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Abstract
Decision Model and Notation (DMN) is a formalism for the representation of knowledge about decision
processes. It represents a set of decision rules in an easy-to-understand tabular format, called a decision
table. In this paper, we argue that current formal semantics for DMN have certain limitations and we
propose a novel formal semantics. Our semantics considers a decision table as a definition. The semantics
consists of two components: the first component captures the meaning of one row (rule), and the second
component aggregates the meaning of the rules into meaning for the whole table. By choosing the
second component in different ways, the different “hit policies” of DMN (i.e., mechanisms for deciding
what happens when multiple rows of the same table are applicable) can be represented.

Our semantics can cope better with undefined and unknown values and provides a foundation for
forms of reasoning different from deriving the output for a given set of inputs.
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1. Introduction

Decision Model and Notation (DMN) [1] is a minimalistic yet powerful knowledge representation
formalism. It is increasingly popular in the industry, where a myriad of business software
vendors builds tools around it. The success of DMN stems from its straightforward syntax
and operational semantics. Thanks to its tabular format, expressing decisions requires neither
knowledge of complex grammatical rules nor of connectives and quantifiers. For example, the
first row of the table from Fig. 1 expresses constraints “< 10” and “= 4” on input attributes 𝑋1

and 𝑋2, and, when satisfied, the assignment of 𝑡𝑟𝑢𝑒 to decision attribute 𝐷. The entire table
derives a decision iff for given values of 𝑋1 and 𝑋2 there is a unique rule that applies. This is
specified by the hit policy (“U”nique) which is a mechanism for deciding what happens when
multiple rows of the same table are applicable. If for some combination of input values there is
no matching rule we say that the rule is missing, and if there is more than one matching rule,
we say that they are overlapping.
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Example
U 𝑋1 𝑋2 𝐷

1 < 10 = 4 𝑡𝑟𝑢𝑒

2 ≥ 10 = 4 𝑓𝑎𝑙𝑠𝑒

Figure 1: A DMN table with 𝑋1 and 𝑋2 input attributes, 𝐷 decision attribute and (U)nique hit policy.

In the past, there have been multiple attempts to formalize the semantics of DMN [2, 3] as a
theory in first-order logic (FO). We argue that these semantics only approximately formalize the
informal definition of DMN. Furthermore, we argue that there are three significant problems:
(1) translating DMN tables to FO is not very well suited for capturing the nature of DMN decision
tables as combinations of rules under various hit policies, (2) FO is not well suited for dealing
with partial attributes (i.e., they may be undefined), and (3) there is no way of distinguishing
between epistemic and objective relations while decisions are of epistemic nature. This reflects
the problem of the distinction between unknown value and non-existing value. Some of these
issues are appearing in examples encountered by the DMN community, such as in [4, 5].

In the current DMN formalism, there are two possible ways of going around this issue. Firstly,
DMN has a special “null” value, which is used when no rule of a table fires [1, p.166]. However,
it is also used in various other cases, such as for notANumber, negativeInfinity and positiveInfin-
ity [1, p.104], which makes its meaning not perfectly clear. Moreover, many commercial DMN
rule engines allow it in different places (e.g., as a value of an input attribute, as a constraint of a
row) and implement its behavior differently. An alternative solution is to simulate non-existing
values by introducing a new value, such as “does_not_exist”. This approach brings room for all
kinds of mistakes. This special value requires special treatment in each statement where the
variable ranges over that value, in other words, it pollutes the domain. Furthermore, this special
value should be introduced for each type, breaking the uniform way of treating undefinedness.
In both cases, there is a semantic mismatch with FO. This stems from FO’s assumption that
every logical constant is total, i.e., has a value. Hence, the introduction of partial attributes
requires subtle changes in the current semantics and syntax.

In this paper, we present a general solution for these problems by proposing an alternative
semantics for DMN that is declarative, yet, much closer to the intuitive operational understand-
ing of DMN. We define the semantics in two steps: semantics of individual rules, and semantics
of a decision table (i.e., a sequence of rules). Individual rules are defined as decision value
derivation functions, and decision tables are defined as an aggregate function (corresponding to
the hit policy) over values derived by the rows of the table. With this semantics we investigate
the proper distinction between undefined (non-existing) values and unknown values in three
different situations: (i) some attribute is known to be undefined, (ii) it is not known whether
an attribute is defined or not, and (iii) it is known that an attribute is defined, but its value is
unknown.

The remainder of the paper is structured as follows. First, an overview of the most important
related work and issues with current approaches are provided. Next, we present the prelimi-
nary version of the novel semantics for DMN. Further, we discuss the benefits and practical
applications of our semantics. We close the paper with notes on future work and a conclusion.



2. Related Work

Although DMN is a relatively young formalism, quite some theoretical work has already been
done. This section provides an overview of the most related ideas to this paper and points out
the important differences.

In [3], Calvanese et al. define a model semantics for DMN decision tables by translating
tables to first-order logic statements. In the paper, the rules in a table with unique hit policy are
translated into a set of material implications. Each rule is represented as a material implication
from the rule’s conditions to the assignment of values to decision attributes. Rule conditions on
an input attribute without value, are assumed to be false. This approach was developed under
the assumption that tables do not have missing or overlapping rules and works correctly in
these cases. However we claim that even when this assumption does not hold, such tables still
have a meaning (Section 3), and hence the formal semantics should capture them. Furthermore,
this semantics does not generalize well, as each hit policy requires a separate translation to FO
(problem (1) from the introduction).

Another approach is based on defining an input-output relation based on a DMN decision
table and its hit policy. The rule semantics described in [2] by Calvanese et al. follows this
idea. This relation contains per rule all tuples of input and decision values such that the rule
is satisfied for the input and derives decision values. In this way, the input-output relation
correctly approximates undefinedness and over-definedness in case no or multiple rules are
applicable for some input values. This approach resolves the first problem from our list, while
the other two are still present.

Finally, the official DMN specification [1] suggests using null values in certain situations (e.g.,
missing row in a table with a unique hit policy). However, the specification does not specify
how to treat null values as input to the table and distinguish them from existing but unknown
values. Furthermore, the specification does not provide model semantics but instead focuses on
deriving decisions from tables based on input values. This is a problem for the generalization
of different inference methods which are based on possible world analysis as will be briefly
demonstrated in Section 5. The aim of the formal semantics defined below is to formalize the
intuitions of the official DMN specification in full generality while filling in gaps left open in
them.

3. Analysis of Existing Semantics

In this section, we briefly illustrate the three problems discussed in Section 1.
Let us consider the non-realistic simple1 example from Fig. 2 of two tables with unique hit

policy, one of which (2a) has a missing rule and the other one (2b) has overlapping rules for
input value 10. One can argue that these tables should not be considered since they are not
“correct”. But Table 2a will nevertheless provide a sound decision for any combination of input
values except for the missing one, which makes it usable. On the other hand, Table 2b has a
conflict in case 𝐼𝑛𝑝𝑢𝑡 = 10, resulting in a clear error. In this paper, we take the simple approach

1Note that our examples do not contain default values, which is allowed by the standard [1, p. 134].



Missing
U Input Dec
1 < 10 Yes
2 > 10 No

(a) Missing rule

Overlapping
U Input Dec
1 ≤ 10 Yes
2 ≥ 10 No

(b) Overlapping rules

Salutation
U Gender MStatus Salut
1 Male - Mr
2 Female Married Mrs
3 Female Single Ms

(c) Salutation decision table

Figure 2: Examples of decision tables with missing and overlapping rules, and DMN decision table for
salutation based on gender and marital status.

to derive undefined) for the decision attribute in this case2. We proceed to show that FO is not
well suited for capturing these cases. Following [3], the two tables (a+b) are translated in the
following material implications.

(𝐼𝑛𝑝𝑢𝑡 < 10⇒ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑌 𝑒𝑠) ∧ (𝐼𝑛𝑝𝑢𝑡 > 10⇒ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑜) (1)

(𝐼𝑛𝑝𝑢𝑡 ≤ 10⇒ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑌 𝑒𝑠) ∧ (𝐼𝑛𝑝𝑢𝑡 ≥ 10⇒ 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑜) (2)

It is not hard to see that these translations do not match the basic intuition in the case when
𝐼𝑛𝑝𝑢𝑡 = 10. Formula (1) is trivially satisfied as both antecedents are false and hence 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛
can take any value. But according to the DMN specification, in this case, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 should
take the distinguished value null. On the other hand, the formula (2) will be unsatisfiable since
𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 should be both 𝑌 𝑒𝑠 and 𝑁𝑜, which is not possible. This case is not well covered
by the DMN specification, but intuitively there is something wrong with this table due to its
inconsistency. This has to be distinguished from unsatisfiability which is representing impossible
situations (more in Section 5.3). The input-output relation [2] for these two examples would
respectively assign an empty set 𝑅𝑖𝑜(10) = ∅ and a set 𝑅𝑖𝑜(10) = {𝑌 𝑒𝑠,𝑁𝑜} for the value
10. This captures our intuition of being undefined and over-defined, but due to the inherited
limitations of the first-order logic, the problem with non-existing values for input attributes
still remains.

Another major issue with the existing semantics of DMN is support for unknown values and
distinction between objective and epistemic relations. The greeting example [5] is an example
set forth by industry practitioners demonstrating these issues. Concretely, it discusses the
automatic generation of a greeting and lists some pitfalls to consider. Among other things,
it brings to attention that the gender and marital status of a person might not be known to
the system and that a table such as in Fig. 2c might not suffice. The problem with DMN is
that there is no good formalization that would allow reasoning in cases when something is
unknown. For example, in case we do not know the gender of a person but we know that they
are single we would probably say something like “Dear Mr., Ms.” and certainly not “Mrs”. To
circumvent these issues one can use the null value, or introduce another value simulating that
something is unknown. But these attempts have a major downside: they are not standardized
by the formalization and hence can lead to many issues. This causes a lot of difficulties for users
since they have to make very peculiar choices in order to get the desired effects. Furthermore,

2It is straightforward to extend the semantics with over-definedness and capture these errors.



there are strong limitations to current approaches; e.g., in some applications or contexts, there
may be information that “all female persons are married” and we cannot express or exploit that
information.

4. DMN Formal Syntax and Semantics

DMN is recognizable for its simple and clean syntax. It supports certain data types described
with object symbols, characteristic relations (e.g., the order relation), and characteristic functions
(e.g., the addition of numbers). Since our intention is to define a general semantics, we will not
focus on a particular data type in this paper, but rather focus on an abstract data type.

Definition 4.1. A data type 𝒟 is a triple (𝐷𝑜𝑚,𝑃, 𝐹 ) where 𝐷𝑜𝑚 is a set of objects (object
domain), 𝑃 is a set of predicate symbols and 𝐹 is a set of function symbols. Predicate and
function symbols have arity denoted as 𝑝/𝑛 and 𝑓/𝑛. Function symbols of arity 0 are called object
symbols. A data type interprets all predicate and function symbols as: Per predicate symbol 𝑝/𝑛 it
assigns a relation 𝑝𝒟 ⊆ 𝐷𝑜𝑚𝑛 and per function symbol 𝑓/𝑛 a function 𝐷𝑜𝑚𝑛 → 𝐷𝑜𝑚 denoted
with 𝑓𝒟 . 𝒟𝐷𝑜𝑚, 𝒟𝑃 , and 𝒟𝐹 respectively denote projections of 𝐷𝑜𝑚, 𝑃 , and 𝐹 of a data type 𝒟.

The set of all terms for a particular data type is defined as:

Definition 4.2. Given a set of function symbols 𝒟𝐹 of a data type 𝒟, the set of all terms over 𝒟,
denoted as 𝑇𝑒𝑟𝑚(𝒟), is defined as:

• An object symbol 𝑓/0 ∈ 𝒟𝐹 is a term,
• If 𝑡1, . . . , 𝑡𝑛 are terms and 𝑓 ∈ 𝒟𝐹 is a function of arity 𝑛 then 𝑓(𝑡1, . . . , 𝑡𝑛) is a term.

Based on terms, a DMN expressions are defined as follows.

Definition 4.3. For a given data type 𝒟 we define a DMN value expression 𝑣 as 𝑣 := 𝑡 where 𝑡
is a term from 𝑇𝑒𝑟𝑚(𝒟) and constraint expression 𝐶 as:

𝐴 :=𝑝(𝑣1, . . . , 𝑣𝑖−1, _, 𝑣𝑖+1, . . . , 𝑣𝑛) | not 𝐴 (Atom and negation)

𝐸 :=“− ” | “𝑑𝑒𝑓𝑖𝑛𝑒𝑑” | “𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑” (Expressions)

𝐶 :=𝐴 | 𝐸 | 𝐶,𝐶 (Compound)

Where 𝑝 is a 𝑛-ary predicate symbol from 𝒟𝑃 applied to 𝑛 − 1 values leaving 𝑖-th argument
unspecified, denoted with “_” (when obvious from the context, “_” is omitted). We call this language
𝒟ℳ𝒩 𝑐 (for DMN constraints). Additionally, 𝐶[𝑋] denotes an FO logic expression obtained by
replacing all occurrences of “_” in 𝐶 with the attribute symbol 𝑋 , replacing “not” with ¬ and “,”
with ∨.

Note that only atomic constraints can be negated, negating other DMN constraints is not
needed as not 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 and vice versa, while negating “− ” would mean that
nothing matches this constraint, which would be equivalent to omitting the rule. Following is
the example of DMN constraints over the data type of natural numbers.



Example 4.1. Consider the data type of natural numbers equipped with comparison predicates
and standard binary functions:

𝒩 = (N, {< /2, > /2,≤ /2,≥ /2}, {+/2,−/2,×/2,÷/2,0/0, 𝑆/1})

We use 1, 2, . . . to denote 𝑆(0), 𝑆(𝑆(0)), . . . The examples of terms are: 0, 𝑆(0), 10× 5, . . . The
atomic constraint expressions are defined as follows:

𝐴 := (𝑣..𝑣) | [𝑣..𝑣] | (𝑣..𝑣] | [𝑣..𝑣) |< 𝑣 |> 𝑣 |≤ 𝑣 |≥ 𝑣 |= 𝑣

An example of an atomic constraint expression is (1..34). When this occurs in a cell below attribute
𝑋 , it expresses the constraint 1 < 𝑋 < 34, while (1..34] expresses 1 < 𝑋 ≤ 34, and similar for
the others.

Section 3 demonstrates that current formal semantics are not aligned with the human intuition
behind the decision tables. Hence, based on the informal operational understanding of DMN
decision tables, we propose a two-step declarative semantics3. First defining the formal semantics
of rules individually and then decision tables as the hit policy function applied on the sequence
of values produced by all the rules. We start with definitions of rules and tables where a rule
corresponds to a row in a DMN table, and a sequence of rules corresponds to the full table.

Definition 4.4. For a given sequence 𝑋⃗ = ⟨𝑋1, . . . , 𝑋𝑛⟩ of input attributes and a decision
attribute 𝐷: A DMN rule 𝑟 is a pair (𝐶⃗, 𝑣) where 𝐶⃗ is a (finite) sequence of constraint expressions
⟨𝐶1, . . . , 𝐶𝑛⟩ and 𝑣 an value expression. The logical format of 𝑟 is the expression 𝐷 := 𝑣 ←
𝐶1[𝑋1]∧· · ·∧𝐶𝑛[𝑋𝑛] where the left/right hand side of the← is head/body denoted as 𝐻(𝑟)/𝐵(𝑟).
A DMN decision table is a pair (𝑅⃗, ℎ) where 𝑅⃗ is a (finite) sequence of rules (for 𝑋⃗ and 𝐷) and
ℎ a hit policy expression.

We intend to define semantics that can cope with undefined input and decision attributes.
In order to define a formal model semantics, we need a notion of an interpretation assigning
values to the attributes and hit policy functions. But introducing partiality brings the issue of
constraining the existence of a value. According to Kleene’s principle of regularity for three-
valued logic [6, p.334] comparing an undefined object with anything results in undefinedness.
For that reason we extend DMN syntax with two new constraints 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 and 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
(Definition 4.3) with semantics defined in 4.7.

Definition 4.5. Given a data type 𝒟 and set 𝐴 of attribute symbols, a DMN interpretation A
over 𝐴 in 𝒟 consists of:

• A domain D which is a non empty set [[D]]A = 𝒟𝐷𝑜𝑚.
• Per attribute symbol 𝑥 ∈ 𝐴 an element 𝑑 ∈ [[D]]A or distinguished value ⊥, denoted as [[𝑥]]A.
• Per hit policy function symbol ℎ an aggregate function [[ℎ]]A that maps the sequence of

contributions of the rules into a unique value for the output attribute, as in definition 4.6.

3To preserve simplicity, we restrict DMN decision tables to the simpler form without losing generality in which all
attributes are of the same type, decision tables have only one decision attribute and there are only two hit policies.



Each DMN constraint expression 𝐶 denotes the (obvious) set [[𝐶]]A ⊆ [[D]]A ∪ {⊥}, and each DMN
value expression 𝑣 denotes an element from the domain [[𝑣]]A ∈ [[D]]A according to the predicate
and function symbol interpretations in 𝒟. Definition 4.7 demonstrates this with the data type of
natural numbers 𝒩 .

Definition 4.6. Let 𝑉⃗ = ⟨𝑉1, . . . , 𝑉𝑛⟩ be a sequence of values, then: The unique (i.e., exactly
one rule matches) hit policy is 𝑢(𝑉⃗ ) = if ∃1𝑖 ∈ {1..𝑛} : 𝑉𝑖 ̸= ⊥ then 𝑉 ∈ 𝑉⃗ | 𝑉 ̸= ⊥ else ⊥
(where ∃1 means “exists exactly one”), and sum (i.e., summation of values of all matching rules) hit
policy is 𝑐+(𝑉⃗ ) = if (𝑉⃗�⊥) ̸= ∅ then 𝑠𝑢𝑚(𝑉⃗�⊥) else ⊥. Where 𝑉⃗�⊥ represents a sequence obtained
by removing all values equal to ⊥ from 𝑉⃗ .

Definition 4.7. For a given structure A over data type of natural numbers 𝒩 , a DMN value
expression 𝑣 denotes an element from domain [[D]]A (in this case N), which is denoted with [[𝑣]]A

and defined as: if 𝑣 is a object symbol then [[𝑣]]A = 𝑣𝒩 , if it is a compound term 𝑣 = 𝑓(𝑡1, . . . , 𝑡𝑛)
then [[𝑣]]A = 𝑓𝒩 (𝑡𝒩1 , . . . , 𝑡𝒩𝑛 ). A DMN constraint expression 𝐶 (over 𝒩 ) denotes a subset of
[[D]]A⊥ (the domain of A augmented with ⊥, in this case N⊥), denoted as [[𝐶]]A. We first define the
value of atomic expression 𝐴:

[[[𝑖..𝑗]]]A ={𝑥 | 𝑥 ∈ N ∧ [[𝑖]]A ≤𝒩 𝑥 ≤𝒩 [[𝑗]]A}
[[(𝑖..𝑗]]]A ={𝑥 | 𝑥 ∈ N ∧ [[𝑖]]A <𝒩 𝑥 ≤𝒩 [[𝑗]]A}
[[[𝑖..𝑗)]]A ={𝑥 | 𝑥 ∈ N ∧ [[𝑖]]A ≤𝒩 𝑥 <𝒩 [[𝑗]]A}

[[(𝑖..𝑗)]]A ={𝑥 | 𝑥 ∈ N ∧ [[𝑖]]A <𝒩 𝑥 <𝒩 [[𝑗]]A}
[[⊕𝑖]]A ={𝑥 | 𝑥 ∈ N ∧ 𝑥⊕𝒩 [[𝑖]]A}

[[not 𝐴]]A =N ∖ [[𝐴]]A

where⊕ ∈ {=, <,>,≤,≥}, and 𝑖 and 𝑗 are value expressions. The value of other DMN expressions
is defined as:

[[𝑑𝑒𝑓𝑖𝑛𝑒𝑑]]A = N [[𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑]]A = {⊥} [[−]]A = N⊥

Compound constraint, constructed with “or” operator (in DMN “,”), is defined as:

[[𝐶1, . . . , 𝐶𝑛]]
A = [[𝐶1]]

A ∪ · · · ∪ [[𝐶𝑛]]
A

Note that atomic expressions are always specifying a subset of the domain, meaning that
each of these constraints carries an assumption that the value exists.

If not stated differently we assume that each interpretation is over data type of natural
numbers 𝒩 . Henceforth data type is not mentioned explicitly in the following definitions.

The semantics of a rule is defined as a function that maps an interpretation of the input
attributes to the contribution of the rule, the value for the decision attribute.

Definition 4.8. For a given sequence of 𝑛 input attributes 𝑋⃗ = ⟨𝑋1, . . . , 𝑋𝑛⟩ and a decision
attribute 𝐷, let 𝑟 = (𝐶⃗, 𝑣) be a DMN rule with 𝑛 constraint expressions 𝐶⃗ = ⟨𝐶1, . . . , 𝐶𝑛⟩ and
value expression 𝑣, and let A be a DMN interpretation (over 𝑋⃗ and 𝐷), then C𝑟(A), the value
contributed by 𝑟 in A, is [[𝑣]]A when each constraint is satisfied (in A) and ⊥ otherwise; formally:

C𝑟(A) = if ∀𝑖 ∈ {1..𝑛} : [[𝑋𝑖]]
A ∈ [[𝐶𝑖]]

A then [[𝑣]]A else ⊥

Finally, the function associated with the hit policy aggregates all contributions of rules into one
value.



Definition 4.9. For a given input attributes 𝑋⃗ and a decision attribute 𝐷, let 𝑇 = (𝑅⃗, ℎ) be a
DMN table with 𝑘 rows and A be a DMN interpretation (over 𝑋⃗ and 𝐷) then A satisfies table
𝑇 , or A is a model of 𝑇 , (denoted as A |= 𝑇 ) iff the value [[𝐷]]A equals to the value obtained by
applying the hit policy function ([[ℎ]]A) on the sequence of values ⟨C𝑟1(A), . . . ,C𝑟𝑘(A)⟩ derived
by rules (𝑟𝑖 ∈ 𝑅⃗) application; formally:

[[𝐷]]A = [[ℎ]]A(⟨C𝑟1(A), . . . ,C𝑟𝑘(A)⟩)

5. Discussion

In this section, we discuss the results of the proposed model semantics, preliminary ideas,
and future work. The model semantics defined in the Section 4 distinguishes itself from other
approaches in the following aspects:

1. It is straightforward to extend the semantics with new hit policies. Also, it is possible to
define hit policies that are domain-specific (e.g., if rule 3 derives value ≥ 5 take the value
produced by the rule 4 and otherwise the value produced by the rule 5).

2. The distinction between undefined and unknown is made clear (more in Section 5.1).
3. Combining decision tables is straightforward, and tables with missing or overlapping rules

does not require any special treatment (more in Section 5.3).
4. Employing formal reasoning methods is possible and hence solving many different prob-

lems without implementing new custom algorithms but rather using existing solvers.
This is the principle of knowledge representation and reasoning as explained in [7, 8, 9],
and in [10] such an approach based on the semantics of [3] is demonstrated with the use
of the IDP system [8].

5. View of DMN tables as set of definitional rules directly supports relevance inference
(as implemented in [11, 12]). Relevance inference, for a given DMN table and partial
interpretation, determines the set of attributes whose value does not affect the model
anymore. However, translating tables to FO destroys dependency relation between
attributes and would require the development of custom techniques for relevance in
DMN tables. Such an algorithm for relevance inference in DMN tables is implemented in
[10], but our view on rows as rules allows us to exploit the structure of rules and detect
relevance easier.

5.1. Unknown vs Undefined

One of the main contributions of this paper is the disambiguation of unknown and undefined
values of DMN attributes. This subsection provides a detailed discussion on this matter.

We start from the usual DMN task, which is computing the value of the decision attribute for
given values of input attributes. Let 𝑋1, . . . , 𝑋𝑛 be input attributes and 𝐷 the decision attribute
of the DMN table 𝑇 . The problem is then to compute the value of 𝐷 when values of 𝑋1, . . . , 𝑋𝑛

are given by value expressions 𝑣1, . . . , 𝑣𝑛. To solve this problem using model semantics pro-
posed in this paper it is necessary to find the interpretation A such that [[𝑋𝑖]]

A = [[𝑣𝑖]]
A for

𝑖 ∈ {1, . . . , 𝑛} and A |= 𝑇 . Finding such an interpretation would require a solver capable of



determining whether some constraint is satisfied in an interpretation or not; practically imple-
menting definition 4.7 and building up to answer the question of whether some interpretation is
a model of a DMN table. For the moment we assume the existence of such a solver and discuss
it further in Section 5.2. Taking into account that values of input attributes are exact and that
value of the decision is obtained with an aggregate function, it follows that there exists exactly
one interpretation satisfying the above requirements, and hence the decision value is [[𝐷]]A.

Although solving this kind of problem is already very useful, in real-life scenarios it is often
the case that the user does not know exact values for all input attributes but rather a set of
possible values. For example, a user might know that input attribute 𝑋1 is between numerical
values 3 and 10. Hence we propose to allow users to specify constraints (using 𝒟ℳ𝒩 𝑐) on
attributes rather than exact values. By combining different constraints users can express their
knowledge about an attribute value. This idea is not new, cDMN [13] is DMN extension that
among other functionalities supports constraints on input attributes in the form of material
implications. The following definition formalizes the idea of imposing a set of constraints on
each attribute using 𝒟ℳ𝒩 𝑐.

Definition 5.1. DMN model generation with attribute constraints is an inference method
defined as: For a given input: (i) A set of input and decision attributes: 𝐴 = {𝑋1, . . . , 𝑋𝑛, 𝐷}, (ii)
A DMN table: 𝑇 , (iii) Per attribute 𝑋 ∈ 𝐴 a set of 𝒟ℳ𝒩 𝑐 constraints : 𝐶𝑋 , the output is the set
of interpretations such that each interpretation satisfies all attribute constraints and is a model of
the table, formally: {A | ∀𝑋 ∈ 𝐴 : ∀𝐶 ∈ 𝐶𝑋 : [[𝑋]]A ∈ [[𝐶]]A and A |= 𝑇}.

Constraining attributes in this way allow users to distinguish between unknown and unde-
fined values. Following are constraints corresponding to the three situations from the introduc-
tion:

1. Constraint “𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑” expresses that some attribute is known to be undefined.
2. Constraint “𝑑𝑒𝑓𝑖𝑛𝑒𝑑” expresses that some attribute is known to be defined, but its value

is unknown.
3. The absence of constraints means that it is not known whether an attribute is defined or

not (nor anything about its value).

Furthermore, by combining different constraints one can express much more. For example,
“𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, [3..10]” means: “if the attribute is defined then its value is between 3 and 10”.
However this is not the most convenient way of expressing such constraints, hence extending the
language of attribute constraints would be useful. We propose to use the languageℒ𝑎𝑐 defined as
the set of formulas consisting of𝒟ℳ𝒩 𝑐 constraints closed under the logical connectives ∧,∨,¬,
⇒, and ⇔. The constraint from above then becomes “𝑑𝑒𝑓𝑖𝑛𝑒𝑑 ⇒ [3..10]”. The semantics
of this language is straightforward as it can be defined by a slight extension of standard
DMN constraints. The main difference is that DMN constraints do not support ∧ connective,
or negation of constraints connected with “or” (in DMN “,”) like “not (𝑑𝑒𝑓𝑖𝑛𝑒𝑑, [3..10])”.
Following is the definition of the value of ℒ𝑎𝑐 expressions for ∨ and ¬, as other connectives
can be expressed in terms of these.

Definition 5.2. For a given DMN interpretation A, a ℒ𝑎𝑐 attribute constraint expression 𝐶
denotes a set [[𝐶]]A𝑎𝑐 which is subset of the [[D]]A ∪ {⊥} (denoted as [[D]]A⊥), defined as:

[[𝐶1 ∨ 𝐶2]]
A
𝑎𝑐 =[[𝐶1]]

A
𝑎𝑐 ∪ [[𝐶2]]

A
𝑎𝑐 [[¬𝐶]]A𝑎𝑐 =[[D]]A⊥ ∖ [[𝐶]]A𝑎𝑐 [[𝐶]]A𝑎𝑐 =[[𝐶]]A if 𝐶 ∈ 𝒟ℳ𝒩 𝑐



5.2. Solver

To make practical use of the semantics proposed in this paper, a solver implementing it is needed.
The solver should be able to answer whether an interpretation is a model of one or more DMN
tables. On top of that, the solver should be intuitive to extend with different functionalities,
such as generating all models of a table, extending partially specified interpretations, and more.
However, building such a solver is a difficult task and a bit redundant since there are existing
solvers for many languages, especially those based on FO. While this suggests that a translation
of DMN tables to some FO language is required, as we pointed out earlier, standard FO will
not suffice. Indeed, support for partial functions, definitions, and (optionally) aggregates is
required. At the moment of writing this paper, we are not aware of a solver that provides
all of these options. But, one solver, the IDP system [8], provides most of these with limited
support for partial functions. Limitations of the IDP system for partial functions are mostly
related to recursive function definitions which do not occur in DMN tables. Hence, we propose a
translation to FO(·), first-order logic language extended with inductive definitions [14], aggregates,
partial functions, and types (summarized in [8]), which is the language used by the IDP system.

To implement the idea from Definition 5.1 we create three FO(·) theories. The first theory is
specifying attribute constraints (i.e., ℒ𝑎𝑐 constraint expressions). The second theory represents
DMN table translation to a definition; a set of rules of the form 𝐷 := 𝑣 ← 𝐶1[𝑋1]∧· · ·∧𝐶𝑛[𝑋𝑛]
(Definition 4.4). However, this is not sufficient as the sequence of rules is lost, hence translation
has to include the numerical identifier (𝑖𝑑) assigned to the row in the DMN table. The most
convenient way with IDP system is to replace the head of rule with relation: 𝑅𝐷(𝑖𝑑, 𝑣) ←
𝐶1[𝑋1] ∧ · · · ∧ 𝐶𝑛[𝑋𝑛]. The third theory defines the hit policy as aggregate functions over the
𝑅𝐷 relation; for example unique hit policy:

∀𝑣 : 𝐷 = 𝑣 ← (∃𝑟 : 𝑅𝐷(𝑟, 𝑣)) ∧#{𝑟1, 𝑣1 : 𝑅𝐷(𝑟1, 𝑡1)} = 1.

The IDP solver can generate all models satisfying these three theories. These models correspond
to models defined in definition 5.1.

We demonstrate this approach in the greeting example from Fig. 2c. Presented are snippets
of theories while the whole formalization is provided online4. First, the theory that expresses
the user’s knowledge about the attributes of the table is declared (e.g., 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑀𝑎𝑙𝑒).

theory T_attribute_constraints : V_salutation{
Gender = Male.

}

Following is the theory expressing the contributions of the rules (with identities).

theory T_rules_derivation : V_salutation_decision {
{

R_Salutations(1,Mr) ← Gender = Male.
R_Salutations(2,Mrs) ← Gender = Female ∧ MaritalStatus = Married.
R_Salutations(3,Ms) ← Gender = Female ∧ MaritalStatus = Single.

}
}

4https://bitbucket.org/krr/dmn-to-idp-poc/src/main/

https://bitbucket.org/krr/dmn-to-idp-poc/src/main/


Finally, the theory defining unique hit policy is instantiated for this particular table.

theory T_unique_hit_policy : V_salutation_decision {
{

∀ t[Titles] : Salutation = t ← (∃r[Rule]:R_Salutations(r,t))
∧ #{r1[Rule], t1[Titles]:R_Salutations(r1,t1)}=1.

}
}

The model of theories above obtained by the use of the IDP solver would look like this:

structure : V_salutation {
Gender = Female
MaritalStatus = Single
Salutation = Ms

}

The IDP system is sufficient for building this proof of concept example. Furthermore, it
provides a variety of inference methods and hence is a good candidate to serve as a solver for
DMN model semantics proposed in this paper.

5.3. Combining Tables

So far in this paper, we focus on the semantics of DMN tables individually, while they are almost
always used as a part of Decision Requirements Graphs (DRG) where tables can share inputs or
be connected (the decision of one table is an input of another). The reason for this is that model
semantics defined in this paper naturally scale up to multiple tables.

Definition 5.3. For a given sequence of attributes 𝑋⃗ , let 𝑆 be a set of DMN tables {𝑇1, . . . , 𝑇𝑛}
where each table is over some subset of attributes, and let A be a DMN interpretation (over 𝑋⃗) then
A satisfies set of DMN tables 𝑆, or A is a model of 𝑆, (denoted as A |= 𝑆) iff A is a model of each
table 𝑇 ∈ 𝑆; formally:

A |= 𝑆 ⇔ ∀𝑇 ∈ 𝑆 : A |= 𝑇

In the introduction, it is mentioned that the current semantics based on the translation to
FO would result in undefinedness in the case of tables with overlapping rules. This would
prevent decision derivation for other tables that perhaps are deriving a decision. For examples,
combining tables from Fig. 2b and 2c in case that user knows that 𝐼𝑛𝑝𝑢𝑡 = 10 for table 2b
and 𝐺𝑒𝑛𝑑𝑒𝑟 = 𝑀𝑎𝑙𝑒 for table 2c. Translation of rules to material implications would result in
a theory that is unsatisfiable because of the overlapping rules in table 2b. However, table 2c
derives the decision 𝑆𝑎𝑙𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑀𝑟 based on gender. Our semantics produces one model in
such scenario, decisoin of table 2b is non-existing (i.e., undefined) and decision of table 2c is 𝑀𝑟.
As pointed out earlier, it is more natural to consider overlapping rules (with a unique hit policy)
as an error. The model semantics defined in this paper can be refined with over-defined values
which would correctly capture the value in these cases and allow different interpretations from
undefinedness.



5.4. Epistemic DMN

In Sections 5.1 and 5.2 it is demonstrated how to get models of a DMN table where user can
express the knowledge about input/output attributes. These ideas are briefly demonstrated in
the greeting challenge example [5]. However, getting models for salutation, in case of partially
known data about someone (i.e., gender and marital status) is not enough to solve the problem.
For example, if the only information known about someone is that 𝑀𝑎𝑟𝑖𝑡𝑎𝑙𝑆𝑡𝑎𝑡𝑢𝑠 = 𝑆𝑖𝑛𝑔𝑙𝑒
there will be two models, in one of them 𝑆𝑎𝑙𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = “𝑀𝑟” and in another 𝑆𝑎𝑙𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
“𝑀𝑠”. This is because the table from Fig. 2c does not specify the decision of salutation to be
used in the greeting message, but rather the objective relation between gender, marital status,
and salutation. To get the salutation that should be used in a greeting message it is necessary
to observe all the worlds possible according to this objective relation. In our example, there
are two possible salutations “𝑀𝑟” and “𝑀𝑠”, hence reasonable decision would be to just use
“Dear customer”.

Expressing such statements, about all possible models, is not possible in DMN. This forces
users to use encoding tricks which ultimately results in a bad knowledge representation. While
as a matter of fact, the nature of this knowledge is epistemic (e.g., If we know that salutation is
“𝑀𝑟”, taking into account what is known about gender and marital status, then use greeting
“Dear Mr.”). It is important to observe that there are two levels of knowledge in this statement.
The first is about values of gender and marital status. The second is about salutation message
with respect to all the possible salutations (according to what is known about the person). This
idea is known as ordered epistemic logic and it is worked out in detail in [15]. The basic idea
is to first get all models of the salutation according to the user’s information on gender and
marital status, as explained in section 5.2. The next step is to evaluate epistemic statements
like “If it is known that salutation is “𝑀𝑟””, or formally (using modal epistemic 𝐾 operator)
𝐾(𝑆𝑎𝑙𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = “𝑀𝑟”). This can be done by verifying that 𝑆𝑎𝑙𝑢𝑡𝑎𝑡𝑖𝑜𝑛 is indeed equal to
“𝑀𝑟” in all models of the first theory.

We propose to extend DMN with modal epistemic 𝐾 operator and in particular with ordered
epistemic logic. This extension comes naturally to DMN since tables are not allowed to have
cycles in dependency. Moreover, this extension would not require a new specialized solver as it
is possible to simulate it using the IDP system (as demonstrated in [15]). The table from Fig. 3
shows how the DMN epistemic decision table would look like for the salutation example.

Salutation message
U Salutation Salutation message
1 𝐾(𝑀𝑟) “Dear Mr.”
2 𝐾(𝑀𝑟𝑠) “Dear Mrs.”
3 𝐾(𝑀𝑠) “Dear Ms.”
4 𝐾(𝑀𝑟𝑠 ∨𝑀𝑠) ∧ ¬𝐾(𝑀𝑟) ∧ ¬𝐾(𝑀𝑟𝑠) ∧ ¬𝐾(𝑀𝑠) “Dear Madam”
5 ¬𝐾(𝑀𝑟𝑠 ∨𝑀𝑠) ∧ ¬𝐾(𝑀𝑟) ∧ ¬𝐾(𝑀𝑟𝑠) ∧ ¬𝐾(𝑀𝑠) “Dear Customer”

Figure 3: Salutation message decision based on salutation value, epistemic DMN

The first three rows are simply stating that in cases when an exact salutation is known then it
should be used in the message. The fourth row expresses that in cases when 𝑀𝑟𝑠∨𝑀𝑠 is known



and no exact salutation is known message is “Dear Madam”. This rule is quite cumbersome
because it is necessary to eliminate all the previous cases. Likewise, the last rule states that if
non of the above is known “Dear Customer” message is appropriate.

The size of the epistemic formulas in the table from Fig. 3 is simply unmanageable. However,
it is possible to optimize it by the use of different hit policies. For example, first hit policy
derives the value of the first rule that produces a value where the order of the rules corresponds
to the numbers in the table. The simplified table is presented in Fig. 4.

Salutation message
F Salutation Salutation message
1 𝐾(𝑀𝑟) “Dear Mr.”
2 𝐾(𝑀𝑟𝑠) “Dear Mrs.”
3 𝐾(𝑀𝑠) “Dear Ms.”
4 𝐾(𝑀𝑟𝑠 ∨𝑀𝑠) “Dear Madam”
5 - “Dear Customer”

Figure 4: Salutation message decision based on salutation value with first hit policy

The informal interpretation of this table is slightly different from the previous one, but they
have the same meaning. The first three rules are expressing that it is safe to use a message
with the exact salutation only if that salutation is known. According to the fourth rule it is safe
to use message “Dear Madam” if 𝑀𝑟𝑠 ∨𝑀𝑠 is known. The last rule specifies that message
“Dear Customer” is always safe. The first hit policy then selects the most precise message where
precision is following the order of rules. We provide a proof of concept for this example (using
table from the Fig. 3) using the IDP system5.

5.5. Future Work

The topics that are opened with this paper are the formalization of epistemic DMN with ordered
epistemic logic [15] and the implementation of the solver for the proposed semantics. The first
version of the solver can be implemented as an automated translation of DMN tables to FO(·) as
demonstrated in Section 5.2.

6. Conclusion

In this paper, we proposed and partially formalize the extension of DMN with undefinedness,
uncertainty, and epistemic K-operator. This is an important problem in real-life, which is not yet
addressed in current semantics. Our model semantics provides clear disambiguation between
undefined and unknown values. Furthermore, extending it with ordered epistemic logic is
straightforward. We discuss the importance and benefits of our approach and provide a proof
of concept for implementing it.

5https://bitbucket.org/krr/dmn-to-idp-poc/src/main/
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