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Abstract
Biomedical relation classification has been significantly improved by the application of advanced machine
learning techniques on the raw texts of scholarly publications. Despite this improvement, the reliance
on large chunks of raw text makes these algorithms suffer in generalization, precision and reliability.
However, the use of the distinctive characteristics of bibliographic metadata can prove effective in
achieving a better performance for this challenging task. In this research paper, we introduce an
approach for biomedical relation classification using the qualifiers of co-occurring Medical Subject
Headings (MeSH). First of all, we introduce MeSH2Matrix, our dataset consisting of 46,469 biomedical
relations curated from PubMed publications using our approach. Using MeSH2Matrix, we build and train
three machine learning models (SVM, D-Model and C-Net) to evaluate the efficiency of our approach for
biomedical relation classification. Our best model achieves an accuracy of 70.78% for 195 classes and 83.09%
for five superclasses. Our results will hopefully shed light on developing better algorithms for biomedical
ontology construction based on the MeSH keywords of PubMed publications. For reproducibility
purposes, MeSH2Matrix as well as all our source codes are made publicly accessible at https://github.
com/SisonkeBiotik-Africa/MeSH2Matrix.
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1. Introduction

Biomedical ontologies are currently having a growing place in driving intelligent systems
and information retrieval for clinical decision support and natural language processing [1, 2].
Ontologies are constituted of concepts related to each other using statements in the form of
triples: Subject (Concept), Predicate (Relation Type), and Object (Concept) [3]. As a result
they can be easily enriched, processed, validated, and reused by machines [4]. Nevertheless,
biomedical ontologies are mainly created through human curation by experts (e.g., physicians
and ontologists), consortiums (e.g., Open Biomedical Ontologies Consortium), and institutions
(e.g. NIH National Center for Biomedical Ontology) [5], while machines are delegated particular
tasks in ontology engineering: biomedical relation extraction and classification [6], biomedical
ontology matching and integration [7], and biomedical ontology evaluation and validation
[8]. For these tasks, free-form text from large collections of scholarly publications are usually
processed, while the metadata, particularly bibliographic metadata, of the analyzed publications
are not leveraged [6, 9].

Although these systems achieve high accuracy rates (F1-Score of biomedical relation classifi-
cation with raw texts from 63.5 to 84.3), the consideration of the characteristics of scholarly
publications could help refine their results to achieve better outputs [9]. In addition, the de-
velopment of customized algorithms driven by the structure and the logic behind facets of the
extracted publications – such as controlled keywords – could bring more trustworthy results
using fewer computer resources [10, 11].

In this context, Medical Subject Headings (MeSH) keywords used to annotate PubMed scholarly
publications can be a very useful resource for biomedical relation extraction and classification
[10]. Based on MeSH taxonomy, it always assigns the same concept to various publications
in PubMed using the same term [10]. Consequently, the use of MeSH keywords as input
for biomedical ontology engineering can be more efficient than the use of user-generated
bibliometric metadata and raw texts of scholarly publications [10]. In this research paper,
we propose an approach for biomedical relation classification using the associations of the
MeSH keywords in PubMed records. For this, we will use the biomedical relations between
MeSH terms as revealed by Wikidata, an open and collaborative knowledge graph available
at https://www.wikidata.org [12], to construct the training dataset named MeSH2Matrix for
biomedical relation classification using our method.

We will begin by giving an overview of MeSH Keywords and how they have contributed so
far to enhancing tasks in Biomedical Informatics (Section 2.1). Then, we will describe Wikidata
as a biomedical knowledge resource and explain how it can be used to extract biomedical
relations between the MeSH terms (Section 2.3). After that, we will explain the principles of
our proposed approach for the biomedical relation classification based on the MeSH keywords
of PubMed scholarly publications and explicate our method for the creation of our training
dataset from PubMed and Wikidata (Section 3.1). Later, we will provide a description of the
MeSH2Matrix dataset and assess its quality by comparing its main features to previous research
findings (Section 3.2). Subsequently, we will describe our experiments for the development of the
biomedical relation classification machine-learning algorithms to be trained on MeSH2Matrix
and outline our results for the biomedical relation classification based on MeSH2Matrix (Section
4). Finally, we will conclude our experiments and provide future directions for our research
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paper (Section 5).

2. Overview

2.1. MeSH keywords as a valuable input

As a controlled vocabulary, MeSH supports sixteen types of biomedical concepts ranging from
anatomical structures to symptoms, diseases, and drugs1 [13]. This broad coverage of MeSH
Terms makes them useful to represent the topics of all scholarly publications [13]. The value
of these terms is further increased by the regular revision of MeSH to include new concepts
such as COVID-192 and SARS-CoV-23 and to cover updates in the biomedical nomenclature
[14]. That is why it has been used to annotate PubMed records for years by the human
curators of the bibliographic database to enable consistent indexing of scholarly papers and
intuitive data mining [13, 15]. Beyond its contribution to the enhanced topic granularity
in PubMed, MeSH keywords have the ability to represent facets of a given topic through
the use of predefined subheadings known as MeSH qualifiers providing more precision to
the MeSH keywords of the PubMed records [9, 10]. Currently, there are 89 MeSH qualifiers
representing all the characteristics and features of a biomedical entity as revealed at https:
//www.nlm.nih.gov/mesh/subhierarchy.html.

Table 1
Examples of relation types corresponding to the associations of two MeSH Keywords. MeSH Qualifiers
contributing the relation type are indicated in bold

MeSH Keyword 1 MeSH Keyword 2 Relation Type

Sofosbuvir/therapeutic use Hepatitis C/drug therapy Medical Condition Treated
Asthma/complications Dyspnea/etiology Symptom

Retinopathy/prevention & control Diabetes Mellitus/complications Risk Factor

These interesting features of the MeSH keywords encouraged its usage beyond information
seeking. MeSH keywords are gaining an increasing popularity in biomedical information
retrieval as they allow better accuracy for relation extraction and classification from PubMed
[15, 16]. This is due to the restriction of the considered publications to the ones that are most
likely to include the required information [16] and the analysis of the co-occurrences of the
MeSH Keywords [15]. The better output of clinical knowledge engineering driven by the MeSH
terms of the PubMed publications has proven the value of MeSH Keywords, especially when
assigned controlled qualifiers, to classify biomedical relations [9, 10]. Essentially, the qualifiers
of two co-occurring MeSH keywords can inform us of the nature of the semantic relation
between them as shown in Table 1. This is particularly motivated by the fact that biomedical
publications usually have narrow research scope and do not consequently study multiple and
unrelated facets of a given topic unless the publication type is an encyclopedic review [? ]. The

1https://www.nlm.nih.gov/bsd/disted/meshtutorial/meshtreestructures/index.html
2https://www.ncbi.nlm.nih.gov/mesh/2052179
3https://www.ncbi.nlm.nih.gov/mesh/2052180
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Figure 1: English-language designations and language-independent identifier for COVID-19 in Wikidata
(Source: https://w.wiki/4gkc).

qualifiers of the MeSH keywords can be easily found as they are simply separated from their
corresponding headings using a slash (/). The MeSH keywords of PubMed scholarly publications
can be retrieved from the NCBI Entrez API using the Biopython Python Library [17, 18]. The
structured format of MeSH keywords and their simple retrieval from the PubMed bibliographic
database motivate their usage for the biomedical relation extraction and classification.

2.2. Wikidata as a biomedical semantic resource

Wikidata was created in October 2012 as a knowledge database to support structured data in
Wikipedia such as interlanguage links and infoboxes [? ]. However, it has grown over the past
years to become one of the largest free and open knowledge graphs covering various range of
fields, particularly biomedicine [12]. Its collaborative and crowdsourcing-based enrichment,
regular updates according to recent advances in the major areas of interest, etc make it the most
adequate knowledge base to support ever-changing scholarly evidences, mainly in the context
of the COVID-19 pandemic [19]. Currently, Wikidata represents various types of medical
entities as items, such as drugs, diseases, genes, proteins, organs, and symptoms [12]. These
items are linked to their equivalent entities in external knowledge resources, mainly MeSH
[19]. Every entity is assigned a language-independent identifier (so-called Q-number) as well
as its main names (labels), glosses (descriptions), and alternative names (aliases) in a variety of
natural languages, particularly English as shown in Fig. 1 [12, 19]. Furthermore, entities are
related to other ones using semantic relations (Subject – Predicate – Object) where the relation
type (Predicate) is also a Wikidata entity having its own identifier (P-number) and semantic
description [12, 20].

There are two major kinds of relation types: taxonomic or non-taxonomic ones [12, 19].
Taxonomic relations are hierarchical ones that link an entity to its parent class or constituents
(e.g., instance of [P31] – Fig. 2) [12]. Non-taxonomic relation types are non-hierarchical ones
that are assigned to define specialized knowledge such as biomedical information (e.g., signs
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Figure 2: Examples of taxonomic relations for COVID-19 in Wikidata (Source: https://w.wiki/4gkc).

Figure 3: Examples of non-taxonomic relations for COVID-19 in Wikidata (Source: https://w.wiki/4gkc).

or symptoms [P780] – Fig.3) [12]. A non-taxonomic relation can be symmetric: where the
subject-object inversion would not affect the meaning of the statement. If this condition is not
fulfilled, the relation in non-symmetric [20]. Such a classification of biomedical relation types
can be easily inferred from the semantic information about Wikidata relation types, particularly
the property constraints providing conditions for the definition of relational statements (Fig.
4) [20]. These conditions are not only useful for the validation of semantic information about
the semantic relations but also to recognize the distinctive features of relation types. Moreover,
Wikidata items are also matched to their equivalents in external resources using non-relational
statements in the form of triples where the predicate reveals the aligned resource and the object is
the identifier of the concept in the external database [20]. Particularly, MeSH Descriptor ID [P486]
statements align between MeSH terms and Wikidata items as revealed by Fig. 5. As Wikidata
knowledge graph is developed using the Resource Description Framework (RDF) format, it can
be easily processed to get subsets of semantic information needed to drive knowledge-based
applications using a variety of tools, particularly the MediaWiki API4, the Wikidata SPARQL
query service5, and the Wikibase Integrator Python Library6.

4https://www.wikidata.org/w/api.php
5https://query.wikidata.org
6https://github.com/LeMyst/WikibaseIntegrator
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Figure 4: Examples of property constraints for symptoms and signs as a Wikidata relation type (Source:
https://w.wiki/aeG).

Figure 5: MeSH descriptor ID for COVID-19 in Wikidata as revealed by Wikidata (Source: https:
//w.wiki/4gkc).

3. MeSH2Matrix

3.1. Principles and dataset generation

We develop our approach upon the assumption that the qualifiers of two co-occurring MeSH
terms can outline the type of semantic relation between them, as previously shown in Table 1
[9, 10]. Let t1 and t2 be two semantically related MeSH terms that are not assigned a relation
type. Our method proposes to first search for the PubMed scholarly publications having both t1
and t2 as MeSH headings. Then for each of the found records, we extract the qualifiers q1 and
q2 (e.g., therapeutic use for Sofosbuvir/therapeutic use) respectively corresponding to t1 and t2
(e.g., Sofosbuvir for Sofosbuvir/therapeutic use). This will enable the creation of (q1, q2) couples
as shown in Fig. 6. When a term is assigned two or more qualifiers (e.g., t2/Z/U for Paper 3 –
Fig. 6), this means that a paper deals with a facet of a characteristic of the considered topic. In
such a situation, we consider it as though the qualifiers were independently assigned to the
MeSH term for the paper (e.g., t2/Z and t2/U for Paper 3 – Fig. 6). We restrict the number of
considered publications to the 100 most relevant research papers according to PubMed Best
Match search algorithm [21]. This will prevent matters related to the timeout limit of the NCBI
PubMed API (Error 429). After the couples of MeSH qualifiers are retrieved, we draw a matrix of
correspondence (𝑀 ) – this is a square matrix of the qualifiers (𝑞1, ..., 𝑞89)7 where each element

7There are currently 89 pre-defined MeSH qualifiers as revealed at https://www.nlm.nih.gov/mesh/subhierarchy.
html.
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Figure 6: Process for the retrieval of the couples of MeSH qualifiers. t1 is the subject MeSH term, t2 is
the object MeSH term, q1 are the subject qualifiers, q2 are the object qualifiers, and c is the set of the
couples of the extracted MeSH qualifiers.

𝑚𝑖,𝑗 is the number of records featuring both t1/qi and t2/qj as MeSH keywords divided by the
total number of records with the two MeSH terms t1 and t2 (Equation 1).

As a practical example, as of March 6, 2022, there are 32 PubMed records where Hepatitis B
and Sofosbuvir are featured together as MeSH headings. From these 32 publications, there are
15 papers where drug therapy and therapeutic use are the respective qualifiers to Hepatitis B and
Sofosbuvir. In this situation, the value that will be represented for the association between drug
therapy and therapeutic use in the Hepatitis B-Sofosbuvir matrix is 15/32 = 0.469.

Floating-point representations (noted r) in this matrix will generally range between 0 and 1.
This matrix of correspondence will be used as an input to find the nature of the semantic relation
between t1 and t2.

𝑟𝑞𝑖,𝑞𝑗 =
𝑁(𝑡1/𝑞𝑖, 𝑡2/𝑞𝑗)

𝑁(𝑡1, 𝑡2)
. (1)

To construct our dataset, we first retrieve biomedical relations from Wikidata where the
subject and the object are matched to their equivalent Medical Subject Headings (MeSH). This
is accomplished with the SPARQL query featured in Fig. 7. The output of the query is saved as a
tab-separated values (TSV) file to allow its automatic processing. After that, we use the Wikidata
identifiers (also called P-numbers) of the extracted relation types as labels for the generated
matrices. Then, we find the official names of the subjects and objects of the relations in MeSH
based on their MeSH Descriptor ID [P486], which is then used to retrieve their associations
in PubMed using the NCBI Entrez API. Finally, we extract the (q1, q2) couples and return the
qualifiers’ matrices for every subject-object association. Every matrix is assigned the relation
type corresponding to the subject-object association as a label. For a better analysis of our
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Figure 7: SPARQL query to extract 81,000 biomedical relations between MeSH terms in Wikidata (Live
data: https://w.wiki/4h3g).

proposed approach, we extract the features of the considered Wikidata relation types and verify
their names as well as if they are taxonomic, symmetric, or biomedical through the application
of SPARQL queries on Wikidata using Wikibase Integrator coupled with human validation.

3.2. Results and Discussion

As of December 12, 2021, our SPARQL query (Fig. 7) has successfully retrieved 81,000 biomedical
relations between MeSH Terms from Wikidata. This is a very significant amount of information
as Wikidata only includes 99,208 semantic relations between MeSH concepts8. We have chosen
81,000 as the number of considered relations in order to simplify the performed computations
for the analysis of our proposed approach. When analyzing the biomedical relations extracted
for building our dataset, we found out that the supported relation types can be classified into
five categories:

• Non-Biomedical Non-Symmetric (156 relation types, 17,758 relations),
• Biomedical Non-Symmetric (53 relation types, 27,429 relations),
• Non-Biomedical Symmetric (12 relation types, 9,000 relations),
• Biomedical Symmetric (3 relation types, 1,441 relations), and
• Taxonomic (3 relation types, 25,372 relations).

This goes in line with the coverage of various aspects of biomedical knowledge in Wikidata
as a multidisciplinary knowledge graph [12, 19]. The extraction of the associations between the
subject and object of every semantic relation in the MeSH keywords of PubMed publications has
shown that most of the associations are likely to be found in a limited number of publications
(Fig. 8A) and that commonly available MeSH associations in the PubMed records are rare (25,227
associations [42.7%] each available in 100 papers or more – Green dot in Fig. 8A). This is evident
as scientific productivity follows Lotka’s Law, an inverse power law that describes the uneven
distribution of research outputs [22]. When seeing if the extraction of qualifiers describing the
MeSH associations has been successful in generating matrices, we found that the probability
of the creation of qualifiers’ matrices tends to increase with the augmentation of the number
of PubMed publications including the MeSH association before reaching a plateau near 1 at

8For a live update: https://w.wiki/4JN9
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twenty publications (Fig. 8B). The existence of biomedical relations in Wikidata that cannot
be found in PubMed records and that do not consequently return matrices of correspondence
could be explained by the fact that Wikidata is subject to include irrelevant biomedical relations
as it is collaboratively edited by human users without any restriction [20]. By contrast, it
is important to reveal that the proportion of the generation of the matrices for the MeSH
associations available in 100 publications or more is below the plateau with a rate of 73.3% (Red
dots in Fig. 8B). To identify the reason behind such an unexpected behavior, we compute the
quotient of the MeSH associations not generating matrices and available at least in 100 PubMed
papers out of the overall number of the MeSH associations not having qualifiers’ matrices for
every class of Wikidata relation types. We found out that this rate is significantly higher for
taxonomic (6,133 out of 13,411, 45.7%) and non-biomedical non-symmetric (1,712 out of 8,335,
20.5%) relations than for biomedical non-symmetric (1,137 out of 9,498, 12.0%), non-biomedical
symmetric (189 out of 2,647, 7.1%), and biomedical symmetric (7 out of 640, 1.1%). This proves
the ability of the MeSH qualifiers to better represent biomedical or symmetric relations than
generic and non-symmetric ones.

The obtained dataset of qualifiers’ matrices represented 46,469 relations covering the five
classes of semantic relation types (195 supported relation types, 54.2% of the matrices based
on 100 publications or more): 17,931 biomedical non-symmetric, 11,961 taxonomic, 9,423 non-
biomedical non-symmetric, 6,353 non-biomedical symmetric, and 801 biomedical symmetric
relations. Unsurprisingly, the most represented relation types in the dataset have been dominated
by taxonomic (e.g., subclass of [P279] and instance of [P31]) or biomedical non-symmetric relation
types (e.g., drug and therapy used for treatment [P2176]). This makes our dataset more inclusive
than other available corpora for biomedical relation classification only covering a few relation
types, particularly drug interactions, drug adverse effects, and drug-disease relations [6].

4. Biomedical relation classification using MeSH2Matrix

Machine learning-based approaches handle biomedical relation classification as a supervised
learning classification task, where labelled data is used to train models. In this paper, we provide
benchmark results on our dataset, using three machine learning models:

Figure 8: Variables in function of the number of PubMed publications about a given association: Number
of semantic relations (A, Log-Scale), Rate of semantic relations returning matrices (B)
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SVM: Support vector machines (SVMs) [23] are best suited for samples with many features
because of their ability to learn is independent of the features space [24]. They have been used
exensively in biomedical classification tasks [25, 26, 27, 28] due to their ability to generalize
well with data consisting of sparse high-dimensional features. For our baseline, we trained a
linear support vector machine. For this, we transformed each 89× 89 matrix into a single 7921
feature vector.

D-Model: Neural networks (NNs) have produced state-of-the-art results in the area of relation
classification [28, 29, 30, 31]. The major advantage of neural network based approaches lies
in thier ability to directly learn the latent feature representation from the labeled training
data without requiring experts to carefully craft them [6]. For our experiments with neural
networks, we designed D-Model, a simple multi-layer perceptron with an input layer of output
feature size of 3, 960, a hidden layer of 1, 980 and an output layer with an output feature size
corresponding to the number of classes [rationale for the choice of the size of neurons: 1). we
tested different sizes and this gave the best result, and 2). we followed [32, 33, 34] in keeping the
hidden layer size between input layer size and output layer size]. ReLU activation function [35]
was used between the input and hidden layers to introduce non-linearity. The output layer is
connected to a softmax activation function which converts the model’s output into a probability
over the classes. Although NNs have shown great promise for relation classification, they are
highly susceptible to overfitting [36] and require lots of hyperparameter tuning. Therefore, we
experimented with regularization techniques (early stopping and dropout) the hyperparameters
(learning rate, batch size, etc) in order to produce the best performing D-Model.

C-Net: Convolutional neural networks (CNNs) are a type of neural networks that can suc-
cessfully capture the spatial and temporal dependencies in an image through the application
of convolution operation and relevant filters. Their potential was first witnessed in computer
vision around 2012 [37], and since then have been used extensively even in biomedical relation
classification [38, 39, 30]. CNNs perform well on an image dataset better due to the reduction
in the number of parameters involved and reusability of their weights - they are therefore
best suited for image-type data. Furthermore, with CNNs we can work directly with the 2-
dimensional matrix (compared to transforming it for SVM and D-Model). To explore the impact
of CNNs on MeSH2Matrix, we decided to interprete our feature matrix as spatially correlated
features and designed C-Net, a simple CNN-based architecture made up of four convolution
layers (each layer consisting of a 2-dimensional convolution, batch normalization [40], a ReLU
activation function [35] and max-pooling) and two fully connected layers. After passing through
the fully connected layers, the final layer uses the softmax activation function which is used to
get probabilities of the input matrix being in a particular class. CNN-based models, while being
very promising, require practical knowledge to configure the model architecture with regard to
the performance [41], and to set the hyperparameters for the best optimization [42]. Similarly,
we conducted hyperparameter tuning and optimization in order to explore the reasonable ranges
for the sensitive hyperparameters of the classification model.
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4.1. Experiments

We performed two rounds of classification: one with all relation types (195), and another with 5
categories obtained after grouping the initial 195 relation types (see section 3.2 for more details
on grouping). We split our dataset into training (33, 457 samples), validation (13, 012 samples) -
for early stopping, regularization and hyperparameter tuning - and testing (9, 294 samples) - for
the final evaluation of the model. For SVM training, we merged the training and validation set,
making a total of 46, 469 samples for training. For the training of D-Model and C-Net, we used
the Adam optimizer [43]. The code for all our deep learning experiments was written using the
PyTorch deep learning framework [44], while for SVM we implemented the training using the
LinearSVC package.

4.2. Results

Table 2
Accuracy [and F1-Score] (in percentage) of the models used in our experiments. In both classes, D-Model
performs best, followed byC-Net and lastly SVM. Also, all models performed better on 5 classes compared
to 195 classes.

Models 195 classes 5 classes

SVM 66.43 [61.27] 78.74 [78.63]
D-Model 70.78 [66.90] 83.09 [82.94]
C-Net 70.49 [66.18] 82.78 [82.61]

Table 2 shows the results of the three benchmark models on the 195-classification and 5-
classification tasks. The metric being used are accuracy and multi-class F1-score (which is a
metric that combines the precision and recall of the model). It is clear that the three proposed
models achieved acceptable accuracy measures that go in line with the recent advances in
biomedical relation classification (F1-Score between 0.65 and 0.85) [6].

We see a notable improvement in the probabilistic methods (D-Model and C-Net) over SVM. D-
Model performs the best, although outperforming C-Net by a small margin. Another observation
is that for all the models, their performance on the 5-class takes was much better than the
195-class ones. This could be because the consideration of five generalized superclasses actually
reduces the complexity of the task, making it easier for the model to learn [45]. For example,
class generalization allowed us to be get rid of the closely related taxonomic relation types
(i.e., instance of [P31], subclass of [P279], and part of [P361]) and eliminate the effect of the
confusion between these three relation types on the accuracy of the models. Another possible
reason could be that grouping increased the distribution of some minority classes (classes with
a very few samples). On the one hand, due to the enrichment of Wikidata thanks to human
efforts, important Wikidata statements can be mistakenly defined for minor relation types
[12]. The effect of such deficient relations will become insignificant when the generalization
occurs. On the other hand, as of December 12, 2021, 4,522 (4.4%) out of the 99,208 Wikidata
relations between MeSH Terms are having the same subject and object as another supported
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semantic relations between MeSH Concepts9. Statements having the same subjects and objects
but different relation types are likely to be merged together due to the class generalization,
allowing to reduce the confusion between slightly overlapping relation types.

5. Conclusion

In this research paper, we proposed a novel approach for the classification of biomedical relations
based on the association between the qualifiers of two semantically related MeSH keywords
of PubMed scholarly publications. We generated MeSH2Matrix as a training dataset (covering
195 relation types involved in five superclasses) to enable the MeSH-based biomedical relation
classification and we trained three benchmarking machine-learning models (SVM, D-Model and
C-Net) to evaluate the efficiency of our approach to classify various types of biomedical relations.
We found an interesting efficiency of our approach in biomedical relation classification (F1-Score
> 0.66) proving the promising value of using Bibliometric-Enhanced Information Retrieval
towards the improvement of biomedical relation classification. For reproducibility purposes,
our source code and dataset are currently available at https://github.com/SisonkeBiotik-Africa/
MeSH2Matrix. As a future direction of this work, we propose to expand our approach into a
method for converting subsets of the MeSH taxonomy into biomedical ontologies. Furthermore,
we propose to further analyze the effect of the generalization of relation types to their respective
superclasses on the accuracy rates of our models to study the behavior of our approach.
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