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Abstract
Explanations for the predictions made by Machine Learning (ML) models are best framed in terms of
abstract, high-level concepts that are easily comprehensible to human beings. The use of such concepts
constitutes a subfield of interpretability methods known as concept-based explanations. This work uses
concept-based explanations to build an intrinsically interpretable document classifier using a combination
of Formal Concept Analysis (FCA) and approaches from applied graph theory. FCA is used to formalize
the vague notion of concepts in terms of the formal concepts found in the concept lattices of various
document classes. The graph of the lattice covering relation helps to utilize the topological information
present in the document-class concept lattices for classifying documents. Finally, the formal concepts
that made the strongest contributions to the predictions of the document classifier are revealed, along
with their intents; thereby making their contribution more comprehensible to human beings.
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1. Introduction

The extraordinary predictive performance of contemporary Deep Neural Networks (DNNs) for
a wide variety of tasks can be largely attributed to their ability to generalize the solving of a
task by utilizing a vast number of neuronal parameters. However, the ability to generalize a
task also leads to DNNs being more complex with respect to their design, as compared to other
ML models. This complexity causes DNNs to be perceived as opaque in terms of their predictive
process and consequently, leads to a lack of verifiability with regard to their predictions. Thus,
despite their extraordinary predictive performance, DNNs are not adopted for use in high-risk
environments such as finance, medicine and the judiciary system due to a lack of trust in their
predictions.

This work details the implementation and results obtained from building an intrinsically
interpretable document classifier, by utilizing the conceptual hierarchies found in the concept
lattices for each document class obtained via FCA. The work as such can then be categorized as
belonging to the field of Explainable Artificial Intelligence (XAI).
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With respect to the field of XAI, this work can be further categorized as belonging to the sub-
field of concept-based explanations. The fundamental principle of concept-based explanations
is that the explanations regarding the predictions of a DNN are best comprehended if they are
framed in terms of abstract, high-level concepts. This principle is akin to the process of human
reasoning, whereby concepts are informally related to groupings of examples according to the
similarity of their descriptions.

Earlier works concerning concept-based explanations can be categorized as post hoc inter-
pretability methods, meaning that they explain the predictions of a DNN after it has finished
training. However, more recent concept-based explanation methods belong to the category of
intrinsic interpretability methods, wherein a DNN is interpretable because of its design and not
due to any post training steps.

The main reason of preferring intrinsic interpretability methods to post hoc interpretability
methods is that interpretability is neither an inevitable result of the discriminative power of a
DNN, nor a prerequisite for it as demonstrated in [1]. Thus, it is required to ensure that the
DNN learns the concepts during its training phase, instead of verifying if they have been learned
post training. This is usually done by either inducing inductive biases during its training phase
or by constraining the latent space of the DNN during its training phase.

This work aims to prove that Formal Concept Analysis (FCA) can be an effective method to
discover the concepts that the intrinsically interpretable document classifier should learn so
as to be able to explain its predictions. This is achieved by mapping the ambiguous idea of a
concept to the mathematically defined notion of a formal concept, thereby allowing the creation
of a conceptual hierarchy that is expressed via a concept lattice.

The intrinsically interpretable document classifier cannot directly utilize the hierarchical
order information present in the concept lattices of document classes for its training, which
necessitates the mapping of the formal concepts in a concept lattice to a graph topological
space. The formal concepts of the concept lattices of each class of documents are treated as
vertices of a directed, acyclic graph whose components are the concept lattices themselves. The
vertices of the graph correspond to different formal concepts that belong to various classes,
with the edges between vertices denoting the subconcept/superconcept relation. A binary
classifier that is trained to detect the presence of edges among the formal concept vertices of
document-class concept lattices, can be used to classify a test document by predicting if/where
potential edges connect the test document vertex to the formal concept vertices found within
the document-class concept lattices.

Finally, the formal concepts that have contributed the most toward the classification of a test
document as belonging to a particular document class are determined by the number of edges
that are predicted to connect between them and the test documents. The intents of such formal
concepts reveal attributes that are more comprehensible to human beings.

The final aim of this work is to create a document classifier that is both highly interpretable
and possesses relatively high classification performance. Such a model seeks to overcome
the trade-off between model interpretability and performance, which asserts that predictive
performance of an ML model is usually sacrificed for interpretability and vice versa; as stated
in [2].



2. Related work

2.1. Concept-based explanations

The idea of concept-based explanations was first introduced in the seminal work of [3]. The work
formally defines the problem of finding concepts as a interpretation function 𝑔 : 𝐸𝑚 → 𝐸ℎ;
that maps from a vector space 𝐸𝑚 that defines the state of the DNN, to 𝐸ℎ a vector space in
which human beings operate. The work introduces Concept Activation Vectors (CAVs) as a
means of translation between 𝐸𝑚 and 𝐸ℎ. A CAV is used to formally represent the notion of a
concept in any layer of the DNN. A CAV is defined for a layer 𝑙 of the DNN as a vector that is
normal to the hyperplane separating the activations of a set of examples where the concept is
present from a set of random examples. CAVs were used as a component of a method named
Testing with CAVs (TCAV) which uses directional derivatives to measure the sensitivity of the
predictions made by the DNN toward a concept that was learned by a CAV.

The original work while revolutionary for introducing the notion of concept-based explana-
tions, still has some flaws. It could not inherently point toward important concepts, but could
only respond to queries from the user about the significance of concepts, that must be supplied
by the user themselves. The awareness and availability of well-defined concepts also affects the
performance of the TCAV method, as deficiencies in either area lead to the possibility of there
being a possibly infinite space of concepts from which to query. These flaws were addressed in
the work of [4].

Since it is difficult to exactly define a concept, the work of [4] states three desirable properties
that any concept-based explanation method must have to be comprehensible to human beings.
Additionally, the work also provides the Automated Concept-based Explanation (ACE) method
that can automatically identify concepts that are significant to the predictions made by a DNN.
The particular example demonstrated in the work used a combination of image segmentation
and image clustering to find concepts that are significant to the predictions made by a DNN
trained to classify images.

Both of the previously mentioned concept-based explanation methods can be classified as post
hoc interpretability methods. For reasons mentioned in Section 1, more recent concept-based
explanation methods tend to belong to the class of intrinsic interpretability methods. One
noteworthy example of such a concept-based explanation method is the work of [5]. This work
introduced the notion of concept bottleneck models, that train on data points (𝑥, 𝑐, 𝑦); where
an input 𝑥 is annotated with a human-specified concept 𝑐 and a target 𝑦. Given 𝑥, the concept
bottleneck model is trained to first predict the intermediate concept �̂�, which is then used to
predict the target 𝑦. A unique characteristic of concept bottleneck models is that they allow
intervention on �̂� by a domain expert, allowing them to edit �̂� and propagate the corresponding
changes to 𝑦.

The work of [6] is also a prominent example of a concept-based explanation method that
introduces a mechanism known as concept whitening. Concept whitening is implemented via
a module inserted into a given layer of a DNN in order to constrain its latent space so as to
represent target concepts, as well as extract them in a straightforward manner. Given a DNN
classifier 𝑓 : 𝒳 → 𝒴 which has a hidden layer 𝒵 , the classifier can be divided into the following
two parts: a feature extractor Φ : 𝒳 → 𝒵 with parameter 𝜃 and a classifier 𝑔 : 𝒵 → 𝒴



parameterized by 𝜔. The goal of concept whitening is to learn Φ and 𝑔 simultaneously such that

i the classifier 𝑔(Φ(.; 𝜃);𝜔) accurately predicts the class.

ii the 𝑗𝑡ℎ dimension 𝑧𝑗 of the latent representation z aligns with concept 𝑐𝑗

2.2. Interpretability via FCA

An example of using FCA for interpreting a DNN is the work of [7]. The main idea proposed
was the generation of the architecture of a DNN based on the covering relation (the graph of
the diagram) of a lattice obtained from either an antitone Galois connection (concept lattice) or
a monotone Galois connection (giving rise to another type of a lattice), where every neuron
can be interpreted as a concept. In the derived architecture of the DNN, the vertices of the
DNN correspond to sets of similar objects with the similarity given by the set of their common
attributes. The edges connecting the vertices also add to the interpretability of the DNN by
denoting either concept generality (bottom-up) or conditional probability (top-bottom). This
work utilizes ideas from the work of [7] in grouping similar objects as formal concept vertices
based their common attributes.

3. Basic definitions

FCA is a branch of applied lattice theory that deals with deriving a concept hierarchy from a
collection of objects and their attributes. The scope of the applicability of FCA to the coinciding
attributes of the complete concepts extracted from ML models trained on tabular, text or
sequential data can be best understood by first formally defining what a formal context, formal
concept and a concept lattice are.

Definition 3.1: A formal context K := (𝐺,𝑀, 𝐼) consists of two sets 𝐺 and 𝑀 and a
relation 𝐼 between 𝐺 and 𝑀 . The elements of 𝐺 are called the objects and the elements of 𝑀
are called the attributes of the context. An object 𝑔 that is in a relation 𝐼 with an attribute 𝑚
is written as 𝑔𝐼𝑚.

Definition 3.2: For a set 𝐴 ⊆ 𝐺 of objects, the derivation operator is defined as

𝐴
′
:= {𝑚 ∈ 𝑀 | 𝑔𝐼𝑚 for all 𝑔 ∈ 𝐴}

(the set of attributes common to the objects in 𝐴). Correspondingly, for a set 𝐵 of attributes,
the derivation operator is defined as

𝐵
′
:= {𝑔 ∈ 𝐺 | 𝑔𝐼𝑚 for all 𝑚 ∈ 𝐵}

Definition 3.3: A formal concept of the context (𝐺,𝑀, 𝐼) is a pair (𝐴,𝐵) with 𝐴 ⊆
𝐺,𝐵 ⊆ 𝑀,𝐴

′
= 𝐵 and 𝐵

′
= 𝐴. 𝐴 is called the extent and 𝐵 is called the intent of the

concept (𝐴,𝐵). B(𝐺,𝑀, 𝐼) denotes the set of all concepts of the context (𝐺,𝑀, 𝐼).
Definition 3.4: If (𝐴1, 𝐵1) and (𝐴2, 𝐵2) are concepts of a context, (𝐴1, 𝐵1) is called a

subconcept of (𝐴2, 𝐵2), provided that 𝐴1 ⊆ 𝐴2 (which is equivalent to 𝐵2 ⊆ 𝐵1). In this case
(𝐴2, 𝐵2) is the superconcept of (𝐴1, 𝐵1) and it is possible to state that (𝐴1, 𝐵1) ≤ (𝐴2, 𝐵2).



The relation ≤ is called the hierarchial order ( or simply order) of the concepts. The set of all
concepts of (𝐺,𝑀, 𝐼) ordered in this way is denoted by B(𝐺,𝑀, 𝐼) and is called the concept
lattice of the context (𝐺,𝑀, 𝐼).

4. Methodology

The methodology of this work consists of the following parts:

• Extracting the keywords from the training documents, to be used as attributes for building
the training formal contexts for each document class.

• Building the concept lattice for each document class to be used for training the intrinsically
interpretable document classifier.

• Validating the concept lattice built for each document class using a lazy FCA document
classifier, which is similar to the one in [8] in order to classify documents via the concept
lattice built for each document class.

• Mapping the training formal concepts of the document-class concept lattices to a graph
topological space.

• Training a binary classifier to predict the potential edges between a test document vertex
and the training formal concepts vertices in the document-class concept lattices, then an
aggregate scoring function classifies the test document vertex according to the number of
potential edges it has and to which training formal concept vertices the edges connect to.

• Revealing the training formal concepts along with their respective intents that contributed
the most toward the test document vertex being predicted as belonging to a particular
document class.

The relevant components of the methodology are illustrated via the toy example in Fig. 1.

4.1. Formal context creation

The classification performance of the intrinsically interpretable document classifier can only be
reasonable if the formal contexts that are obtained for each class of the training data used to create
the document-class concept lattices can adequately capture the underlying dependencies of the
data, with minimum information loss. This can be validated by first testing the performance
of a lazy FCA document classifier that uses the same document-class concept lattices that the
intrinsically interpretable document classifier will use for training.

Each individual document is considered to be an object and a combined list of keywords
extracted from all of the classes separately are considered to be its attributes. The keywords are
extracted using the YAKE! algorithm [9], which was chosen because of its superior performance
when compared to its contemporaries; as well as other conceptual scaling methods for text data.
At test time, a test document is transformed into a formal context object with its attributes
being the combined list of keywords extracted from all of the classes separately for all of the
training documents.



Figure 1: First, documents of various classes (depicted in red, yellow and blue) are grouped together to
create their respective concept lattices for training. The concept lattices are treated as components of a
single, acyclic, directed, training graph whose vertices represent formal concepts. A binary classifier is
first trained to predict the presence of edges (depicted in black) among the formal concept vertices of the
training graph and then is used to predict if/where any potential edges (depicted in green) connect a test
document vertex (depicted in grey) to the formal concept vertices of the training graph. An aggregate
scoring function assigns the test document vertex to a class according to the formal concepts and the
frequency of the potential edges between the test document vertex and the formal concept vertices of
that particular document-class concept lattice.

4.2. Lazy FCA document classifier

The aim of the lazy FCA document classifier is to classify test documents by calculating a set
of classification scores {𝑆𝐿𝑖} for each test document. Each document-class concept lattice 𝐿𝑖

is built using the formal context obtained from the training documents of the 𝑖𝑡ℎ document
class. A test document is classified as belonging to the class that has the highest classification
score 𝑆𝐿𝑖 . The classification scores of a lazy FCA document classifier can be defined in many
different ways, this particular work uses the following classification score:

𝑆𝐿𝑖 =
1

|𝑡(𝐿𝑖)|
∑︁

𝑗∈𝑡(𝐿𝑖)

|𝑖𝑛𝑡𝑗 ⊓ 𝑖𝑛𝑡𝑡𝑒𝑠𝑡| × |ext(𝑗)|
[︁
|𝑖𝑛𝑡𝑗 ⊓ 𝑖𝑛𝑡𝑡𝑒𝑠𝑡| ≥ 0.5× |𝑖𝑛𝑡𝑡𝑒𝑠𝑡|

]︁
(1)

where 𝑖𝑛𝑡 and 𝑒𝑥𝑡 stand for intent and extent, respectively. The 𝑆𝐿𝑖 score first checks if
the number of attributes present in the intersection of the attributes for an intent of a formal
concept 𝑗 and the attributes for an intent of the test document formal context object exceed a



threshold that is greater than or equal to half of the total number of attributes present in the
intent of 𝑗. If the aforementioned condition (written in the Iverson bracket of equation (1)) is
satisfied, the number of attributes in the intersection that satisfy the condition is weighted by
the extent of the formal concept 𝑗, which is used here as its interestingness measure [10].

This operation is done and the sum incremented for every formal concept 𝑗 that belongs
to the set 𝑡(𝐿𝑖). The threshold function 𝑡 that is applied to a document-class concept lattice
𝐿𝑖 is defined as 𝑡(𝐿𝑖) = {𝑗 ∈ 𝐿𝑖 | 𝑓(𝑗) ≤ 𝜏} (𝜏 being a hyperparameter). The function 𝑓
is defined for a formal concept 𝑗 as 𝑓(𝑗) = |{𝑒𝑥𝑡𝑘 | 𝑖𝑛𝑡𝑗 ∈ 𝑖𝑛𝑡𝑘}|; with training documents
({𝑒𝑥𝑡𝑘}, {𝑖𝑛𝑡𝑘}), called “counterexamples”, belonging to any class other than the one that the
formal concept 𝑗 belongs to. The function 𝑓 therefore, finds the number of counterexamples
that a formal concept 𝑗 has.

4.3. Intrinsically interpretable document classifier

The functioning of the intrinsically interpretable document classifier is explained with reference
to the toy example illustrated in Fig. 1. Each of the documents belong to a class 𝑖, where 𝑖 ∈
{red, yellow, blue}. For the purpose of training the intrinsically interpretable document classifier,
similar to the process in Section 4.2; three document-class concept lattices 𝐿𝑖 are built for each
class 𝑖 using their respective training documents.

Referring to Fig. 1, there are three document-class concept lattices: 𝐿𝑟𝑒𝑑, 𝐿𝑏𝑙𝑢𝑒 and 𝐿𝑦𝑒𝑙𝑙𝑜𝑤.
Each formal concept 𝑐𝑖𝑗 that belongs to the 𝑖𝑡ℎ document-class concept lattice 𝐿𝑖, has its own
extent and intent pair ({𝑒𝑥𝑡𝑖𝑗 }, {𝑖𝑛𝑡𝑖𝑗 }), where 𝑒𝑥𝑡𝑖𝑗 is a set of documents and 𝑖𝑛𝑡𝑖𝑗 is a set of
keywords that are present in all of the documents that constitute its respective extent 𝑒𝑥𝑡𝑖𝑗 ,
e.g., ({train_doc_1, train_doc_2, train_doc_3}, {keyword_1, keyword_2}).

With reference to Fig. 1, the three document-class concept lattices corresponding to the three
classes can be considered as three components of a single, acyclic, directed, training graph
𝐺𝑡𝑟𝑎𝑖𝑛 = (𝑉𝑡𝑟𝑎𝑖𝑛, 𝐸𝑡𝑟𝑎𝑖𝑛). Each training vertex 𝑣𝑖𝑗 of 𝐺𝑡𝑟𝑎𝑖𝑛 is a formal concept 𝑐𝑖𝑗 = ({𝑒𝑥𝑡𝑖𝑗 },
{𝑖𝑛𝑡𝑖𝑗 }) that belongs to class 𝑖. A training edge 𝑒 ∈ 𝐸𝑡𝑟𝑎𝑖𝑛 (depicted in black) that connects
the vertices 𝑣𝑖𝑗 to each other is considered equivalent to an (implied) arc that connects two
elements in a lattice diagram. Thus, the training graph 𝐺𝑡𝑟𝑎𝑖𝑛 maintains the order relation,
i.e., the superconcept/subconcept relation, among its training vertices 𝑣𝑖𝑗 (which represent the
formal concepts 𝑐𝑖𝑗).

A test document (depicted in grey) belonging to an unknown class 𝑖𝑡𝑒𝑠𝑡, is first converted
to a test vertex 𝑣𝑡𝑒𝑠𝑡 with its own extent and intent pair ({𝑒𝑥𝑡𝑡𝑒𝑠𝑡}, {𝑖𝑛𝑡𝑡𝑒𝑠𝑡}) by means of the
same formal context creation process described in Section 4.1. It is important to note that
new keywords are not generated from the test documents so as to be used as the attributes of
𝑖𝑛𝑡𝑡𝑒𝑠𝑡, rather the keywords obtained from the training documents during the training phase
are used as the attributes of 𝑖𝑛𝑡𝑡𝑒𝑠𝑡. Consequently, 𝑒𝑥𝑡𝑡𝑒𝑠𝑡 of a singular test document 𝑣𝑡𝑒𝑠𝑡 is
just a singleton, consisting of its own object id (file name). Thus, the extent and intent pair
of a test document 𝑣𝑡𝑒𝑠𝑡 is of the form ({test_doc_id}, {keyword_1, keyword_2, keyword_3,
keyword_4,...}).

Using the topology of the training graph 𝐺𝑡𝑟𝑎𝑖𝑛; as well as the concepts related to its vertices
𝑣𝑖𝑗 , it is possible to predict all of the potential edges 𝑒𝑡𝑒𝑠𝑡 (depicted in green) between the test
vertex 𝑣𝑡𝑒𝑠𝑡 and the training vertices 𝑣𝑖𝑗 . This is done in order to infer the class 𝑖𝑡𝑒𝑠𝑡 of the test



vertex 𝑣𝑡𝑒𝑠𝑡, based on the particular formal concepts 𝑐𝑖𝑗 (represented by the training vertices
𝑣𝑖𝑗) that the potential edges 𝑒𝑡𝑒𝑠𝑡 of 𝑣𝑡𝑒𝑠𝑡 may connect to.

A DNN is trained as a binary classifier on the concatenated intents of pairs of training vertices
𝑣𝑖𝑗 in order to predict whether an edge 𝑒 either exists between them or not. Then for predicting
if/where the possible edges 𝑒𝑡𝑒𝑠𝑡 of a test vertex 𝑣𝑡𝑒𝑠𝑡 may connect to, the DNN takes as input
concatenated intents of all pairs of training vertices 𝑣𝑖𝑗 and the test vertex 𝑣𝑡𝑒𝑠𝑡.

The specific architecture of the DNN used in this work is comprised of 6 fully connected
layers with 192, 128, 64, 32, 16 and 1 neuron(s). Batch normalization is used after the second and
fourth layers during the training phase. Dropout is used after the third and fifth layers during
the training phase with respective probabilities of 0.3 and 0.2. The ReLU activation function is
used after every layer. The DNN has a weight decay of 5e-4, uses a binary cross-entropy loss
function and is optimized via the Adam optimization algorithm [11]; having a learning rate of
0.001 and a learning rate decay multiplicative factor of 0.1.

The aggregation function computes a score 𝐴𝐿𝑖 for every document-class concept lattice
𝐿𝑖 and infers the class 𝑖𝑡𝑒𝑠𝑡 of the test vertex 𝑣𝑡𝑒𝑠𝑡 as belonging to the document class whose
concept lattice has the highest aggregate score 𝐴𝐿𝑖 .

𝐴𝐿𝑖 =
1

|𝐿𝑖|
∑︁
𝑗∈𝐿𝑖

𝐸(𝑣𝑡𝑒𝑠𝑡, 𝑣𝑖𝑗)× 𝑝(𝑣𝑖𝑗) (2)

where 𝐸(𝑣𝑡, 𝑣𝑖𝑗) =

{︃
0, if no edge exists between 𝑣𝑡𝑒𝑠𝑡 and 𝑣𝑖𝑗

1, if an edge exists between 𝑣𝑡𝑒𝑠𝑡 and 𝑣𝑖𝑗

and 𝑝(𝑣𝑖𝑗) =
1

𝑓(𝑣𝑖𝑗)+1

The function 𝑓(𝑣𝑖𝑗) counts the number of counterexamples of the formal concept 𝑣𝑖𝑗 , was
previously defined in Section 4.2 and is a part of the penalty function 𝑝.

The rationale for creating such an aggregate score 𝐴𝐿𝑖 for each document-class concept
lattice, in which the function 𝐸(𝑣𝑡𝑒𝑠𝑡, 𝑣𝑖𝑗) is an essential component can be stated as follows:

1. It is not possible to accurately predict the exact training vertex 𝑣𝑖𝑗 that the predicted
edge should connect to, in order to maintain the hierarchical order of formal concepts
within the corresponding document-class concept lattice. This is particularly important
for reasons of generating explanations as further elaborated in point 3.

2. Since a relatively simple method of representing attributes of the intents is used in this
work, i.e., presence or absence of keywords, many pairs of the training vertices 𝑣𝑖𝑗 and the
test vertex 𝑣𝑡𝑒𝑠𝑡 can have the exact same set of intents. Thus, it is beneficial to maximize
the number of edge prediction tasks for both the training (as a form of auxiliary training
data) and the testing of the intrinsically interpretable document classifier (in order to
bolster the aggregate scoring function 𝐴𝐿𝑖 ).

3. It is necessary to find those training vertices 𝑣𝑖𝑗 that may connect to that text vertex 𝑣𝑡𝑒𝑠𝑡
in order to quantify the contribution of a formal concept 𝑣𝑖𝑗 toward classifying 𝑣𝑡𝑒𝑠𝑡 as
belonging to a particular class. This is illustrated by the use of the function 𝐸(𝑣𝑡𝑒𝑠𝑡, 𝑣𝑗)
in computing the metric 𝑄𝑖(𝑣𝑗).



4.4. Quantifying the contribution of a formal concept

The contribution of a formal concept 𝑣𝑗 toward classifying test documents 𝑣𝑡 as belonging to a
particular document class 𝑖 can quantified by measuring the contribution of any predicted edges
between them toward the aggregate score 𝐴𝐿𝑖 and is defined as 𝑄𝑖(𝑣𝑗) =

∑︀
𝑡∈test𝑖 𝐸(𝑣𝑡, 𝑣𝑗)×

𝑝(𝑣𝑗).

4.5. Dataset

The chosen dataset [12] for use in this work is a subset of a larger dataset consisting of newsgroup
documents [13]. There are a total of 1000 documents, which are divided into 10 classes; with
each class having 100 documents. The classes are disjoint, which means that they are no
documents that belong to more than one class. After the formal context creation step specified
in Section 4.1, each document has a set of attributes that denote the presence or absence of 96
unique keywords.

5. Experiment and results

The relatively small size of the dataset having only 1000 documents necessitates the need of
using more data for training as compared to testing. Thus all experiments will be conducted
with a 90:10 training to test split ratio. There will be 90 training documents for each class and
10 test documents for each class. The table below describes some characteristics of the training
set after creating the document-class concept lattices.

Table 1
Table describing some characteristics of the document-class concept lattices obtained from the training
documents of each class.

Class No. of concepts No. of attr. Avg. no. of attr. per concept
Business 551 96 3.851

Entertainment 337 96 3.689
Food 185 96 3.537

Graphics 206 96 3.893
Historical 984 96 4.996
Medical 211 96 5.806
Politics 607 96 3.955
Space 552 96 4.842
Sport 297 96 4.513

Technology 986 96 4.062

5.1. Lazy FCA document classifier performance

As demonstrated by the table below, the lazy FCA document classifier demonstrates reasonable
classification performance, across nearly all classes; with only certain classes showing poor
performance. This means that the document-class concepts lattices were able to reasonably
capture the underlying data dependencies in each class and map it to the conceptual hierarchy



Table 2
Table describing the classification performance of the lazy FCA document classifier described in Sec-
tion 4.2

.

Class Precision Recall F1-Score Support
Business 1.00 0.30 0.46 10

Entertainment 1.00 0.50 0.67 10
Food 0.91 1.00 0.95 10

Graphics 0.86 0.60 0.71 10
Historical 0.35 0.60 0.44 10
Medical 0.26 0.50 0.34 10
Politics 0.89 0.80 0.84 10
Space 0.86 0.60 0.71 10
Sport 0.64 0.90 0.75 10

Technology 0.75 0.60 0.67 10

Accuracy 0.64 100
Macro avg 0.75 0.64 0.65 100

Weighted avg 0.75 0.64 0.65 100

found in the concept lattices of each class. It is important to note that without this happening,
there would be no reason to believe that the intrinsically interpretable document classifier
would have good classification performance. The lazy FCA document classifier was run using
hyperparameter value 𝜏 = 20.

5.2. Intrinsically interpretable document classifier performance

Table 3
Table describing the classification performance of the intrinsically interpretable document classifier
described in Section 4.3.

Class Precision Recall F1-Score Support
Business 0.86 0.60 0.71 10

Entertainment 0.78 0.70 0.74 10
Food 0.64 0.90 0.75 10

Graphics 1.00 0.60 0.75 10
Historical 0.71 0.50 0.59 10
Medical 0.67 0.60 0.63 10
Politics 0.83 1.00 0.91 10
Space 0.60 0.90 0.72 10
Sport 0.88 0.70 0.78 10

Technology 0.69 0.90 0.78 10

Accuracy 0.74 100
Macro avg 0.77 0.74 0.74 100

Weighted avg 0.77 0.74 0.74 100



As demonstrated by the table above, the intrinsically interpretable document classifier demon-
strates a marked improvement in classification performance, across all classes; as compared to
the lazy FCA document classifier.

5.3. Maximally contributing formal concepts

Table 4
Table describing the formal concepts that contributed the most toward classifying test documents as
belonging to a particular class as described in Section 4.4

.

Class Intent 𝑄𝑖(𝑣𝑗)
Business (’asia’, ’firm’, ’sale’) 3

Entertainment (’film’, ’fly’) 5
Food (’cup’, ’inch’, ’vegetable’) 9

Graphics (’psp’,) 5
Historical (’citizenship’, ’french’, ’war’, ’world’) 6
Medical (’medical’, ’wvnvms’) 5
Politics (’bbc’, ’government’, ’local’) 8
Space (’earth’, ’put’, ’space’) 6
Sport (’big’, ’london’, ’race’, ’thing’, ’world’, ’year’, ’york’) 5

Technology (’firm’, ’junk’, ’virus’) 5

The table above lists the formal concepts 𝑣𝑗 that have the maximum value for 𝑄𝑖(𝑣𝑗) for a
document class 𝑖. The attributes of the intents of such formal concepts are intuitively logical
and appear in at least half of all but one of the test documents of each class.

6. Conclusion and future work

An intrinsically interpretable document classifier with moderately high classification perfor-
mance that uses properties of the graph of the covering relation of a concept lattice (lattice
diagram) was proposed. The intrinsically interpretable document classifier is able to quantify
which formal concepts contributed the most toward the classification of a test document. Fu-
ture work can focus on using more advanced methods for representing complex data such as
pattern structures [14, 15] as well as using more sophisticated methods to take into account the
assortativity of the graph vertices.

Acknowledgments

The work of Sergei O. Kuznetsov was supported by the Russian Science Foundation under grant
22-11-00323 and performed at HSE University, Moscow, Russia.



References

[1] D. Bau, B. Zhou, A. Khosla, A. Oliva, A. Torralba, Network dissection: Quantifying
interpretability of deep visual representations, in: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
IEEE Computer Society, 2017, pp. 3319–3327. URL: https://doi.org/10.1109/CVPR.2017.354.
doi:10.1109/CVPR.2017.354.

[2] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable artificial
intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai, Information Fusion 58 (2020) 82–115. URL: https://www.sciencedirect.com/science/
article/pii/S1566253519308103. doi:https://doi.org/10.1016/j.inffus.2019.12.
012.

[3] B. Kim, M. Wattenberg, J. Gilmer, C. J. Cai, J. Wexler, F. B. Viégas, R. Sayres, Interpretability
beyond feature attribution: Quantitative testing with concept activation vectors (TCAV),
in: J. G. Dy, A. Krause (Eds.), Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, PMLR, 2018, pp. 2673–2682. URL: http://
proceedings.mlr.press/v80/kim18d.html.

[4] A. Ghorbani, J. Wexler, J. Y. Zou, B. Kim, Towards automatic concept-based explanations,
in: H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, R. Garnett (Eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, 2019, pp. 9273–9282. URL: https://proceedings.neurips.cc/paper/2019/hash/
77d2afcb31f6493e350fca61764efb9a-Abstract.html.

[5] P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, P. Liang, Concept
bottleneck models, in: Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, PMLR, 2020, pp. 5338–5348. URL: http://proceedings.mlr.press/v119/
koh20a.html.

[6] Z. Chen, Y. Bei, C. Rudin, Concept whitening for interpretable image recognition, Nat.
Mach. Intell. 2 (2020) 772–782. URL: https://doi.org/10.1038/s42256-020-00265-z. doi:10.
1038/s42256-020-00265-z.

[7] S. O. Kuznetsov, N. Makhazhanov, M. Ushakov, On neural network architecture based on
concept lattices, in: M. Kryszkiewicz, A. Appice, D. Slezak, H. Rybinski, A. Skowron, Z. W.
Ras (Eds.), Foundations of Intelligent Systems - 23rd International Symposium, ISMIS 2017,
Warsaw, Poland, June 26-29, 2017, Proceedings, volume 10352 of Lecture Notes in Computer
Science, Springer, 2017, pp. 653–663. URL: https://doi.org/10.1007/978-3-319-60438-1_64.
doi:10.1007/978-3-319-60438-1\_64.

[8] S. O. Kuznetsov, Fitting pattern structures to knowledge discovery in big data, in: P. Cel-
lier, F. Distel, B. Ganter (Eds.), Formal Concept Analysis, 11th International Conference,
ICFCA 2013, Dresden, Germany, May 21-24, 2013. Proceedings, volume 7880 of Lec-
ture Notes in Computer Science, Springer, 2013, pp. 254–266. URL: https://doi.org/10.1007/
978-3-642-38317-5_17. doi:10.1007/978-3-642-38317-5\_17.

https://doi.org/10.1109/CVPR.2017.354
http://dx.doi.org/10.1109/CVPR.2017.354
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/https://doi.org/10.1016/j.inffus.2019.12.012
http://proceedings.mlr.press/v80/kim18d.html
http://proceedings.mlr.press/v80/kim18d.html
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/77d2afcb31f6493e350fca61764efb9a-Abstract.html
http://proceedings.mlr.press/v119/koh20a.html
http://proceedings.mlr.press/v119/koh20a.html
https://doi.org/10.1038/s42256-020-00265-z
http://dx.doi.org/10.1038/s42256-020-00265-z
http://dx.doi.org/10.1038/s42256-020-00265-z
https://doi.org/10.1007/978-3-319-60438-1_64
http://dx.doi.org/10.1007/978-3-319-60438-1_64
https://doi.org/10.1007/978-3-642-38317-5_17
https://doi.org/10.1007/978-3-642-38317-5_17
http://dx.doi.org/10.1007/978-3-642-38317-5_17


[9] R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, A. Jatowt, Yake! keyword
extraction from single documents using multiple local features, Inf. Sci. 509 (2020) 257–289.
URL: https://doi.org/10.1016/j.ins.2019.09.013. doi:10.1016/j.ins.2019.09.013.

[10] S. O. Kuznetsov, T. P. Makhalova, Concept interestingness measures: a comparative study,
in: S. B. Yahia, J. Konecny (Eds.), Proceedings of the Twelfth International Conference
on Concept Lattices and Their Applications, Clermont-Ferrand, France, October 13-16,
2015, volume 1466 of CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 59–72. URL:
http://ceur-ws.org/Vol-1466/paper05.pdf.

[11] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: Y. Bengio, Y. LeCun
(Eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL: http://arxiv.org/abs/
1412.6980.

[12] J. Baxter, (10)dataset text document classification, 2020. URL: https://www.kaggle.com/
datasets/jensenbaxter/10dataset-text-document-classification.

[13] T. Mitchell, 20 newsgroups, 1999. URL: http://kdd.ics.uci.edu/databases/20newsgroups/
20newsgroups.html.

[14] B. Ganter, S. O. Kuznetsov, Pattern structures and their projections, in: H. S. Delugach,
G. Stumme (Eds.), Conceptual Structures: Broadening the Base, 9th International Con-
ference on Conceptual Structures, ICCS 2001, Stanford, CA, USA, July 30-August 3, 2001,
Proceedings, volume 2120 of Lecture Notes in Computer Science, Springer, 2001, pp. 129–142.
URL: https://doi.org/10.1007/3-540-44583-8_10. doi:10.1007/3-540-44583-8\_10.

[15] S. O. Kuznetsov, Scalable knowledge discovery in complex data with pattern struc-
tures, in: P. Maji, A. Ghosh, M. N. Murty, K. Ghosh, S. K. Pal (Eds.), Pattern Recog-
nition and Machine Intelligence - 5th International Conference, PReMI 2013, Kolkata,
India, December 10-14, 2013. Proceedings, volume 8251 of Lecture Notes in Computer
Science, Springer, 2013, pp. 30–39. URL: https://doi.org/10.1007/978-3-642-45062-4_3.
doi:10.1007/978-3-642-45062-4\_3.

https://doi.org/10.1016/j.ins.2019.09.013
http://dx.doi.org/10.1016/j.ins.2019.09.013
http://ceur-ws.org/Vol-1466/paper05.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.kaggle.com/datasets/jensenbaxter/10dataset-text-document-classification
https://www.kaggle.com/datasets/jensenbaxter/10dataset-text-document-classification
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
https://doi.org/10.1007/3-540-44583-8_10
http://dx.doi.org/10.1007/3-540-44583-8_10
https://doi.org/10.1007/978-3-642-45062-4_3
http://dx.doi.org/10.1007/978-3-642-45062-4_3

	1 Introduction
	2 Related work
	2.1 Concept-based explanations
	2.2 Interpretability via FCA

	3 Basic definitions
	4 Methodology
	4.1 Formal context creation
	4.2 Lazy FCA document classifier
	4.3 Intrinsically interpretable document classifier
	4.4 Quantifying the contribution of a formal concept
	4.5 Dataset

	5 Experiment and results
	5.1 Lazy FCA document classifier performance
	5.2 Intrinsically interpretable document classifier performance
	5.3 Maximally contributing formal concepts

	6 Conclusion and future work

