaluating a batch of images, it is possible to compute
the distance transform on all images in parallel.

We have implemented a CPU version1 of this algorithm
that works with PyTorch tensors and is faster than, e.g.,
the SciPy implementation.

3. Learning
Suppose a training dataset 𝒟 = 𝒟𝑓 ∪ 𝒟𝑤 consists of
fully- and weakly-annotated subsets 𝒟𝑓 and 𝒟𝑤 . The
fully-annotated subset 𝒟𝑓 contains pairs (𝑥,𝑦), where
𝑥 is an input image and 𝑦 the corresponding GT pixel-
wise segmentation, while 𝒟𝑤 comprises of pairs (𝑥, 𝑠),
where 𝑠 is the size of the object present in the image 𝑥.
We focus on situations when |𝒟𝑓 | ≪ |𝒟𝑤|.

3.1. Supervised pre-training
Our method starts by optimizing a pixel-wise loss w.r.t.
the network parameters 𝜃 on the small subset 𝒟𝑓 , as in
the standard supervised learning. For a particular train-
ing pair (𝑥,𝑦) ∈ 𝒟𝑓 and the corresponding prediction
𝑎 ∈ R𝑉 , the loss function reads

𝑉∑︁
𝑖=1

(𝑎𝑖(1− 𝑦𝑖) + log(1 + exp(−𝑎𝑖))) , (6)

which is known as the binary cross-entropy with logits
loss. The optimization continues until convergence.

Using proper data augmentation to extend the training
dataset, the network tends to recognize useful features
and produces decent predictions after this initial stage
(see Sec. 4.2).

1https://github.com/barucden/chdt
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Figure 2: An overview of the proposed probabilistic model.

3.2. Weakly-supervised training
Consider a training pair (𝑥, 𝑠) ∈ 𝒟𝑤 . As described in
Sec. 2, one can obtain a prediction of the object size,
�̂� = 𝑔(�̂�), from the thresholded network response �̂�. We
penalize the prediction error by the square loss

𝑙(𝑠, �̂�) = (𝑠− �̂�)2. (7)

We propose to follow an approach similar to those
used in binary neural networks [10] and subtract random
noise 𝑍 from the real predictions 𝑎𝑖 before thresholding.
Consequently, the binary segmentation becomes a col-
lection 𝑌 = (𝑌1, . . . , 𝑌𝑉 ) of 𝑉 independent Bernoulli
variables,

𝑌𝑖 = sign(𝑎𝑖 − 𝑍), (8)

with

Pr(𝑌𝑖 = +1 | 𝑥;𝜃) = Pr(𝑍 ≤ 𝑎𝑖) = 𝐹𝑍(𝑎𝑖), (9)

where 𝐹𝑍 is the cumulative distribution function (CDF)
of the noise 𝑍 (see Fig. 2).

Then, instead of minimizing the loss 𝑙 (7), we minimize
the expected loss ℒ = E𝑌 [𝑙(𝑠, 𝑔(𝑌 ))],

ℒ =
∑︁

𝑦∈{±1}𝑉
Pr(𝑌 = 𝑦 | 𝑥;𝜃)𝑙(𝑠, 𝑔(𝑦)). (10)

Contrary to (7), the expected loss (10) is differentiable,
assuming a smooth 𝐹𝑍 .

3.2.1. Noise distribution

Following [10], we sample the noise 𝑍 from the logistic
distribution with mean 𝜇 = 0 and scale 𝑠 = 1. Hence,
the CDF of 𝑍 is a smooth, sigmoid function,

𝐹𝑍(𝑎) =
1

1 + exp(−𝑎)
. (11)

3.2.2. Exact gradient

To compute the gradient ∇𝜃ℒ, we need to evaluate the
derivative

𝜕 E𝑌 [𝑙(𝑠, 𝑔(𝑌 ))]

𝜕𝐹𝑍(𝑎𝑖)
(12)

for each pixel 𝑖 = 1, . . . , 𝑉 . The gradient can be then
computed automatically by the back-propagation algo-
rithm. However, an exact computation of (12) leads to∑︁

𝑦∈{±1}𝑉

Pr(𝑌 = 𝑦 | 𝑥;𝜃)
Pr(𝑌𝑖 = 𝑦𝑖 | 𝑥;𝜃)

𝑙(𝑠, 𝑔(𝑦))𝑦𝑖, (13)

which involves summing 2𝑉 terms and is thus tractable
only for very small images. Instead, we resort to a single
sample estimator.

3.2.3. Single sample estimator

The single sample estimator is based on Lemma 1, which
is, in fact, a specific form of [10, Lemma B.1].

Lemma 1. Let 𝑌 = (𝑌1, . . . , 𝑌𝑉 ) be a collection of 𝑉 in-
dependent {±1}-valued Bernoulli variables with probabili-
tiesPr(𝑌𝑖 = +1) = 𝑝𝑖. Letℎ be a functionℎ : {±1}𝑉 →
R. Let 𝑦 = (𝑦1, . . . , 𝑦𝑉 ) denote a random sample of 𝑌
and 𝑦↓𝑖 = (𝑦1, . . . , 𝑦𝑖−1,−𝑦𝑖, 𝑦𝑖+1, . . . , 𝑦𝑉 ). Then

𝑦𝑖 (ℎ(𝑦)− ℎ(𝑦↓𝑖)) (14)

is an unbiased estimate of 𝜕
𝜕𝑝𝑖

E𝑦∼𝑌 [ℎ(𝑦)].

Proof. We take the derivative of the expectation,

𝜕

𝜕𝑝𝑖
E𝑦∼𝑌 [ℎ(𝑦)] =

∑︁
𝑦

Pr(𝑦)

Pr(𝑦𝑖)
ℎ(𝑦)𝑦𝑖, (15)

and write out the sum over 𝑦𝑖,∑︁
𝑦¬𝑖

∑︁
𝑦𝑖

Pr(𝑦¬𝑖)ℎ(𝑦)𝑦𝑖 =
∑︁
𝑦¬𝑖

Pr(𝑦¬𝑖)
∑︁
𝑦𝑖

ℎ(𝑦)𝑦𝑖

(16)
where 𝑦¬𝑖 denotes vector 𝑦 with the 𝑖-th component
omitted. Notice that the inner sum simplifies and no
longer depends on 𝑦𝑖,∑︁

𝑦¬𝑖

Pr(𝑦¬𝑖)(ℎ(𝑦𝑖=+1)− ℎ(𝑦𝑖=−1)), (17)

where 𝑦𝑖=𝑧 is the vector 𝑦 with the 𝑖-th component set
to 𝑧. Then, we multiply the inner subtraction by the
constant factor 1 = 𝑝𝑖 + (1− 𝑝𝑖) =

∑︀
𝑦𝑖

Pr(𝑦𝑖),∑︁
𝑦¬𝑖

Pr(𝑦¬𝑖)
∑︁
𝑦𝑖

Pr(𝑦𝑖)(ℎ(𝑦𝑖=+1)− ℎ(𝑦𝑖=−1)), (18)
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Figure 3: Examples of derivatives (12) computed according
to (21) for different number of samples 𝑛, given the output
of 𝐹𝑍 , for a small, 6 × 6 image. The red frame outlines the
object.

ultimately leading to the following expression for (15):∑︁
𝑦

Pr(𝑦)(ℎ(𝑦𝑖=+1)− ℎ(𝑦𝑖=−1)), (19)

which can be written as∑︁
𝑦

Pr(𝑦)𝑦𝑖 [ℎ(𝑦)− ℎ(𝑦↓𝑖)] . (20)

Thus, (14) is a single sample unbiased estimate of (15).

According to Lemma 1, an unbiased estimate of the
derivative (12) is

𝜕 E𝑌 [𝑙(𝑠, 𝑔(𝑌 ))]

𝜕𝐹𝑍(𝑎𝑖)
≈ 𝑦𝑖 [𝑙(𝑠, 𝑔(𝑦))− 𝑙(𝑠, 𝑔(𝑦↓𝑖))] ,

(21)
where 𝑦 is a random sample of Bernoulli variables with
probabilities (9) (see a few examples of sampled deriva-
tives in Fig. 3).

4. Experiments
The proposed method was implemented in the PyTorch
Lightning framework2 using a ResNet implementation
from the Segmentation Models PyTorch library3. The pre-
sented experiments were perfomed on a server equipped
with Intel Xeon Silver 4214R (2.40GHz) and NVIDIA
GeForce RTX 2080 Ti.

The data for our experiments was based on a dataset of
3D MRI images of the hippocampus [13]. The dataset con-
sists of 394 volumes provided with GT segmentation of
classes hippocampus head, hippocampus body, and back-
ground. We decomposed the volumes into individual 2D
slices of size 48 × 32 pixels and kept only those with
at least 1% foreground, obtaining a total of 6093 images.
Next, we merged the hippocampus classes to get a binary
segmentation problem (see Fig. 4). Afterward, we derived
the object sizes from the GT pixel-wise annotations to
use in training. Finally, we randomly split the data into

2https://github.com/Lightning-AI/lightning
3https://github.com/qubvel/segmentation_models.pytorch

Figure 4: Example of a hippocampus image [13] with the
object outlined in red.
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Figure 5: Average epoch duration for the proposed method
with different number of gradient samples. The duration of
the standard method is given as a reference.

training, validation, and testing subsets containing 70%,
10%, and 20% of the images.

Given a GT segmentation 𝑦 and a predicted segmenta-
tion �̂�, we evaluate two metrics, the squared size predic-
tion error 𝐸 and the intersection-over-union 𝐼𝑜𝑈 ,

𝐸(𝑦, �̂�) = 𝑙(𝑔(𝑦), 𝑔(�̂�)), (22)

𝐼𝑜𝑈(𝑦, �̂�) =

∑︀𝑉
𝑖=1 1 + 𝑦𝑖 + 𝑦𝑖 + 𝑦𝑖𝑦𝑖∑︀𝑉
𝑖=1 3 + 𝑦𝑖 + 𝑦𝑖 − 𝑦𝑖𝑦𝑖

. (23)

In the case of standard supervised method, vertical and
horizontal flipping was randomly applied to augment the
training dataset. The proposed method did not apply any
augmentation.

4.1. Number of derivative samples
A toy example (see Fig. 3) indicated that taking more
samples of the derivatives (21) might lead to better results
than taking just one. This experiment investigates how
the number of derivative samples 𝑛 impacts learning
speed and prediction quality.

We considered four different numbers of samples 𝑛,
𝑛 ∈ {1, 2, 4, 8}. For each 𝑛, the other parameters (such
as the batch size or the learning rate) were the same, and

https://github.com/Lightning-AI/lightning
https://github.com/qubvel/segmentation_models.pytorch
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Figure 6: Development of the squared size prediction error 𝐸 and the intersection-over-union 𝐼𝑜𝑈 on the validation images
over the course of learning for different numbers of derivative samples 𝑛.

the learning began with the same segmentation network
𝑓𝜃 that was pre-trained in the standard way on 85 pixel-
wise annotated images from the training subset. The
proposed method always ran until the squared error 𝐸
on the validation data stopped improving.

To assess the learning speed, we measured the duration
of one learning epoch. For 𝑛 = 1, an epoch took ≈ 10×
longer than the standard supervised learning. Generally,
the duration grew roughly exponentially with 𝑛 (see
Fig. 5).

Higher values of 𝑛 did not lead to a lower 𝐸 or a faster
convergence speed (see Fig. 6). In fact, 𝑛 = 1 and 𝑛 = 2
achieved the lowest 𝐸, but not by a large margin. Given
the speed benefits, we use 𝑛 = 1 always. Interestingly,
even though 𝐸 kept decreasing over the course of learn-
ing for all 𝑛, 𝐼𝑜𝑈 improved only slightly and started
declining after ≈ 20 epochs. This observation suggests
that the squared error of the object size is not a sufficient
objective for learning the segmentation.

4.2. Pre-training impact
This experiment tests the essential question: given a seg-
mentation model trained on a few pixel-level annotated
images, can we improve its testing performance by fur-
ther learning from size annotations?

We trained different segmentation networks until con-
vergence on randomly selected training subsets of size 𝑚.
Then, we fine-tuned these networks on the whole train-
ing dataset using the proposed method. We measured
the test performance in terms of 𝐼𝑜𝑈 .

The proposed method led to a ≈ 5% increase of 𝐼𝑜𝑈
for small 𝑚 < 100 (see Fig. 7), improving the segmen-
tation quality. For higher 𝑚, the effect was negligible,
which complements the observation from the previous
experiment that improving the size estimate does not
necessarily improve the segmentation quality.
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Figure 7: 𝐼𝑜𝑈 on the test data for different sizes 𝑚 of the pre-
training dataset. The plot shows results achieved by a network
after pre-training and after subsequent fine-tuning by the
proposed method.

5. Discussion
The method is promising but there is definitely potential
for improvement in both speed and prediction perfor-
mance.

The proposed method samples the derivatives accord-
ing to (21) for each pixel 𝑖. However, flipping the predic-
tion, 𝑦𝑖 ↦→ −𝑦𝑖, changes the derived size only for some
𝑖; particularly those within and on the border of the pre-
dicted object. Therefore, given a sample 𝑦, 𝑙(𝑠, 𝑔(𝑦)) =
𝑙(𝑠, 𝑔(𝑦↓𝑖)) for many pixels 𝑖, and the sampled deriva-
tives (21) are sparse. The method might sample only
those derivatives that are potentially non-zero and set
the rest to zero directly, which would save much compu-
tational time.

We have seen in the experiments that lower size pre-
diction error does not strictly imply better segmentation.
We need to closely investigate in what cases the size pre-
diction loss is insufficient and adjust the objective. The
adjustment might involve adding an L1 regularization (as
in [4]) or drawing inspiration from unsupervised meth-



ods (e.g., demand for the segmentation to respect edges
in images, etc.).

The proposed approach entails some principled lim-
itations. For example, it allows only a single object in
an image. We also expect the method to be ill-suited for
complex object shapes, but we have not performed any
experiments in that regard yet.

6. Conclusion
We proposed a weakly-supervised method for training
a segmentation network from a few pixel-wise annotated
images and many images annotated by the object size.
The key ingredients is a method for evaluating the object
size from a probabilistic segmentation and a method for
optimizing a deep network using a non-differentiable
objective.

The achieved results seem promising. We believe the
improvements suggested in the discussion will improve
performance, rendering the method valuable for training
segmentation models for biomedical images.
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