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Abstract
Main result of the paper provides a small upper bound on a probability of overfitting in FCA-based
Machine Learning in the simplest case of Boolean algebra without counter-examples. This Machine
Learning approach uses a set of randomly generated formal concepts to predict test examples. The
well-known Vapnik–Chervonenkis’ technique of empirical risk minimization determines a number of
generated concepts. Estimations of Mixture and Stopping times of several probabilistic algorithms based
on Markov chains leads to a plausible assumption on the uniform independent distribution of elements of
Boolean algebra. In this case the main theorem proves that the probability of overfitting in fixed fraction
of test examples tends to zero faster than exponent when the number of attributes goes to infinity.
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1. Introduction

Formal Concept Analysis (FCA) [1] is a popular means of data analysis in case of small samples.
However an applicability of FCA to Big Data has several obstacles:

• There will be an exponentially large number of hypotheses with respect to a size of
an formal context in the worst case (for instance, the case of Boolean algebra, see next
section).

• Many problems of FCA [4] belong to famous classes of 𝑁𝑃 - and #𝑃 -complete problems
of computational complexity.

• There is a positive probability of “accidental" concepts appearance that corresponds to
the overfitting phenomenon [9].

The paper [8] introduces Markov chain approach to probabilistic generation of formal con-
cepts to construct a Machine Learning system based on FCA (FCAML). Recently FCAML-system
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applies the coupling Markov chain to generate a random sample of concepts. Each run of this
chain terminates with probability 1. Early the system uses a monotonic Markov chain that
corresponds to the famous Lazy Random Walk in the case of Boolean algebra. The paper [10]
discuses Induction procedure for generalization of training examples into hypotheses about
causes of the property under research with counter-examples forbidding. Finally the system
predicts a target class of each test example by Analogy reasoning.

The main result of paper [10] gives a sufficient number of hypotheses to predict a target class
with given level of confidence. The framework is dual to the famous one of V.N. Vapnik and
A.Ya. Chervonenkis with respect to their dimension of a classifiers class.

However V.N. Vapnik and A.Ya. Chervonenkis also developed another approach to choose a
good hypothesis. Best one must minimize an empirical risk (a fraction of wrongly predicted
training examples). The main problem in this approach is to estimate a fraction of test examples
with prediction error. We provide a partial answer on this task in the simplest case of Boolean
algebra without counter-examples.

2. Background

2.1. Basic definitions and facts

Here we recall some basic definitions and facts of Machine Learning based on Formal Concept
Analysis (FCAML) in the particular case of Boolean algebra. Most general situation is considered
in [10]. Book [1] is the best source of information about Formal Concept Analysis itself.

The smallest (formal) context for 𝑛-dimensional Boolean algebra is a triple (𝐺,𝑀, ̸=),
where 𝐺 = {𝑔1, . . . , 𝑔𝑛} is a set of coatoms (objects), 𝑀 = {𝑚1, . . . ,𝑚𝑛} is a set of binary
attributes, and ̸=⊆ 𝐺×𝑀 is relation defined as 𝑔𝑖 ̸= 𝑚𝑗 ⇔ 𝑖 ̸= 𝑗.

A concept of the Boolean algebra context (𝐺,𝑀, ̸=) is defined to be a pair (𝐴,𝐵), where
𝐴 ⊆ 𝐺, 𝐵 ⊆ 𝑀 , 𝐴 = {𝑔𝑖 ∈ 𝐺 : ∀𝑚𝑗 ∈ 𝐵 [𝑖 ̸= 𝑗]}. The first component 𝐴 of the concept
(𝐴,𝐵) is called the extent of the concept, and the second component 𝐵 is called its intent. It
clear that the lattice of concepts coincides with Boolean algebra of all the subsets 𝐵 ⊆ 𝑀 . We
consider the partial order on it dual to set inclusions.

This observation proves truth of the first obstacle of applicability of FCA to Big Data from
Introduction. When formal context occupies 𝑛2 bites only, the full description of 𝑛-dimensional
Boolean algebra requires 𝑛 · 2𝑛 bites of memory.

Proposition 1. For context (𝐺,𝑀, ̸=) corresponding Boolean algebra of concepts has (∅,𝑀) as
the bottom element and (𝐺, ∅) as the top element. In other words, for every the concept (𝐴,𝐵) the
following inequalities hold:

(∅,𝑀) ≤ (𝐴,𝐵) ≤ (𝐺, ∅). (1)

Definition 1. For a concept (𝐴,𝐵), 𝑔𝑖 ∈ 𝐺, and 𝑚𝑗 ∈ 𝑀 define

𝐶𝑏𝑂((𝐴,𝐵), 𝑔𝑖) =

{︃
(𝐴,𝐵) 𝑔𝑖 ∈ 𝐴

(𝐴 ∪ {𝑔𝑖}, 𝐵 ∖ {𝑚𝑖}) 𝑔𝑖 /∈ 𝐴
, (2)

𝐶𝑏𝑂((𝐴,𝐵),𝑚𝑗) =

{︃
(𝐴,𝐵) 𝑚𝑗 ∈ 𝐵

(𝐴 ∖ {𝑔𝑗}, 𝐵 ∪ {𝑚𝑗}) 𝑚𝑗 /∈ 𝐵
. (3)



We call these operations CbO because the first one is used in Close-by-One (CbO) Algorithm
to generate all the formal concepts of an arbitrary context, see [3] for details.

Monotonicity property of introduced operations are summarized in the following Lemma.

Lemma 1. Let (𝐺,𝑀, ̸=) be a context, (𝐴,𝐵) and (𝐶,𝐷) be concepts for it, 𝑔 ∈ 𝐺, and 𝑚 ∈ 𝑀 .
Then

(𝐴,𝐵) ≤ (𝐶,𝐷) ⇒ 𝐶𝑏𝑂((𝐴,𝐵), 𝑔) ≤ 𝐶𝑏𝑂((𝐶,𝐷), 𝑔), (4)

(𝐴,𝐵) ≤ (𝐶,𝐷) ⇒ 𝐶𝑏𝑂((𝐴,𝐵),𝑚) ≤ 𝐶𝑏𝑂((𝐶,𝐷),𝑚). (5)

Initially the system used the monotonic Markov chain algorithm as a core of probabilistic
approach to Machine Learning based on FCA.

Data: context (𝐺,𝑀, ̸=)
Result: random concept (𝐴,𝐵)
𝑉 := 𝐺 ⊔𝑀 ; (𝐴,𝐵) := (∅,𝑀);
for (𝑖 := 0; 𝑖 < 𝑇 ; 𝑖++) do

select random element 𝑣 ∈ 𝑉 ;
(𝐴,𝐵) := 𝐶𝑏𝑂((𝐴,𝐵), 𝑣);

end
Algorithm 1: Monotonic Markov chain

The main difficulty with the monotonic Markov chain in general case is an absence of a good
estimation on length 𝑇 of its trajectory to achieve approximately stationary distribution. How-
ever the case of Boolean algebra was investigated successfully by the author. Next subsection
contains the key results about it.

Then the coupling Markov chain algorithm described below appears, where there exists the
natural stopping moment. Now it is a working horse for our approach.

Data: context (𝐺,𝑀, ̸=)
Result: random concept (𝐴,𝐵)
𝑉 := 𝐺 ⊔𝑀 ; (𝐴,𝐵) := (∅,𝑀); (𝐶,𝐷) = (𝐺, ∅);
while (𝐴 ̸= 𝐶) do

select random element 𝑣 ∈ 𝑉 ;
(𝐴,𝐵) := 𝐶𝑏𝑂((𝐴,𝐵), 𝑣);
(𝐶,𝐷) := 𝐶𝑏𝑂((𝐶,𝐷), 𝑣);

end
Algorithm 2: Coupling Markov chain

The algorithm terminates when upper and lower concepts coincide. Condition on remaining
of ordering between two concepts (𝐴,𝐵) ≤ (𝐶,𝐷) at any intermediate step of the while loop
of Algorithm 2 follows from Lemma 1.

Now we represent Machine Learning based on FCA (FCAML-method) for our setting (Boolean
algebra without counter-examples). See seminal paper[10] for description of the general scheme
of FCAML-method.

The reader can learn the classical deterministic FCA-based approach to Machine Learning
from Kuznetsov [5]. Our technique uses probabilistic Algorithm 2 for computing a random
subset of concepts.



As usual, there are two sets of objects called the training 𝐺 = {𝑔1, . . . , 𝑔𝑛} and test 𝑋 =
{𝑜1, . . . , 𝑜𝑛} samples, respectively. Set 𝑋 contains examples to predict the target class (so-called
test objects).

From the training samples the program generates a formal context (𝐺,𝑀, ̸=), where 𝑀 =
{𝑚1, . . . ,𝑚𝑛}. After that the program applies the coupling Markov chain Algorithm 2 to
generate a given number 𝑁 of random concepts (𝐴,𝐵).

Data: number 𝑁 of concepts to generate
Result: random sample 𝑆 of formal concepts
while (𝑖 < 𝑁) do

Generate concept (𝐴,𝐵) by Algorithm 2;
𝑆 := 𝑆 ∪ {(𝐴,𝐵)};
𝑖 := 𝑖+ 1;

end
Algorithm 3: Inductive generalization

FCAML-method replaces a time-consuming deterministic algorithm (for instance, "Close-by-
One") for generation of all concepts by the probabilistic one to randomly generate the prescribed
number of concepts. The goal of Markov chain approach is to select a random sample of formal
concepts without computation of the (possibly exponential size) set of all the concepts.

How to select number 𝑁 of concepts for the coupling Markov chain? There are 2 different
approaches, both based on ideas of V.N. Vapnik and A.Ya. Chervonenkis. The approach promoted
by K.V. Vorontsov is the empirical risk minimization.

Data: random sample 𝑆 of concepts
Result: empirical risk value
𝐺 :=training examples; 𝑘 := 0;
for (𝑔 ∈ 𝐺) do

for (⟨𝐴,𝐵⟩ ∈ 𝑆) do
if (𝐵 ⊆ {𝑔}′) then

𝑘 := 𝑘 + 1
𝑛 ;

end
break;

end
end

Algorithm 4: Calculation of empirical risk
In the Boolean algebra case it is possible select sufficiently large 𝑁 to make the empirical

rick equals to 0.
With permutation, we can assume without reducing generality that the first 𝑛 objects were

included in the training sample, and the last 𝑛 objects form the test sample.
Let 𝑁 of FCA Machine Learning hypotheses be generated using a coupling Markov chain

from a training sample for Boolean algebra, where 𝑁 chosen sufficiently large to obtain 𝜂 = 0.
Stationary distribution uniformity on hypotheses allows to construct hypothesis ℎ𝑗 =

(𝐴𝑗 , 𝐵𝑗) (where 1 ≤ 𝑗 ≤ 𝑁 ) from independent Bernoulli sequence 𝐸𝑗 = (𝜖𝑗,1, . . . , 𝜖𝑗,𝑛)
as 𝐴𝑗 = {𝑔𝑖 : 𝜖𝑗,𝑖 = 0} and 𝐵𝑗 = {𝑓𝑖 : 𝜖𝑗,𝑖 = 1}.

Finally, the FCAML program predicts the target class of test examples and computes tests



risk.
Consider set 𝐹 of binary features 𝐹 = {𝑓1, . . . , 𝑓𝑛}. For each 1 ≤ 𝑖 ≤ 𝑛 introduce test

example 𝑔𝑛+𝑖 with the intent {𝑔𝑛+𝑖}′ = {𝑓𝑗 ∈ 𝐹 : 𝑗 ̸= 𝑖}.
Independent Bernoulli sequence 𝐸𝑗 = (𝜖𝑗,1, . . . , 𝜖𝑗,𝑛) determines the corresponding hypoth-

esis ℎ𝑗 = (𝐴𝑗 , 𝐵𝑗), where 𝐴𝑗 = {𝑜𝑖 : 𝜖𝑗,𝑖 = 0} and 𝐵𝑗 = {𝑓𝑖 : 𝜖𝑗,𝑖 = 1}.
Data: random sample 𝑆 = {(𝐴1, 𝐵1), . . . , (𝐴𝑁 , 𝐵𝑁 )} of concepts
Result: number of erroneous predicted test examples
𝑋 :=test examples; 𝑟 = 0;
for (𝑔 ∈ 𝑋) do

for (𝑗 := 0; 𝑗 < 𝑁 ; 𝑗 ++) do
if (𝐵𝑗 ⊆ {𝑔}′) then

𝑟 := 𝑟 + 1;
end
break;

end
end

Algorithm 5: Calculation of fraction of erroneous predictions

2.2. Approximate Uniformity of Random Subsets

Algorithm 1 in the case of Boolean algebra coincides with famous Lazy Random Walk on Boolean
hypercube.

Lemma 2. Stationary distribution 𝜋 of Lazy Random Walk is uniform.

The simplest proof of Lemma 2 uses reversibility of the corresponding Markov chain with
Balance equations with respect to uniform distribution 𝜋.

Definition 2. Total variation distance between distributions 𝜇 = ⟨𝜇𝑖 : 𝑔𝑖 ∈ 𝐺⟩ and 𝜋 = ⟨𝜋𝑖 :
𝑔𝑖 ∈ 𝐺⟩ on finite space 𝐺 is defined as the half of 𝐿1-metric, i.e. ‖𝜇−𝜋‖𝑇𝑉 = 1

2 ·
∑︀

𝑔𝑖∈𝐺 |𝜇𝑖−𝜋𝑖|.

Lemma 3. ‖𝜇− 𝜋‖𝑇𝑉 = max𝐴⊆𝐺|𝜇(𝐴)− 𝜋(𝐴)|.

This Lemma is a direct consequence of Definition 2.

Proposition 2. For Lazy Random Walk let

𝜇(0) = P [𝑋𝑡+1 = 𝑔𝑖 | 𝑋𝑡 = 𝑔𝑖] =
1

2
,

𝜇(𝑒𝑗) = P [𝑋𝑡+1 = (𝑔𝑖 ⊕ 𝑒𝑗) | 𝑋𝑡 = 𝑔𝑖] =
1

2𝑛
,

and 𝜇 = 0 otherwise, and let 𝜋 be the uniform distribution. Then(︀
‖𝜇*𝑡 − 𝜋‖𝑇𝑉

)︀2 ≤ 1

4
·
(︁
𝑒𝑒

−𝑐 − 1
)︁
.

holds for 𝑡 ≥ 1
2 · 𝑛 · (log 𝑛+ 𝑐).



This proposition is analogue of result of Diakonis [2] and it was proved by the author during
his research on monotonic Markov chain (Algorithm 1).

Comparison of Algorithms 1 and 2 gives assertion that the lower component of the coupling
Markov chain coincides with a state of the monotonic Markov chain.

The next two propositions estimate mean length E𝑇 of trajectory of coupling Markov chain
(Algorithm 2) and proves the strong concentration of trajectory length 𝑇 around the mean E𝑇 .
The author proved them during research on coupling Markov chain (Algorithm 2).

Proposition 3. For 𝑛-dimensional Boolean algebra

E𝑇 =
𝑛∑︁

𝑗=1

𝑛

𝑗
≈ 𝑛 · ln(𝑛) + 𝑛 · 𝛾 +

1

2
. (6)

Proposition 4. For 𝑛-dimensional Boolean algebra

P [𝑇 ≥ (1 + 𝜀) · 𝑛 · ln(𝑛)] → 0, (7)

when 𝑛 → ∞ for any 𝜀 > 0.

Statements of Propositions 2 and 3 and Lemma 4 imply the assertion that outputs of Algorithm
2 are approximately uniformly distributed.

Since each trajectory depends only on (pseudo-)random number generator, these outputs are
independent.

But random subsets of binary attributes can be generated by Bernoulli sequences. It provides
possibility of direct probabilistic computations. In the next section these considerations lead to
main result of the paper.

3. Main result

Any set of hypotheses about causes of the target property can be considered as a classifier: if a
test example includes at least one hypothesis, then the classifier will predict the target class
positively; if none of the hypothetical reasons is embedded in a test example, then this example
is classified negatively.

The method of minimizing empirical risk proposed by V.N. Vapnik and A.Ya. Chervonenkis
[7] consists in choosing algorithms for which the classification of training examples contains
the minimum number of errors (empirical, or observed, risk). In our case, there will always
be classifiers (sets of hypotheses) whose empirical risk is zero. We restrict ourselves to these
situations only. On the other hand, a risk of making a mistake in predicting test examples
remains.

Following K.V. Vorontsov[11], we will randomly divide objects into two groups: training and
test examples. For simplicity, let’s assume that the number of objects is even, and the splitting
is done in half. This assumption does not reduce generality, since the mean binomial coefficient
is the largest one.

Let’s denote the empirical risk by 𝜂 and introduce the prediction risk as a fraction of 𝜃 = 𝑟/𝑛
incorrectly predicted test examples. We are interested in the probability of P [𝜂 = 0, 𝜃 = 𝛿]
when objects are evenly divided into training and test samples in half.



Since the probabilities are equal for each partition, we can assume without reducing generality
that the first 𝑛 objects were included in the training sample, and the last 𝑛 objects form the test
sample.

Let 𝑁 of FCAML hypotheses be generated using a coupling Markov chain from a training
sample for Boolean algebra. If the trajectories are chosen long enough, then the distribution
of hypotheses will be (almost) uniform and independent. Uniformity follows from the prop-
erty of fast mixing to a uniform stationary distribution, and independence follows from the
independence of the Markov chain trajectories generating the FCAML hypotheses.

Denote generated hypotheses as 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑁} and form a table like

𝐺 | 𝐻 ℎ1 ℎ2 . . . ℎ𝑁
𝑔1 0 1 . . . 0
...

...
...

. . .
...

𝑔𝑛 0 0 . . . 1
𝑔𝑛+1 0 0 . . . 0
...

...
... 0

...
𝑔(1+𝛿)𝑛 0 0 . . . 0
𝑔(1+𝛿)𝑛+1 1 0 . . . 0
...

...
...

. . .
...

𝑔2𝑛 0 1 . . . 1

Here 1 corresponds to inclusion of given hypothesis into a given example, i.e. the hypothesis
predicts the example correctly (positively).

To reach the empirical risk 𝜂 = 0 each of the first 𝑛 rows must contain at least one 1.
Due to the uniform distribution and independence of hypotheses, the corresponding cells

form an independent Bernoulli series with a probability of success 1
2 .

Lemma 4. If hypotheses number 𝑁 ≥ (1+𝜎) log2 𝑛 for some 𝜎 > 0 then lim𝑛→∞ P [𝜂 = 0] = 1.

Proof.

1 ≥ lim
𝑛→∞

(︀
1− 2−𝑁

)︀𝑛
= lim

𝑛→∞

[︂(︀
1− 2−𝑁

)︀2𝑁]︂𝑛·2−𝑁

=

= lim
𝑛→∞

[︀
𝑒−1

]︀𝑛·2−𝑁

≥ lim
𝑛→∞

𝑒−1/𝑛𝜎
= 1.

To achieve 𝜃 = 𝛿 fraction of erroneous predictions of test examples it needs to select 𝛿 · 𝑛
rows of the lower half (there are

(︀
𝑛
𝛿·𝑛

)︀
ways to do this) containing zeroes only, the rest rows

can contains ones somewhere. Table above corresponds to the situation with choice of rows
𝑔𝑛+1, . . . , 𝑔(1+𝛿)·𝑛.

The task is to estimate P =
(︀

𝑛
𝛿·𝑛

)︀
·
(︀
1− 2−𝑁

)︀(2−𝛿)𝑛 ·
(︀
2−𝑁

)︀𝛿·𝑛 when 𝑛 → ∞.

Lemma 5 (Stirling’s formula). 𝑛! ≈
√
2𝜋𝑛𝑛𝑛

𝑒𝑛 for 𝑛 → ∞.



Lemma 6 (Entropy inequality). −𝛿 · ln 𝛿 − (1− 𝛿) · ln(1− 𝛿) ≤ ln 2.

Theorem 1. lim𝑛→∞ P ≤ 1√
2𝜋𝛿(1−𝛿)

exp
{︀
− (1 + 𝜎) · 𝛿 · 𝑛 · ln𝑛+ ln 2 · 𝑛− ln𝑛

2

}︀
for 𝑛 →

∞ and 𝑁 ≥ (1 + 𝜎) log2 𝑛.

Proof. The second factor of P =
(︀

𝑛
𝛿·𝑛

)︀
·
(︀
1− 2−𝑁

)︀(2−𝛿)𝑛 ·
(︀
2−𝑁

)︀𝛿·𝑛 does not exceed 1. Stirling’s
formula and Entropy inequality imply

P ≤
√
2𝜋 · 𝑛 · 𝑛𝛿·𝑛 · 𝑛(1−𝛿)·𝑛 · 𝑒𝛿·𝑛 · 𝑒(1−𝛿)·𝑛 ·

(︀
2−𝑁

)︀𝛿·𝑛
𝑒𝑛 ·

√
2𝜋𝛿 · 𝑛 ·

√︀
2𝜋(1− 𝛿) · 𝑛 · 𝛿𝛿·𝑛 · 𝑛𝛿·𝑛 · (1− 𝛿)(1−𝛿)·𝑛 · 𝑛(1−𝛿)·𝑛

≤

≤ 2−𝛿·𝑛·(1+𝜎)·log2 𝑛√︀
2𝜋𝛿(1− 𝛿) · 𝑛 · 𝑒𝛿·𝑛·ln 𝛿 · 𝑒(1−𝛿)·𝑛·ln(1−𝛿)

=

=
𝑒−𝛿·(1+𝜎)·𝑛·ln𝑛 · 𝑒𝑛·(−𝛿·ln 𝛿−(1−𝛿)·ln(1−𝛿))√︀

2𝜋𝛿(1− 𝛿) ·
√
𝑛

≤ 𝑒−𝛿·(1+𝜎)·𝑛·ln𝑛 · 𝑒ln 2·𝑛√︀
2𝜋𝛿(1− 𝛿) ·

√
𝑛

Conclusions

Main theorem of the paper provides a small upper bound on a probability of overfitting in
FCA-based Machine Learning in the simplest case of Boolean algebra without counter-examples.
It states that the probability of overfitting in fixed fraction of test examples tends to zero faster
than exponent when the number of attributes goes to infinity. Interesting alternative for our
research is the work of T.P. Makhalova and S.O. Kuznetsov [6], where classifiers form a lattice.
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