CEUR-WS.org/Vol-3229/paper22.pdf

Rule-Based Data Access: A Use Case in Agroecology
Elie Najm, Jean-Francois Baget and Marie-Laure Mugnier

LIRMM, Inria, University of Montpellier, CNRS, Montpellier, France

Abstract

There is a crucial need for tools to help designing sustainable agrosystems. In this paper, we consider
the issue of selecting plant species according to the ecosystem services they are likely to deliver. For
that, we rely on the one hand on recent scientific results in agronomy linking functional traits (i.e.,
measurable characterics of plant species) to ecosystem services, and on the other hand on data collected
by the research community in ecology. The architecture of our prototype is inspired by the ontology-
based data access paradigm, which clearly distinguishes between the data level and the knowledge
representation level, with mappings linking the two levels. Knowledge is represented in a rule langage
that extends plain Datalog with computed functions and stratified negation. We detail the construction
of a knowledge base devoted to vine grassing, i.e., installing herbaceous service plants in vineyards, and
briefly report on the experimental evaluation of the system’s results on this use case.

Keywords
Agroecology, Vine grassing, Ontology-Based Data Access, Datalog

1. Introduction

Sustainable agrosystems should not only produce goods but also ecosystem services, like,
e.g., pollinisation, nitrogen production for crops, soil fertility perservation, etc. It is widely
acknowledged that this requirement involves increasing biodiversity on agricultural plots [1].
As these systems become much more complex, there is a crucial need for tools to help their
design [2].

In this paper, we consider the issue of helping to select service plants, i.e., plants associated
with crops, according to the ecosystem services they are likely to deliver. We propose to rely
on two pillars. On the one hand, recent research in agronomy makes it possible to associate
some measurable characteristics of plant species (called functional traits) with some functions
of the agrosystem that contribute to the production of ecosystem services. For instance, several
functional traits of the root system of a plant contribute to the function of soil structural stability,
which supports the service of maintenance of soil quality [3]. On the other hand, rich data on
functional traits has been collected by the international research community in ecology. In
particular, the TRY initiative [4, 5] has built a very large dataset providing plant functional
trait values measured in a wide range of environmental conditions (www.try-db.org). TRY
currently integrates more than 400 datasets and contains experimental observations on 4 millions
individual plants concerning 2100 different traits and about 160k plant taxa (mostly species).
We hypothesized that if we could associate functional traits with functions and services, this

RuleML+RR’22: 16th International Rule Challenge and 6th Doctoral Consortium, September 26-28, 2022, Virtual
& enajm@lirmm.fr (E. Najm); baget@lirmm.fr (J. Baget); mugnier@lirmm.fr (M. Mugnier)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)



www.try-db.org
mailto:enajm@lirmm.fr
mailto:baget@lirmm.fr
mailto:mugnier@lirmm.fr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

database, and possibly others, would allow us to identify species that support these functions
and services. To study the feasibility of our approach, we implemented it on the use case of
vine grassing, i.e., installing service plants in vineyards [6].

Exploiting data on functional traits in the design of agrosystems is indeed a new approach.
Existing decision helping tools rely on field experiments, farmers’ know-how and workshops
between agronomists from various domains. As this is time and budget demanding, these tools
are typically restricted to a small set of plant species. Moreover, the decision is a “black box”, in
the sense that the computation of a recommendation is hardly explainable. On the other hand,
these tools, which are intended for farmers and agricultural consultants, give a very accurate
recommendation adapted to a specific cultivation context. As examples, let us cite SIMSERV
[7], a tool for the selection of service plants (in a predefined list) to be associated with banana
and yam crops, or a tool in agroforestry [8] to select shade tree species in coffee and cocoa
agrosystems, based on an inventory of local practices. In contrast, our objective is to support
the design activity of researchers and technicians in agroecology, with the aim of “opening the
space of possibilities”; in particular, the tool should be able to suggest species that may not
have been considered yet, while being able to explain why these species are likely to provide a
desired package of services.

To sum up, our starting question was the following: can we exploit currently available data
on plant functional traits and combine it with a suitable representation of scientific knowledge
on the trait-function-service relationships, to assess the potential contribution of any plant
species to some ecosystem service?

In this paper, we first present our system architecture (Section 2), the formal framework
(Section 3) and the methodology to acquire expert knowledge from data sources (Section 4).
Then, we detail the construction of a knowledge base devoted to the vine grassing case study
(Section 5). Finally, we briefly report on the experimental evaluation of the system’s results on
this use case and discuss the lessons learnt.

2. System Architecture

To integrate data and knowledge in a principled manner, we decided to rely on the paradigm
of ontology-based data access (OBDA) [9, 10]. OBDA systems are structured in three layers:
the conceptual level, organized around a domain ontology ; the data level, composed of one or
several data sources ; and mappings from the data level to the conceptual level, which allow to
select relevant data and translate it into facts using the ontological vocabulary. Queries to the
global system are expressed at the conceptual level.

The architecture of our system is outlined in Figure 1. A global working database is obtained
by integrating several data sources. This integration step selects and aggregates relevant data,
and translates it according to the global database schema, while keeping track of the data source
provenance. The conceptual level is made of a knowledge base (KB), which comprises facts and
rules. We further distinguish between two kinds of facts: data facts obtained from the working
database (e.g., the fact that some functional trait for a given species has some normalized
value according to a certain data source) and expert facts obtained from expert knowledge
(e.g., the fact that a given ecosystem service is supported by some ecosystem functions, which



Knowledge base

Expert knowledge

Data level Conceptual level

Working database |
bl
8
o
[
®

Figure 1: Overview of the global architecture. Black arrows depict mappings and the green arrow the
formalization of expert knowledge.

themselves rely in some way on some functional traits). Expert knowledge is acquired under
the form of diagrams, from which facts can be automatically built. About rules, we distinguish
between those defining the domain ontology, which provides the concept and relations that are
meaningful to a user (an expert in agroecology who builds diagrams or an end-user who queries
the system), and more complex rules used to process data facts and combine them with expert
facts to estimate the contribution of species to ecosystem functions and services. Note that the
latter rules are generic in the sense that they are independent from a specific use case (e.g., vine
grassing).

Mappings allow to select and aggregate information from a structure (here, a formatted
text file, typically a csv file, or a database) and to translate the resulting information into the
vocabulary of another structure (here, a database or a fact base). Importantly, they are specified
in a declarative way.

Query answering in OBDA usually follows a mediating (aka virtualization) approach, i.e.,
the fact base remains virtual, and user queries are first reformulated with the ontology, then
rewritten with the mappings, to yield queries that are directly evaluated on the data [9, 11, 12, 13].
In contrast, we follow here a materialization approach: the fact base is first materialized by
triggering the mappings, then saturated by rule applications; we finally store the part of the
saturated fact base that is relevant to an end-user as a relational database, in order to benefit from
the whole expressive power of SQL. There are several reasons for the choice of materialization:
first, mediation has been mainly developed for simple queries (essentially unions of conjunctive
queries), while our user queries are more complex (e.g., may involve aggregations); second,
some features of our KR language (computed functions, default negation) do not allow to use
off-the-shelf reformulation techniques; third, most queries of interest require to rank species
(e.g., find the k-best species for some service) and materialization is more appropriate to answer
such queries efficiently. Finally, the main advantage of virtualization is the independence with
respect to the evolution of data sources, yet this does not seem to be an issue in the target
applications.



3. Formal Foundations

Regarding the KR language, we did not make any a priori choice. We started by eliciting
expert knowledge to identify the language that allowed us to express domain knowledge in
a convenient way, while having a restricted expressivity in order to avoid needlessly costly
inferences. Rule-based formalisms were natural candidates since expert knowledge is often
expressed under the form of rules. Furthermore, compared to description logics (DL) [14], rules
allow to express complex relationships between entities, whereas DL are essentially restricted
to tree-shaped descriptions and binary predicates. Another important feature is the ability to
incorporate computed functions into the logical formalism (the term function is used here in
the sense of programming, i.e., a function outputs a value given a list of parameters). Such
functions allow in particular to aggregate values of traits or ecosytemic functions, and can be
arbitrarily complex. Finally, default negation allows us, for instance, to process missing values
or priorities. In the current state of the modeling, our rule language is an extension of plain
Datalog to computed functions and stratified default negation [15], as formally defined next.
Note that the rules do not involve disjunction in the head, as this feature was not required by
the modelling.

3.1. The Rule Language

We consider finite sets of predicates and functional symbols of any arity. Beside standard
predicates, there are predefined binary predicates like =, # and <. Each functional symbol is
linked to a function defined in a programming language. Constants may be objects or literals. A
term may be simple or complex. A simple term is a variable or a constant. A complex term is of

the form f(t1,...,t,), n > 0, where f is a functional symbol and each ¢; is a term. An atom
is of the form p(t1,...,t,), where p is a predicate of arity n and each ¢; is a term. A filter is
of the form not p(t1,...,t,) (negated atom) or t;<op>ty, where <op> is a predefined binary

predicate and #1, t5 are variables or literals. Given an atom or filter A, or set of these, we denote
by terms(A) and vars(A) the terms and variables, respectively, that occur in A.
A fact is an atom whose terms are constants. A query body is a conjunction of atoms on

simple terms and filters, such that each variable occurring in a ﬁltc;r> of the form 1 <op>ts also
occurs in an atom. A rule R has the form R = V?(B[?] — H[X']), where B[Y} (the body

%
of R)isa query body with vars(B) = 7; and H|[X'] (the head of R) is an atom such that

vars(H) = X' Cvars(B). Note that H may contain complex terms. In the examples, we omit
quantifiers, A is replaced by a comma, words starting with a capital letter are variables, and
function symbols are prefixed by fct:.

Figure 2 illustrates facts and rules. The three first facts are data facts specifying a value for
some trait and some species (e.g., the first fact says that the trait “specific root length” of species
“dactylis glomerata” has value 0.72). Note that the values of traits are normalized and range
on the interval [0, 1]. The next two facts are expert facts, specifying that “soil exploration and
competition with vines” is an ecosystem function, which is linked to traits “specific root length”,
“root length density” and “relative growth rate”, with “mean” as the method of aggregation
of these trait values. The rule says that when an ecosystem function EcoSystemFunction is
linked to traits Trait1, Trait2 and Trait3 with Aggregation as the aggregation method of these



% Facts

hasTraitvValue("specific root length",'"dactylis glomerata",0.72).
hasTraitvalue("root length density","dactylis glomerata", 0.38).
hasTraitvalue("relative growth rate","dactylis glomerata", 0.54).
ecoSystemFunction("soil exploration and competition with vines").
isLinkedTo("soil exploration and competition with vines","specific root
length","root length density","relative growth rate",fct:mean).

% Rule

isLinkedTo (EcoSystFunction,Traitl,Trait2,Trait3,Aggregation),
hasTraitvalue(Trait1l,Species,V1l),

hasTraitvalue(Trait2,Species,V2),

hasTraitvalue(Trait3, Species,V3)

— hasValue(EcoSystFunction, Species, fct:aggreg3 (Aggregation,V1,V2,V3)).

Figure 2: Five facts and a (positive) rule

trait values, and Trait1, Trait2 and Trait3 respectively have values V1, V2 and V3 for a species
Species, then the score of Species for EcoSystemFunction is the aggregation of V1, V2 and V3
with method Aggregation. Here, fct:mean denotes a constant (5th fact), while fct:aggreg3 is
a functional symbol associated with a computed function whose first parameter is the name
of the aggregation method. Note that this is a simplified example: the actual facts and rules
have additional arguments to specify the data source and the plant growing conditions for a
measured trait value, the weight of the link between a trait and an ecosystem function, as well
as the reliability of the aggregated result.

A knowledge base (KB) K = (F, R) is composed of a finite set of facts F’ (the fact base) and a
finite set of rules R (the rule set).

A homomorphism from a query body B to a set of facts F' is a substitution h of vars(B) by
terms(F') such that (1) for every atom p(t1,...,tx) € B, h(p) = p(h(t1), ..., h(t;)) is an atom
of F', and (2) every filter in B is evaluated to true in the context of substitution h. In particular,
a filter not A is evaluated to true in the context of h if there is no homomorphism from i (A)
to F'; note that when such a filter is evaluated some of its variables may not be instantiated
by h. Arule R : B — H is applicable to a fact set I’ if there is a homomorphism h from B
to F. The pair (B, h) is called a trigger for R on F. The application of a rule according to
trigger (B, h) produces the atom h(H ), obtained by substituting each variable X; € H by
h(X;), then evaluating the complex terms; e.g., Figure 2: the application of the rule to the
set of facts produces the fact hasvalue("soil exploration and competition with
vines", "dactylis glomerata", 0.55).

Given aKB K = (F,R), a derivation (from F) is a sequence of fact sets (Fp = F), [y, ..., F,
such that, for all 0 < i < n, thereisarule R: B — H € R and a trigger (B, h) for R on F;_;,
F,=F,_1U{h(H)}and h(H) € F;_1. A derivation (Fy = F), ..., F), is complete (aka fair)
if it cannot be extended; then F, is called the saturation of F' by R.

Finally, we consider stratified rule sets [15], which ensures that each KB has a well-defined
semantics, based on its (unique) saturated fact base. A rule set R is stratifiable if there is a
surjective mapping p from its set of intensional predicates P (i.e., predicates occurring in the
rule heads) to a set of m integers, such that for all rule R € R with head predicate p and all



g € P that occurs in the body of R: (1) if ¢ occurs in an atom of R then p(q) < p(p), and (2)
if ¢ occurs in a negated atom of R then p(q) < p(p); then a stratification of R is a partition
of R into subsets R ... R, such that each rule with head predicate p belongs to the subset
Rp(p). A derivation complies with a stratification Ry ... Ry, if, forall1 < i < j < m, any
application of a rule from R; precedes any application of a rule from R ;. It is well-known that,
for a stratifiable rule set R and a KB K = (F, R), all the complete derivations that comply with
a stratification of R lead to the same saturation. Semantically, stratified negation can be seen as
a particular case of stable negation [16].
Answers to queries are defined with respect to the saturated fact base.

3.2. Mappings

Our architecture requires to manipulate data coming from different data sources, possibly stored
in different systems (e.g., relational or NoSQL databases, spreadsheet tables, etc.). To be able to
do that, we rely upon mappings: these objects are akin to rules and are composed of a query
on some data source S (the body, written in the query language associated with S7) and an
insertion query on some other data source S2 (the head, written in the query language associated
with S3). Though the body of a query can be written in a fairly expressive language such as
SQL, we also have to handle, for instance, the very simple queries on spreadsheet files that only
return tuples corresponding to lines in a table. In that case, constraints can be added to the
mapping body to ensure that no required value is missing, and more generally, that retrieved
data satisfies some integrity conditions. Furthermore, functions in the mapping head allow
transforming values from S into values that fulfil the syntactic requirements of S> (e.g, type
casting). Formally, a mapping from S to So has the following general form:

Q1 (X),C1(XD), ..., Ch(XR) = Qa(A(T1),- . Fo(T1)

where ()1 is a query over S ; answers to () are substitutions of 7 by values from S7; the
C}; are constraints on Z C X; and ()2 is an insertion query over Sy, where each 17; - ? and
each f; is a function symbol.

Such mappings can be seen as a generalization of the GAV relational mappings classically
defined in OBDA to mappings over heterogeneous data sources, hence the addition of constraints
to supplement the lack of expressivity of some query languages. The application of a mapping
m is as follows: an answer to the body of m is a substitution ¢ that is an answer to ()1 such
that C’Z-(a(?i)) evaluates to true for all 1 < i < k; given an answer o to the body of m, each
fi(o(Y3)) (1 < i < p)is evaluated, which yields a value v;, and the tuple (v;)1<i<p is inserted
into S> by the insertion query ()2. Given a set of mappings from S; to Sa, the construction of
S is obtained by performing all the applications of these mappings on 5.

In our current prototype, we rely upon data sources available in spreadsheet tables. Cleaning
mappings select and transform data from each source to store it into a relational database. In
those mappings, constraints are used to discard irrelevant, doubtful or unusable lines, and
functions for normalization purposes. Then, database mappings from the obtained databases
lead to a single relational database (the working database): those mappings are used to select



Nitrogen supply
to the vine
Aggregation: mean

Mineralization of
organic matter
Aggregation: mean

Specific leaf area
TRY:3086,3115,3116,3117
Dry mass of plants,

shoots, leaves
TRY:388,403,700

Nitrogen content of
shoots and leaves
TRY:339,408,502,1126
DB2:5

Soil exploration and
competition with vines
Aggregation: mean

Symbiotic fixation of
atmospheric nitrogen
Aggregation: mean

C/N ratio of the
plant, shoot, leaf, litter
TRY:146,150,409,1021
DB2:7

Dry matter content
of leaves
TRY:47

DB2:2

Specific root length
TRY:614,1080

Root length density

TRY:1508,2025,2281 Nitrogen fixation

capacity
TRY:8

Relative growth rate
TRY:77

Figure 3: Traits-Functions-Service for Nitrogen supply to the vine. Green and red arrows indicate
positive and negative impact, respectively.

data relevant to a specific use case (here, vine grassing) and to aggregate values. Then, data-
to-knowledge mappings normalize and aggregate values from the working database to produce
the higher-level facts (so-called data facts). Rules are applied to saturate the fact base, which
also contains so-called expert facts. Finally, storage mappings from the saturated fact base to a
relational database allow to select the part available for querying, while benefiting from SQL
expressive power.

4. Acquisition of Expert Knowledge

In this section, we present the acquisition of expert knowledge by means of diagrams, as well as
the construction of correspondences between traits identified by experts and database trait IDs.

Expert diagrams. The experts provide diagrams structured in 3 levels: traits, functions and
services, with links between elements of successive levels. Figure 3 depicts the diagram describing
the service nitrogen supply to the vine.! A green arrow denotes a positive impact of the trait
(resp. function) value for the function (resp. service) rendered. A red arrow denotes a negative
impact.

To define services relevant to agricultural ecosystems, the experts relied on the reference
study EFESE?. Links from functional traits to ecosystem functions are based on scientific papers
as well as grey literature. The experts were asked to specify methods of aggregation to pass from
traits to functions (resp. from functions to services). Since no precise criteria could be derived
from state-of-the-art domain knowledge, they decided to consider the mean of the normalized
trait values, effectively giving the same importance to all traits (resp. functions).

"Diagrams for two other services can be found in file Appendix.pdf at https://gitlab.inria.fr/enajm/related-doc
*EFESE is a French national initiative to assess ecosystems and ecosystem services: https://www.inrae.fr/en/news/
assessing-services-provided-agricultural-ecosystems-improve-their-management.


https://gitlab.inria.fr/enajm/related-doc
https://www.inrae.fr/en/news/assessing-services-provided-agricultural-ecosystems-improve-their-management.
https://www.inrae.fr/en/news/assessing-services-provided-agricultural-ecosystems-improve-their-management.

Correspondences with databases. The next step consists of associating each trait in a
diagram with one or several trait IDs in available databases.

In its current state, the prototype is mainly based on the large Plant Trait database TRY
presented in the introduction. It also uses a second database built by a French study on the
interests of intermediate crops®, which gives records for 58 species according to 7 traits. Although
it is very small, this database has the advantage of being devoted to herbaceous species (relevant
to vine grassing) and most trait values it provides for these species are not filled in TRY. It allows
us to implement the principle of a multi-database setting. Next, this database is called DB2 as it
is still confidential. Both databases use the same standard names for plant species, defined in
The Plant List* [17] in relationship with the Taxonomic Name Resolution Service® [18].

Hence, each trait in a diagram is associated with one or several trait IDs in the databases
TRY and DB2. As shown in Figure 3, some traits are associated with a single database trait ID,
like “Relative growth rate” associated with ID 77 in TRY, or with a single ID in each database,
like “Dry matter content of leaves” associated with ID 47 in TRY and ID 2 in DB2. However,
most traits have more than one match in TRY. The reason for that is that traits can be measured
according to different techniques, which are reported in TRY. Hence, the same trait for the same
observed individual plant has different values according to the measurement techniques. Since
we will normalize traits values (on a [0,1] interval), it will still be relevant to aggregate different
values of a trait for a species, regardless of the measurement technique. Trait IDs associated with
the same expert trait are called exchangeable. As there is no universally preferred measurement
technique, they are very useful to mitigate the impact of missing values.

Finally, our modeling includes preferences between databases: there is a global default order,
which can be overwritten for specific traits (here, TRY is globally preferred to DB2). This allows
to give a higher priority to a more reliable source. The value of a trait for a species is given by
the highest priority data source that provides one.

To summarize, our methodology for the acquisition of expert knowledge consists of the
following main steps:

1. Build traits-functions-service diagrams, based on scientific sources and the grey literature.

2. Identify relevant databases and associate diagram’s traits with relevant IDs in these
databases, together with the choice of an aggregation technique.

3. Define priority among databases, globally and possibly for specific traits.

Back and forth between the steps 1 and 2 are necessary, as traits in the diagrams have to find
counterparts in the databases.

Formalization. Expert knowledge is formalized into two types of knowledge:

+ Generic rules handling the passage from database values to functional trait, function and
service values for species. These rules are generic in the sense that they do not consider
specific traits, functions or services, nor specific aggregation methods, hence they are not
tied to specific diagrams, nor to specific data sources.

« Expert facts that describe specific diagrams, including their links to database trait IDs.

*https://methode-merci.fr
*http://www.theplantlist.org.
*https://tnrs.biendata.org/.


https://methode-merci.fr
http://www.theplantlist.org
https://tnrs.biendata.org/

Importantly, rules are independent from a use case, hence the evolution of diagrams, including
the introduction of new diagrams, only implies to generate again expert facts. Whereas rule-
based expert systems often rely on carefully crafted rules that are tailored for a specific use case,
our rules could in principle be applicable to any use case that follows the trait-function-service
approach.

5. The Knowledge Base

The domain ontology provides the vocabulary meaningful to a user and is described by simple
rules expressing concept subsumption and relation signatures. Additional predicates are used
at intermediate steps in the computation of trait, function and service values.

5.1. From Expert Diagrams to (Expert) Facts

Each entity of a diagram is typed by the according concept (a unary predicate) and relationships
between traits and functions (resp. functions and services) are captured by predicates that may
have a high arity. E.g., the upper part of the diagram from Figure 3 (from the functions to the
service) is described as follows:

biophysicalRegulationService("nitrogen supply to the vine").
function("mineralization of organic matter").

function("soil exploration and competition with vines").
function("symbiotic fixation of atmospheric nitrogen").

isLinkedTo3Functions("nitrogen supply to the vine",
"mineralization of organic matter",1,
"soil exploration and competition with vines",-1,
"symbiotic fixation of atmospheric nitrogen",1, fct:mean).

The last fact, with predicate isLinkedTo3Functions, links the service to three functions,
each followed by a number weighting their participation to the service (here, 1 for a positive
participation, and -1 for a negative one), and specifies the aggregation method (here, mean).
Other facts translate correspondences between traits and data IDs. E.g., the following facts
express that: the trait “nitrogen content of shoots and leaves” has 4 matches in TRY (ID: 339, 408,
502 and 1126) and one match in DB2 (ID 5); furthermore, the aggregation of these exchangeable
IDs is made by taking their max value (from the highest priority data source).

numberOfMatches("nitrogen content of shoots and leaves",4,try,max).
numberOfMatches("nitrogen content of shoots and leaves",1,db2,max).

hasTraitID("nitrogen content of shoots and leaves","339",try).
hasTraitID("nitrogen content of shoots and leaves","408",try).
hasTraitID("nitrogen content of shoots and leaves","502",try).

hasTraitID("nitrogen content of shoots and leaves","1126",try).
hasTraitID("nitrogen content of shoots and leaves","5",db2).



5.2. From Data to (Data) Facts

Using cleaning mappings. TRY data is available on request for specific traits (we asked
for 52 traits, which yielded about 151k species) and comes as a formatted text file (similar to
csv). This file contains so-called observations (about 1.6M); each observation (identified by
an ID) corresponds to measurements of a trait (identified by an ID) on an individual plant
(associated with a species or genus ID). An observation is described by several lines, which
briefly provides measurements, as well as contextual information about the observation, original
dataset provenance and estimation of the (un)reliability of the values (called error risk). Actually,
the content of the cells is very heterogeneous in terms of units of measure, values taken by a
non-numeric field, kind of contextual information, etc. To illustrate, the trait Plant Life Span
takes string values among ["Bisannual”, "Annual”, "Biennial", "Perennial"] but one also finds at

"on

lot of other values like "perennial < 20 years", "biasannual”, "pere", "nope", "from few decades to
more than 60 years", "1", "2", "3", "winter annual”, "shrub”, "woody", etc. Hence, a step of cleaning
is absolutely necessary before this rich source of information can be exploited in an automated
way. This step, mainly based on string search, discards irrelevant, doubtful (cf. error risk) or
unusable information, and transforms values for the retained fields. We also observed that the
growing conditions of the observed plants may lead to very different trait values, hence we
made the distinction between natural conditions and experimental conditions. At the end of
this step, each triple (observation ID, species ID , trait ID, growing conditions) occurring in the
obtained database has a single trait value expressed in a standardized unit (i.e., we chose a unit
of measure for each trait). ©

Although cleaning could have comprised the whole data and be independent of the specific
vine grassing use case, we performed some selective cleaning for time reasons. In particular,
only herbaceous species are relevant for the use case, while this is not a well defined category
from an ecology viewpoint; we constructed this category from specific values of trait IDs, in
order to distinguish species that are herbaceous from the others. Finer categories could be built
for other use cases. The data source DB2 considers solely herbaceous with natural growing
conditions and required no cleaning.

Using database mappings. The database mappings build the working database by retrieving
only herbaceous species (about half of the species in TRY) and aggregating all the trait values
coming from different observations for a given tuple (species ID, trait ID, growing conditions,
source database). Hence, at the end of this step, the working database contains a single trait
value for each tuple (species ID, trait ID, growing condition, source database).

Some additional queries compute views, in order to simplify the expression of data-to-
knowledge mappings. In particular, for each trait ID, one computes its minimal and maximal
values among all the values it takes in the working database with the same growing condition.

Using data-to-knowledge mappings. The computation of species’ score for ecosystem
functions and services, which is performed at the conceptual level, requires to aggregate values
of different traits. To do so, we turn each value associated with a trait ID into a normalized

8 Actually, the trait (ID) occurring in an observation has itself several associated “subtraits”, whose values need to
be aggregated, but for the sake of simplicity we do not detail this aspect in this paper.



(R1): numberOfMatches(Trait,2,DB,Aggregation),
hasTraitID(Trait,TraitID1,DB), hasTraitID(Trait,TraitID2,DB),
TraitID1<TraitID2, hasSpeciesID(Species,SpeciesID,DB),
hasInitialvalue(TraitID1,SpeciesID,GrowCond,V1,DB),
hasInitialvalue(TraitID2,SpeciesID,GrowCond,V2,DB)

— hasSingleDBValue(Trait,Species,GrowCond, fct:aggreg2 (Aggregation,V1,V2),DB)

(R2): numberOfMatches(Trait,2,BD,Aggregation),
hasTraitID(Trait,TraitID1,DB), hasTraitID(Trait,TraitID2,DB),
TraitID1!=TraitID2, hasSpeciesID(Species,SpeciesID,DB),
hasInitialvalue(TraitID1,SpeciesID,GrowCond,V1,DB),

not hasInitialvalue(TraitID2,SpeciesID,GrowCond,V2,DB)

— hasSingleDBValue(Trait, Species,GrowCond,V1,DB)

Figure 4: Rules to aggregate trait values coming from a single database

v

value ranging over the interval [0, 1]. This is done by the formula ——————, where v is the
max — min

value of the trait to be normalized for one species and min (resp. max) the minimum (resp.

maximum) value of the trait for all (herbaceous) species in the working database.

Finally, the data-to-knowledge mappings yield facts of the following shape:

hasInitialvalue(Trait ID,Species ID,GrowCond,Normalizedvalue,DB).
hasSpeciesID(Species, Species ID, Database).

Note that the facts with predicate hasInitialvalue still consider trait IDs and not the
traits defined by the agronomists. It will be the role of rules to associate values to expert traits.

5.3. Rules to Consolidate Trait Values

As seen in Section 4, a trait (from an expert diagram) can be associated with several exchangeable
trait IDs in each database. The aggregation of their values for a species S yields the trait value
for S according to the considered database. This aggregation is meaningful as all trait values
have been normalized in the interval [0, 1] by the mappings. Its interest is that it yields more
observations for a species, hence leads to retrieve more species. As an example, the trait “specific
leaf area” is associated with four IDs in TRY, which are filled in for respectively 403, 7485, 6705
and 12584 species, which at the end yields 16006 species with a value for this trait.

To illustrate, Figure 4 depicts rules dealing with the case where a trait has two matching
IDs in a database. For a given trait Trait that matches two IDs (TraitID1 and TraitID2), a
species SpeciesID, a growing condition GrowCond, all from the same database DB, two cases are
considered: either both database traits have values, and the computed value is the aggregation
of these values, Rule (R1); or only one of the database traits has a value, which is then retained,
Rule (R2). This step produces facts of the following form:

hasSingleDBValue(Trait, Species,GrowCond,Normalizedvalue,DB).

Finally, we exploit the preference order on databases to retain the first available
value (this is again expressed by rules) and compute facts of the following form:

hasvalue(Trait,Species,GrowCond,Normalizedvalue).



% (R1): both traits filled, 100% reliability
isLinkedTo2Traits(Function,Trait1l,Linkl,Trait2,Link2,Aggregation),
hasTraitvalue(Traitl, Species,V1l,GrowCond),
hasTraitvalue(Trait2, Species,V2,GrowCond)

— hasCalculatedvalueOfFunction(Function, Species,
fct:aggreg2Links (Aggregation,V1l,Link1,V2,Link2),100,GrowCond)

% (R2): first trait filled, 50% reliability
isLinkedTo2Traits(Function,Trait1l,Linkl,Trait2,Link2,Aggregation),
hasTraitvalue(Trait1l, Species,V1l,GrowCond),
not hasTraitvValue(Trait2,Species,V2,GrowCond)

— hasCalculatedvalueOfFunction(Function, Species,V1,50,GrowCond)

% (R3): second trait filled, 50% reliability: similar to (R2)

Figure 5: Rules to compute the value of an ecosystemic function

5.4. Rules to Compute Ecosystemic Function and Service Values

The aim of these rules is to express that the score of a species for an ecosystemic function is the
aggregation of its values for all traits participating to the function. And similarly to go from
ecosystemic functions to services. However, we face again here the problem of missing values:
it often happen that not all the values of traits participating in a function are filled in for some
species.

The natural way of doing, first recommended by the experts, was to discard species for which
a required trait value was missing. However, this made almost all the species disappear when
coming to ecosystemic services. Consider for instance the traits implied in the service "nitrogen
supply to the vine": the percentage of species for which a given trait is filled in goes form 8, 8%
of all the species (and 6,4% of herbaceous species) to only 2 species. Note that herbaceous
plants are not a particularly disadvantaged category in general.

Therefore, we decided to add a parameter indicating the reliability of the computed value of
a function (respectively of a service). This allows one to return more species, which is in line
with the objective of “opening the field of possibilities”. The reliability parameter indicates the

n
proportion of valued traits among all the traits associated with the function, i.e., — where n,

is the number of traits with a value and n; the total number of traits attached to thte function.

To illustrate, Figure 5 depicts the rules to compute the value of an ecosystemic function linked
to 2 traits: (R1) considers the case where both traits are filled (then the reliability of the result is
100%) and (R2-R3) the case where only one trait is filled (then the reliability is 50%).

5.5. Rules to Account for User Feedback

Finally, user feedback may palliate missing values for traits or invalidate the value
assigned to an ecosystemic function (for a specific species). In the case of traits,
the user is simply considered as a data source that has the highest priority, as-
sociated with trivial mappings. Facts coming from the user have the following
shape: hasSingleDBValue(Trait,Species,GrowCond,Value,User). Then, facts
with shape hasvalue(Trait,Species,GrowCond,Value) are produced as previously.



In the case of functions, facts coming from the user have the following shape:
hasUservValueOfFunction(Function, Species,Value,Reliability).

Rules that compute the value of a function give priority to facts with predicate
hasUservalueOfFunction over those with hasCalculatedvalueOfFunction.

6. Evaluation and Discussion

The use case described in this paper has been implemented in java using the Graal tool [19]
(which is devoted to reasoning with existential rules), recently extended to stratified negation
and computed functions/predicates’. Since mappings in Graal are still under development, we
simulated the complete workflow by executing the corresponding queries.

6.1. Evaluation on the Vine Grassing Use Case

In order to assess the applicative validity of the approach, we carried out an evaluation® on a
specific ecosystemic service for a specific set of species, and compared the scores provided on
the one hand by the tool (tool score) and on the other hand by the domain literature (expert
score).We chose the service of “nitrogen supply to the vine” (Figure 3), which is one of the most
relevant for vine grassing. The experts selected a set of 19 herbaceous species, which were
sufficiently well-documented in the literature, including scientific and grey literature. They
retained 16 papers in the literature, each one providing a comparison between some of the
selected species for the selected service. Note that each paper covers only some of the selected
species (between 2 and 8 species).

From each document, the experts built a total order on the species covered in the document:
s; > s; means that s; is deemed better than s; for the service. To aggregate these different
orders, we built a directed graph, whose nodes are the species s; and there is an edge (s;, 5;)
if at least one document says that s; > s;. We found that the results in the literature were
remarkably consistent, as the graph was circuit-free. Hence, the graph provided a partial order
on the whole set of species. We then considered all the total orders compatible with this partial
order, and assigned to each species a score equal to the average of its ranks in the total orders.

Finally, we studied the correlation between the tool and expert scores, according to Pearson
correlation coefficient 7. In our case, a perfect correlation is reflected by » = —1 (as the tool and
the expert rank species in opposite orders), a perfect inverse correlation by = 1, and an absence
of correlation by r = 0. Globally, we found a good correlation (r = —0.67). Interestingly, the
reliability of the tool’s score appeared to be a crucial parameter: the value of r drops to —0.74
when we consider only species whose computed service value has a reliability at least 50%, and
to —0.81 for reliability at least 60% (i.e., for these species, at least 6 of the 9 traits actually have
a value by the predicate hasTraitvalue). This highlights the crucial issue of missing values
in the data sources.

"https://gitlab.inria.fr/rules/graal-v2
8We give here a brief outline of the evaluation, for more detail see the file Appendix.pdf at https:/gitlab.inria.fr/
enajm/related-doc


https://gitlab.inria.fr/rules/graal-v2
https://gitlab.inria.fr/enajm/related-doc
https://gitlab.inria.fr/enajm/related-doc

6.2. Concluding Remarks

In this paper, we studied the feasibility of a new approach for the selection of plant species in
agriculture according to ecosystem services. This approach exploits on the one hand scientific
results on the relationships between functional traits, ecosystem functions and services, and on
the other hand data collected by the research community in ecology. Our modeling relies on
generic rules, which allows for a smooth evolution of expert knowledge: expert facts can be
automatically generated from the diagrams, without impact on the rules.

To put this approach in practice, we first had to undertake significant efforts to clean the data
from TRY (which integrates almost all data sets about functional traits). This was a mandatory
step before any automated exploitation. The evaluation carried out with agronomists confirms
that very satisfactory results can be obtained as long as the proportion of missing values is not
to high. As the TRY initiative is developing, in both volume and standardization of the data, and
there is a growing effort to produce trait data in agronomy, the approach is indeed promising.

We expect the accuracy of the results to increase if contextual information (like climate and
soil in particular) is taken into account. We did not exploit this kind of information because it
would have further reduced available data and worsen the problem of missing values. As future
work, we plan to also consider agricultural practices, as they are decisive for the realisation or
neutralisation of a potential ecosystemic function. Finally, on a more practical side, our agenda
includes a dedicated user interface, with explanation of query results in close relationship with
expert diagrams.

Acknowledgments

We thank the experts in agronomy and agroecology who took part in this study: Christian
Gary, Raphaél Métral, Léo Garcia and Aurélie Métay. We are also grateful to Sébastien Minette
for providing us with the second traits database. This work was supported by a governmental
grant managed by the Agence Nationale de la Recherche (ANR) within the framework of the
"Investissements d’Avenir" program under the reference ANR-16-CONV- 0004 (#DigitAg).

References

[1] M. Duru, O. Therond, G. Martin, R. Martin-Clouaire, M.-A. Magne, E. Justes, E.-P. Journet,
J.-N. Aubertot, S. Savary, ]J.-E. Bergez, J.-P. Sarthou, How to implement biodiversity-
based agriculture to enhance ecosystem services: a review, Agronomy for Sustainable
Development 35 (2015). doi:10.1007/s13593-015-0306- 1.

[2] F. Lescourret, T. Dutoit, F. Rey, F. Coéte, M. Hamelin, E. Lichtfouse, Agroecological engi-
neering, Agron. Sustain. Dev. 35 (2015) 1191-1198. d0i:10.1007/s13593-015-0335-9.

[3] L. Garcia, G. Damour, C. Gary, S. Follain, Y. Le Bissonnais, A. Metay, Trait-based approach
for agroecology: contribution of service crop root traits to explain soil aggregate stability
in vineyards, Plant and Soil 435 (2019). doi:10.1007/s11104-018-3874-4.

[4] J. Kattge, G. Bonisch, S. Diaz, S. Lavorel, L. Prentice, P. Leadley, S. Tautenhahn, G. Werner,


http://dx.doi.org/10.1007/s13593-015-0306-1
http://dx.doi.org/10.1007/s13593-015-0335-9
http://dx.doi.org/10.1007/s11104-018-3874-4

[10]

[11]

[14]

[15]
[16]
[17]

(18]

[19]

T. Aakala, M. Abedi, A. Acosta, et al., Try plant trait database — enhanced coverage and
open access, Global Change Biology 26 (2020) 119-188. d0i:10.1111/gcb. 14904.

J. Kattge, S. Diaz, S. Lavorel, I. C. Prentice, P. Leadley, G. Bonisch, E. Garnier, M. Westoby,
P. B. Reich, I. J. Wright, et al., Try—a global database of plant traits, Global change biology
17 (2011) 2905-2935.

L. Garcia, F. Celette, C. Gary, A. Ripoche, H. Valdés-Gomez, A. Metay, Management of
service crops for the provision of ecosystem services in vineyards: A review, Agricul-
ture, Ecosystems & Environment 251 (2018) 158—170. URL: https://www.sciencedirect.
com/science/article/pii/S0167880917304309. doi:https://doi.org/10.1016/j.agee.
2017.09.030.

H. Ozier-Lafontaine, J.-M. Blazy, M. Publicol, C. Melfort, SIMSERV - Expert system of
selection assistance of service plants, 2010. URL: https://hal.inrae.fr/hal-02820845.

J. Van der Wolf, L. Jassogne, G. Gram, P. Vaast, Turning local knowledge on agroforestry
into an online decision-support tool for tree selection in smallholders’ farms, Experimental
Agriculture 55 (2019) 50-66.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data
to ontologies, in: S. Spaccapietra (Ed.), Journal on Data Semantics X, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008, pp. 133-173.

G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyascheyv,
Ontology-based data access: A survey, in: IJCAL ijcai.org, 2018, pp. 5511-5519.

D. Calvanese, B. Cogrel, E. G. Kalayci, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, G. Xiao, Obda with the ontop framework., in: SEBD, Citeseer, 2015,
pp. 296-303.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,
R. Rosati, M. Ruzzi, D. F. Savo, The mastro system for ontology-based data access, Semantic
Web 2 (2011) 43-53.

M. Buron, F. Goasdoué, I. Manolescu, M. Mugnier, Ontology-based RDF integration of
heterogeneous data, in: Proceedings of EDBT 2020, Copenhagen, Denmark, March 30 -
April 02, 2020, 2020, pp. 299-310.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-Schneider (Eds.), The
Description Logic Handbook: Theory, Implementation, and Applications, Cambridge
University Press, 2003.

S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison Wesley, 1994.

V. Lifschitz, Answer set programming, Springer Heidelberg, 2019.

J. M. Kalwij, Review of ‘the plant list, a working list of all plant species’, Journal of
Vegetation Science 23 (2012) 998-1002.

B. Boyle, N. Hopkins, Z. Lu, J. A. Raygoza Garay, D. Mozzherin, T. Rees, N. Matasci, M. L.
Narro, W. H. Piel, S. J. Mckay, et al., The taxonomic name resolution service: an online
tool for automated standardization of plant names, BMC bioinformatics 14 (2013) 1-15.
J. Baget, M. Leclére, M. Mugnier, S. Rocher, C. Sipieter, Graal: A toolkit for query answering
with existential rules, in: N. Bassiliades, G. Gottlob, F. Sadri, A. Paschke, D. Roman (Eds.),
Proceedings of RuleML 2015, Berlin, Germany, 2015, volume 9202 of Lecture Notes in
Computer Science, Springer, 2015, pp. 328-344.


http://dx.doi.org/10.1111/gcb.14904
https://www.sciencedirect.com/science/article/pii/S0167880917304309
https://www.sciencedirect.com/science/article/pii/S0167880917304309
http://dx.doi.org/https://doi.org/10.1016/j.agee.2017.09.030
http://dx.doi.org/https://doi.org/10.1016/j.agee.2017.09.030
https://hal.inrae.fr/hal-02820845

	1 Introduction
	2 System Architecture
	3 Formal Foundations
	3.1 The Rule Language
	3.2 Mappings

	4 Acquisition of Expert Knowledge
	5 The Knowledge Base
	5.1 From Expert Diagrams to (Expert) Facts
	5.2 From Data to (Data) Facts
	5.3 Rules to Consolidate Trait Values
	5.4 Rules to Compute Ecosystemic Function and Service Values
	5.5 Rules to Account for User Feedback

	6 Evaluation and Discussion
	6.1 Evaluation on the Vine Grassing Use Case
	6.2 Concluding Remarks


