
Image Classifier with Dynamic Set of Known Classes
David Mojžíšek1, Jan Hůla1

1University of Ostrava, Centre of Excellence IT4Innovations Institute for Research and Applications of Fuzzy Modeling, Ostrava, Czechia

Abstract
The typical classification task is based on the assumption that the model will later only encounter examples of classes available
during its training. In practice, this is often not a realistic assumption, because of limitations in obtaining enough labeled
training data. This contribution is focused on the case where the model might encounter a sample belonging to a class
different from the classes seen in the training phase. The goal is to reject examples of unseen classes with the option of later
adding them as representatives of new classes without the need to retrain the backbone model. This is important because
the end-user might not be able to re-train the model for any reason. The presented approach is based on metric learning
combined with the meta-classifier similar to the approach of Xu et al. [1]. Classified examples are first embedded in a vector
space through an encoder trained to capture similarities in the input data. The classification itself is then performed by 𝑛,
where 𝑛 is the number of known classes, binary decisions. For each decision, the tested example is compared to the 𝑘 closest
examples from the given class. If the model does not decide that the example belongs to any class, this example is rejected
as possibly unknown. The method is tested in a visual data classification task.

Keywords
image classification, metric learning, unseen class detection, open-world classification

1. Introduction
Many machine learning applications do not rely only
on the used model, but arguably more importantly
on the data used for training. The principal requirement
for a supervised image classification task, solved by a
deep neural network, is that the model will not just fit
the training data, but generalize to the distribution from
which the data are sampled. For this purpose, many meth-
ods, including data augmentations, have been developed
[2].

For simplicity, it could be assumed that the data seen
during model testing or deployment are drawn from the
same distribution as the training data [3]. However, this
assumption can make the model unreliable and prone
to failure when data instances different from what the
model had seen during its training are encountered.

When dealing with classification tasks, one way to
handle this problem is to use a method that can identify
unfamiliar examples and reject them, that is, not classify
them to any known class. The issue could be that the end-
user might want to be able to adapt the classifier, allowing
it to recognize some rejected examples as instances of a
new class. In this case, a direct solution is to retrain the
classifier with respect to all newly available data.

In our work, our goal was to build an image classifier
that is able to reject unseen class examples but at the
same time enrich the known class set by a new class
when a user desires to, without the need to retrain the

ITAT’22: Information technologies – Applications and Theory, Septem-
ber 23–27, 2022, Zuberec, Slovakia
$ david.mojzisek@osu.cz (D. Mojžíšek); jan.hula@osu.cz (J. Hůla)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

backbone model. This requirement arises because re-
training might not be a preferable way for the end-user.
Especially for a user with limited deep learning knowl-
edge and inaccessibility to the original data or hardware
to perform the training.

2. Problem description
We will assume that for a given classification problem,
there exists a finite1 set of all possible class labels de-
noted by 𝐴 = {𝑙𝑖 | 1 ≤ 𝑖 ≤ 𝐾}, where 𝐾 is the
number of all existing classes. Furthermore, there are
two types of classes, known classes, with labels in the
set 𝑆 ⊆ 𝐴 and unknown classes, with labels in the set
𝑈 ⊆ 𝐴. Those sets are disjoint and each class is known
or unknown, that is, 𝑆 ∩ 𝑈 = ∅ ∧ 𝑆 ∪ 𝑈 = 𝐴.

For training, we are provided with a dataset 𝐷 =
{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)}, where 𝑥𝑖 is the 𝑖-th
image representation and 𝑦𝑖 ∈ 𝐴 its respective label
from the set of all possible labels. The set of all initial
known class labels is induced by the training dataset.
𝑆 = {𝑙 | ∃𝑖 ∈ N : (𝑥𝑖, 𝑙) ∈ 𝐷}. For practical purposes,
we will add a rejected class label 𝑟 to a set of known classes
and denote it 𝑆𝑟 = 𝑆 ∪ {𝑟}.

The desired classification model 𝑓 : R𝑛 → 𝑆𝑟 must
be able to assign a known label to any input image repre-
sentation 𝑥 ∈ R𝑛 or reject it in the following way:

1We assume that this set is finite, although its extent might be un-
known. For example, if we are classifying dog breeds, we assume
there is a finite number of dog breeds and we are not interested
in classifying anything that is not a dog. However, the general
negative class label, not a dog in this case, could be included.

mailto:david.mojzisek@osu.cz
mailto:jan.hula@osu.cz
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


𝑓(𝑥) =

⎧⎨⎩𝑟, max
𝑙∈𝑆

𝑃 (𝑙 | 𝑥) ≤ 𝑇

argmax
𝑙∈𝑆

𝑃 (𝑙 | 𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑤ℎ𝑒𝑟𝑒
(1)

𝑇 is a probability threshold that is set to a suitable value;
for example, 𝑇 could be 0.5. During the deployment
of the model, the user is allowed to add a new class to
a set of known classes 𝑆 (and remove it from 𝑈 ), and
the model should retain the classification ability given
by 1. The key to the problem is the way we train the
model to estimate 𝑃 (𝑙 | 𝑥). We will describe it in the
next section.

3. Proposed approach
In this section, we will describe how the whole classifica-
tion process works.

3.1. Overview
The whole framework has three crucial components. The
first is the encoder or embedding network whose task is
to take an input image and output its low-dimensional
feature vector. Since we are dealing with an image clas-
sification task, the suitable option for the encoder is a
deep convolutional neural network (CNN). Our approach
is specific in the way it handles the encoder training, as
will be described later.

The second is the memory of all known classes. In the
memory, samples of each class are stored in the form
of their feature vectors. Memory is the adaptable part
of the framework. It can accept a new class simply by
adding enough examples. A class could also be removed
similarly. The management of the known class set is in
the hands of the user, which means that in the framework,
no part would automatically update this memory. The
storage of only image feature vectors is also beneficial
due to the small amount of disk space required.

The third and final point is the classifier, which classi-
fies a tested example by comparing it with selected sets
of known classes. In principle, it will take the feature
vector of a query image and evaluate it as positive (the
same class) or negative (a different class) with respect
to the 𝑘 selected feature vectors of one class from the
memory.

To our knowledge, the closest recent work that offers
a solution for the problem is the framework, originally
proposed by Xu et al. [1] named L2AC (Learning to
Accept Class). Their approach was successfully tested in
the context of text classification. In this work, we study
the option of utilizing a similar approach for images and
propose some changes to the model as well as to the
training procedure.

As mentioned above, the framework consists of two
deep learning models with trained weights. In the fol-
lowing sections, both are described, including the way
in which they are trained.

3.2. Separate training of encoder and
classifier

3.2.1. The Encoder

The purpose of an encoder is to find a way in which
images could be represented as low-dimensional vectors
that somehow capture their most important features. For
example, an encoder can take an image of size 224 ×
224 × 3 and produce its representation in dimensions
1280, 𝐸𝑁 : R224×224×3 → R1280.

These feature vectors can be passed to an ML algorithm
such as SVM or MLP to assign the original input image
class. On the one hand, the desired feature vector should
be invariant to certain transformations of the input data,
which are not important to the classifier decision. On the
other hand, these representations must be sufficiently
discriminative for different classes.

At the moment, one of the most widely used tools for
feature extraction in the context of computer vision are
Convolutional Neural Networks (CNNs), that can learn to
recognize features by adjusting weights without hand-
crafting 2. The weights in CNNs are typically trained
end-to-end to perform a specific task on the training data.
For example, supervised classification with a softmax
classifier, object detection, or semantic segmentation. A
simple way to obtain a feature representation of the input
image is by taking one of the hidden representations in
a CNN. Typically, outputs of the last hidden layer are
taken.

Training an encoder whose output can capture simi-
larities and dissimilarities in the domain of input data is
crucial to our task. In our case, the classification is done
by comparing the input image vector representations
with the closest classes and images in the memory.

There are several ways to measure the distances be-
tween points in R𝑛, for example, the cosine distance or
the Euclidean distance. Learning input representations
for a specific distance calculation is called metric learn-
ing [5]. In our work, we measure the distances between
classified input and image stored in the memory by the
cosine distance in the feature space:

𝑑𝑠𝑡(𝑥1, 𝑥2) = 1− 𝑥1 · 𝑥2

‖𝑥1‖‖𝑥2‖
,

‖·‖ is the Euclidean norm, and "·" in the numerator de-
notes the standard dot product. For that reason, we de-
cided to train an encoder with respect to that distance by
2However, transformers [4] are performing very well and could
replace CNNs, due to their efficiency and accuracy. Their drawback
is that they are more expensive to train.



Figure 1: Overview of the classification part of the framework. Classification is performed as a binary decision for each class
in the memory. In our setup, the aggregation layer is a transformer.

adding the triplet loss, with the cosine distance function,
component to the overall loss when training the encoder
CNN.

Our encoder is trained with two objectives. One is a
traditional softmax classifier performed to classify the
input into one class present in the training data with
the Cross-Entropy loss and the second is the Siamese
network trained with the triplet loss [6]. Siamese network
refers to a deep neural network that runs inputs through
itself with the same weights to get multiple outputs and
perform an operation on them. In our case, the shared
CNN calculates embeddings for the selected image from
the training data (an anchor 𝑥𝑎), one image from the
same class (positive 𝑥𝑝), and one from a different class
(negative 𝑥𝑛). The triplet loss, with some margin (𝑚 >
0), can be calculated as follows:

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡(𝑥𝑎, 𝑥𝑝, 𝑥𝑛) = max{𝑑𝑠𝑡(𝑥𝑎, 𝑥𝑝)− 𝑑𝑠𝑡(𝑥𝑎, 𝑥𝑛) +𝑚, 0}.

3.2.2. Classifier

The classifier works with the feature representations pro-
duced by the encoder. Its goal is to calculate the proba-
bility that a given query image (with representation 𝑥)
belongs to a class with label 𝑙: 𝑃 (𝑙 | 𝑥). This probabil-
ity is estimated by comparing it to its 𝑘 closest image
representations from a class 𝑙, which are stored in the
memory. The procedure of calculating the probability
score is shown in Figure 1.

Our goal is to train this classifier so that it generalizes
both for seen and unseen classes, and the decision is
independent of the number of currently known classes.
For that reason, the classification of an image is always
done with respect to one class.

To make a decision about one class, the query im-
age 𝑥 is first concatenated into each of the 𝑘 closest
feature representations (we use feature vectors of size

1280). For the implementation, the feature vectors are
not just directly concatenated, but the input representa-
tions are obtained by concatenating their element-wise
absolute difference and sum. Each of these represen-
tations is then transformed by a fully connected linear
layer (𝑔(𝑥) = 𝑥𝑊𝑇 + 𝑏) with shared weights and is
followed by ReLu [7], which transforms the input into
the dimension 256.

Applying the linear layer to all 𝑘 representations yields
new 𝑘 representations, which must be converted to a
single probability score. For this purpose, we deploy
transformer. A transformer treats those 𝑘 representa-
tions as node features of a fully connected graph and
updates them in a given number of steps corresponding
to the number of layers in the transformer model. Up-
dates are performed with respect to all other nodes with
the attention mechanism. In the end, the representations
created by the transformer are pooled by the mean oper-
ator, and the final representation is then processed by a
linear layer with the desired output dimension for binary
classification (either 1 for a sigmoid or 2 for softmax).

The advantage of this approach is that the score can
be calculated for any class label 𝑙 in the memory, that
is, for any class for which there are enough instances to
compare the query image. On the contrary, a traditional
CNN classifier has a fixed output size, which can include
the unit for the unknown class, but adapting it to a new
class requires additional training.

Since the encoder model is trained separately, the fea-
ture vectors of the images in the training set will not
change during classifier training. It enables us to calcu-
late them only once and pre-calculate all negative and
positive training pairs (pair creation is depicted in the
Figure 2).

For each training image, there is one positive train-
ing pair and 𝑛 negative training pairs. The 𝑛 is another
hyperparameter and corresponds to the number of clos-



Figure 2: The classifier in our case is trained to make a
binary decision. For a given query image 𝑥 and a given set of
𝑘 images from mutually the same class, it decides up to what
degree 𝑥 belongs to this class or not. The 𝑘 images are taken
as 𝑘 closest images to the query image (by their a distance in
the embedding space).

est classes that will be selected as negatives. Negative
classes are selected by calculating the distance between
the image feature representations and the mean feature
representation for each different training class. Selecting
the closest examples makes sense because those should
be the hardest for the classifier to distinguish.

3.3. Joint training
Until now, both models had been trained separately. An-
other option is to connect both trained components and
learn the entire model end-to-end. This means that the
loss function could be assembled from multiple compo-
nents: triplet loss, Cross-Entropy loss for classification,
and Cross-Entropy loss for binary query-class evaluation.

This setup requires more computing resources since
the input consists of several raw images. During learning,
the distances between the examples change continuously
and should be reflected in the selection of pairs for the
classifier. The joint model accepts an input image with a
label (used for supervised classification and as an anchor
for triplet loss computation), a set of positive images
(which are used to create a positive pair, and one of them
is selected as positive for triplet loss), and a set of negative
images from one selected class (to create a negative pair,
and one of them is selected as negative for triplet loss).

This time, we simplified the selection of positive and
negative pairs in the joint training setup. After each
epoch, we recalculate all the embeddings and the class
means. For a selected image, we choose 𝑘 = 5 positive
images from the same class to make a positive pair and
𝑘 = 5 random negative images from a different class
that are randomly selected from 𝑛 = 5 classes with the
closest mean in the epoch. The loss of the joint model is
calculated as follows:

𝐿𝑗𝑜𝑖𝑛𝑡 = 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 + 𝐿𝐶𝐸𝑐𝑙𝑎𝑠𝑠 + 𝐿𝐶𝐸𝑛𝑒𝑔 + 𝐿𝐶𝐸𝑝𝑜𝑠,

where 𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 is the triplet loss described earlier,
𝐿𝐶𝐸𝑐𝑙𝑎𝑠𝑠 is the cross-entropy loss of supervised clas-
sification and 𝐿𝐶𝐸𝑛𝑒𝑔 , 𝐿𝐶𝐸𝑝𝑜𝑠 are pair classifier cross-
entropy losses for positive and negative pairs. Cross
Entropy loss is widely used for training multi-class clas-
sification models and its description can be found in the
PyTorch [8] documentation. PyTorch was also used for
the implementation of this work.

Training the model in this way enables the use of
image augmentations throughout the whole training.
When trained separately, the input images were only
augmented during encoder training. This type of train-
ing is much slower, and when trained on a single GPU,
the possible batch size drops significantly.

4. Experiments
In this section, we are going to describe an experiment
performed on the selected dataset. We are comparing two
different ways of training the classifier and the encoder.

1. Training the encoder separately and then training
the classification model only with embeddings.

2. Training the encoder and the classification model
together.

In both cases, the encoder backbone model is
EfficientNet-B0 [9] with pre-trained weights. The soft-
max classification layer was removed and the model out-
put is a feature vector of size 1280.

4.1. Dataset
To see whether the approach works, we tested it on im-
ages from the BIRDS 400 - SPECIES IMAGE CLASSI-
FICATION dataset 3. The data set was selected due to
the properties required to test the approach. First, the
dataset should have enough classes so that we can make a
split between seen and unseen classes, and have enough
known samples to train the model for feature extraction.
Secondly, we would like to use the dataset in which clas-
sified objects are from a similar domain since we want to
learn and leverage intra-class and inter-class similarities
and differences in the feature space. It could be assumed
that if the unseen class has features never seen during
training on known classes, the encoder network might
not be able to capture them. The whole approach is built
on the idea that features from known classes can be trans-
ferred to unknown classes. Figure 3 shows a few samples
from the dataset used.

3Dataset is available on Kaggle: https://www.kaggle.com/datasets/
gpiosenka/100-bird-species

https://www.kaggle.com/datasets/gpiosenka/100-bird-species
https://www.kaggle.com/datasets/gpiosenka/100-bird-species


4.1.1. Dataset Split

We did not use the original dataset train/validation/test
split, but merged these splits together. For the pur-
pose of this work, only selected classes are used. Of
all 400 classes, 69 were randomly chosen as known and
10 as unknown. We divide them into training, validation,
and test sets in the ratio 0.8 : 0.1 : 0.1.

4.1.2. Separate training

For separate training, the encoder was trained with the
Lookahead optimizer (with Adam, 𝑙𝑟 = 0.001) [10]. The
batch size was set to 4 and the model was trained for
a supervised classification task with 69 training classes.
The loss function consists of the Cross-Entropy loss and
the triplet loss calculated on triplets sampled from the
same set of classes. We trained the model for 20 epochs.

After that, all images in the training dataset were trans-
formed into their feature representations, and the train-
ing pairs were saved. These training embeddings were
also used as a part of the memory for the classification of
the test set. For each image in the training dataset, one
positive pair and 𝑛 = 5 negative pairs from the closest
classes (based on their mean feature embedding) were
sampled. For each negative class, the 𝑘 = 5 closest ex-
amples to the given image were taken. This resulted in a
total of 58572 pairs of which 9762 were positive.

Training of the classification network was performed
for 30 epochs with all negative and positive pairs and
with Cross entropy loss for binary classification. The
batch size was set at 32 and the SGD optimizer was used
(𝑙𝑟 = 0.0001).

4.1.3. Joint training

For joint training, the images were sampled directly and
no embeddings were stored. We trained both the encoder
with the triplet loss and the cross-entropy loss for super-
vised known image classification and the binary classifier
simultaneously. The sampling process was previously
described. The model was trained with batch size 4 for
20 epochs and the SGD optimizer (𝑙𝑟 = 0.0001, because
higher learning rates did not lead to generalization). The
images were augmented before they were passed to the
network.

4.2. Results
We show the results obtained from the classification of
the test set for both training approaches. The results
of the separate training are shown in Tables 1 and 2,
and the results of the joint training are given in Tables
3 and 4. Tables 1 and 3 show the classification with
only known classes in memory. In that case, we are
interested in the classification of known classes and the

Figure 3: The sample from the dataset used for framework
evaluation. The classes have similar features and the classified
object is the most salient object in the image. The size of all
images is 224× 224× 3.

rejection rates for unknown and known classes. The
results for the case where the 10 unseen classes were
added to the memory are shown in Tables 2 and 4. In
this case, the classification accuracy of the known and
unknown classes is being measured, together with the
frequency of rejected examples (now the rejection rate
is desired to be low) and the overall classification error
(for both known and unknown classes). The results are
obtained for different rejection thresholds.

5. Related Work
As mentioned above, our approach is very similar to
L2AC [1], which follows the DOC [11] open-world classi-
fier with the reject option for text document classification.
One of the differences is the joint training in our case.
Another related work is OpenMax [12], a classifier that
can reject examples of unseen images or images made
to fool a trained network. It calculates the likelihood
of an input producing certain activation patterns in the
penultimate layer of the network. Inputs whose activa-
tion patterns are distant from the activation patterns of
known classes are rejected.

The problem of open set recognition (OSR) was for-
malized by Scheirer et al. [13] [14]. They introduced the
concept of open space risk and relating its minimization
to the solution of the OSR problem.

These approaches, as well as ours, do not deal with the
problem of novel class discovery, i.e., finding new classes
between rejected examples. The possible approach to
finding new classes among rejected examples uses clus-
tering performed on rejected examples [15] [16] [17].

Cao et al. [18] proposed a unified end-to-end frame-



work, with the objective of classifying examples in an
unlabeled dataset to one of the classes present in the la-
beled dataset along with the discovery of new classes in
the unlabeled dataset. [18]. The discovery of new classes
(in the context of unlabeled videos) was also studied by
Hůla et al. [19].

Our work can be seen as part of a broader research
direction focused on anomalous or out-of-distribution
(OOD) data [3] [20]. We have focused on the setup in
which OOD data belong to a different category from
in-distribution data (ID). More generally, the problem
of anomaly detection deals with data that are different
from those seen by the model during training. Apart
from a different class, this difference could be caused, for
example, by faulty sensors.

6. Conclusion
The purpose of this initial study was to test whether the
proposed approach is suitable for image classification
tasks in an open world setting. We have shown that the
model is able to accept new classes with good accuracy,
while the ability to classify examples from the original
known classes is preserved. The classification of known
and unknown classes after their addition to memory was
better after joint training. However, with separate train-
ing, the model was able to reject unknown class examples
more reliably (with a lower threshold).

6.1. Future work
In the planned follow-up study, we will train the models
on a larger dataset with a more extensive hyperparam-
eter search. We are especially interested in improving
the pipeline and training the model simultaneously for
all tasks with proper sampling (metric learning, feature
extraction, and classification). Furthermore, testing the
approach on more benchmarks is required. For the pur-
pose of this work, we tested only three distance metrics
(cosine, Euclidean, and manhattan) with similar perfor-
mance. More work on the most suitable distance metric
search is also ongoing.

Table 1
Separate training: Classification before adding unseen classes
to the memory.

Threshold
0.5 0.8 0.9 0.95 0.99 0.995 0.998 0.999

Known classified (%) 93.1 91.6 91 90.1 88.6 86.8 85.9 84.3
Rejected Unknowns (%) 65.1 68 96.3 70.1 77.2 79 82.3 83.6

Rejected Knowns (%) 5.5 7.3 8 9.6 11 12.8 13.9 15.5

Table 2
Separate training - Classification after adding unseen class
examples into the memory.

Threshold
0.5 0.8 0.9 0.95 0.99 0.995 0.998 0.999

Known classified (%) 90 89.1 88.5 87.5 86.1 84.3 83.4 81.9
Unknown Classified (%) 79.3 76.3 75.6 73.3 67.6 66 61.6 58.6

Rejected (%) 9.6 12.1 12.9 14.7 18 19.7 22.1 24.3
Misclassified (%) 3.7 2.1 1.9 1.6 1.6 1.6 1.4 1.4

Table 3
Joint training - Classification before adding unseen classes
into the memory.

Threshold
0.5 0.8 0.9 0.95 0.99 0.995 0.998 0.999

Known classified (%) 97.3 97.3 97.3 97.1 96.4 96 95.2 93.6
Rejected Unknowns (%) 0 6 9.3 15.3 35 39.9 52.3 65.3

Rejected Knowns (%) 0 0 0 0.5 1.6 2 4.1 5.7

Table 4
Joint training - Classification after adding unseen class exam-
ples into the memory.

Threshold
0.5 0.8 0.9 0.95 0.99 0.995 0.998 0.999

Known classified (%) 96.4 96.4 96.4 96.3 95.5 95.3 94.4 93
Unknown Classified (%) 93.1 93.1 93.1 93.1 93.1 93.1 91.9 88.4

Rejected (%) 0 0 0 0.2 1 1.1 4.6 5.9
Misclassified (%) 4.7 4.7 4.7 4.4 4.2 4 2.5 2.1



References
[1] H. Xu, B. Liu, L. Shu, P. Yu, Open-world learning

and application to product classification, in: The
World Wide Web Conference, 2019, pp. 3413–3419.

[2] X. Ying, An overview of overfitting and its solutions,
in: Journal of physics: Conference series, volume
1168, IOP Publishing, 2019, p. 022022.

[3] J. Yang, K. Zhou, Y. Li, Z. Liu, Generalized out-of-
distribution detection: A survey, arXiv preprint
arXiv:2110.11334 (2021).

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, I. Polosukhin, At-
tention is all you need, Advances in Neural Infor-
mation Processing Systems 30 (2017).

[5] L. Yang, R. Jin, Distance metric learning: A compre-
hensive survey, Michigan State Universiy 2 (2006)
4.

[6] A. Hermans, L. Beyer, B. Leibe, In defense of
the triplet loss for person re-identification, arXiv
preprint arXiv:1703.07737 (2017).

[7] J. Schmidhuber, Deep learning in neural networks:
An overview, Neural networks 61 (2015) 85–117.

[8] A. e. a. Paszke, Pytorch: An imperative style,
high-performance deep learning library, in:
H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances
in Neural Information Processing Systems 32,
Curran Associates, Inc., 2019, pp. 8024–8035.
URL: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-
learning-library.pdf.

[9] M. Tan, Q. Le, Efficientnet: Rethinking model scal-
ing for convolutional neural networks, in: Inter-
national Conference on Machine Learning, PMLR,
2019, pp. 6105–6114.

[10] M. Zhang, J. Lucas, G. E. Hinton, J. Ba, Lookahead
optimizer: 𝑘 steps forward, 1 step back, Advances
in Neural Information Processing Systems 32 (2019).

[11] L. Shu, H. Xu, B. Liu, Doc: Deep open classification
of text documents, arXiv preprint arXiv:1709.08716
(2017).

[12] A. Bendale, T. E. Boult, Towards open set deep
networks, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016,
pp. 1563–1572.

[13] W. J. Scheirer, L. P. Jain, T. E. Boult, Probability
models for open set recognition, IEEE Transactions
on Pattern Analysis and Machine Intelligence 36
(2014) 2317–2324.

[14] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota,
T. E. Boult, Toward open set recognition, IEEE
Transactions on Pattern Analysis and Machine
Intelligence 35 (2013) 1757–1772. doi:10.1109/
TPAMI.2012.256.

[15] L. Shu, H. Xu, B. Liu, Unseen class discov-
ery in open-world classification, arXiv preprint
arXiv:1801.05609 (2018).

[16] E. Fini, E. Sangineto, S. Lathuilière, Z. Zhong,
M. Nabi, E. Ricci, A unified objective for novel class
discovery, in: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, 2021, pp.
9284–9292.

[17] K. Han, A. Vedaldi, A. Zisserman, Learning to dis-
cover novel visual categories via deep transfer clus-
tering, in: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019, pp.
8401–8409.

[18] K. Cao, M. Brbić, J. Leskovec, Open-world
semi-supervised learning, arXiv preprint
arXiv:2102.03526 (2021).

[19] J. Hůla, D. Adamczyk, D. Mojžíšek, V. Molek, Seg-
menting out generic objects in monocular videos.,
in: Proceedings of the 21st Conference Informa-
tion Technologies – Applications and Theory (ITAT
2021), 2021, pp. 123–129.

[20] C. Geng, S.-j. Huang, S. Chen, Recent advances in
open set recognition: A survey, IEEE Transactions
on Pattern Analysis and Machine Intelligence 43
(2020) 3614–3631.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dx.doi.org/10.1109/TPAMI.2012.256
http://dx.doi.org/10.1109/TPAMI.2012.256

	1 Introduction
	2 Problem description
	3 Proposed approach
	3.1 Overview
	3.2 Separate training of encoder and classifier
	3.2.1 The Encoder
	3.2.2 Classifier

	3.3 Joint training

	4 Experiments
	4.1 Dataset
	4.1.1 Dataset Split
	4.1.2 Separate training
	4.1.3 Joint training

	4.2 Results

	5 Related Work
	6 Conclusion
	6.1 Future work


