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Abstract
The data used in Artificial Intelligence systems is often multimodal. Their representation in the form of
formal contexts leads to contexts of high dimension. When constructing formal concepts and clustering
on such contexts, the algorithms that are robust to the increasing dimension of contexts and capable
of displaying a variety of clustering options are in demand. The modeling framework that meets
these requirements is proposed. The framework uses multi-objective optimization and Evolutionary
computation. The clustering results performed in the framework are compared with the known ones.
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1. Introduction

This paper is related to ongoing research in the area of applying Evolutionary computation
for multi-objective optimization. It is a continuation of the research presented in [10]. In the
Formal Concept Analysis (FCA), several similar tools are known [8, 9].

In FCA, the problem of multimodal clustering is solving on formal contexts and its solution
depends on the dimension of the context. There are two types of solutions that are recognized
as dense and non-dense clusters. Formal concepts acquired from conceptual lattice or by
corresponding algorithm are dense clusters. Non-dense clusters of certain modality differ from
dense ones in that their tensors may contain empty elements.

This paper describes an experimental framework for solving multi-objective optimization
problems using evolutionary algorithms. Pareto-optimal solutions on formal contexts are
considered here for two criteria: cluster density and volume. It is known that these criteria are
contradictory. An increase in the value of one criterion is impossible without a decrease in the
value of the other. The compromise solutions are needed here, which can be Pareto-optimal.

The paper is organized as follows. In the Section 2, background and related work are described.
In the Section 3, proposed experimental framework is presented. The Section 4 contains some
results of clustering made in the framework and compared with corresponding results acquired
by the Data-Peeler algorithm. The paper ends with Conclusion section and References.
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2. Background and Related Work

The background of this work consists of two areas. The first area is multi-objective optimization
using evolutionary algorithms [11]. The second area is multimodal clustering in FCA.

2.1. Multi-objective Optimization with Evolutionary Algorithms

Multi-objective optimization is simultaneous optimization a number of objectives. Its specificity
is manifested when the objectives conflict each other, i.e., improving the values of one objective,
we worsen the values of another. This problem initiates the emergence of a set of compromise
optimal solutions, commonly known as the Pareto-optimal solutions.

Pareto-optimal Multi-objective Optimization. The concept of Pareto optimality belongs
to the mainstream in the domain of multi-objective optimization. Pareto optimality from the
viewpoint of maximization optimization problem may be defined as follows. Let S = {𝑆𝑖} is
the set of solutions of multi-objective optimization problem, 𝑖 = 1, 2, . . . , 𝑛, 𝐹 = {𝑓𝑗}, 𝑗 =
1, 2, . . . ,𝑚 is the set of objective functions. Every solution is characterized by vector fi =
{𝑓𝑗(𝑆𝑖)}. One feasible solution fi is said to dominate another feasible solution fk if and only if
𝑓𝑗(𝑆𝑖) ≥ 𝑓𝑗(𝑆𝑘) for all 𝑗 = 1, 2, . . . ,𝑚 and 𝑓𝑗(𝑆𝑖) > 𝑓𝑗(𝑆𝑘) for least one objective function
𝑓𝑑, 𝑑 ∈ {1, 2, . . . ,𝑚}. A solution is said to be Pareto optimal if it is not dominated by any
other solution. A Pareto optimal solution cannot be improved with respect to any objective
function without worsening value at least one other objective function. The set of all feasible
non-dominated solutions is referred to as the Pareto optimal set, and for a given Pareto optimal
set, the corresponding objective function values in the objective space are called the Pareto
front.

Evolutionary algorithms belong to the Evolutionary computation, the set of global optimiza-
tion methods that use the evolution of solutions. The first known evolutionary algorithm is
genetic algorithm, which realizes a probabilistic optimization technique based on the biological
principles of evolution:

− encoding every solution as the string of symbols from certain alphabet (chromosome);
− using of a set (population) of solutions that evolves to one solution or to a subset of

solutions corresponding to the extreme value of the certain quality criterion;
− applying various types of selecting the better solutions and (genetic) operators for manip-

ulating solutions in the form of mutation and crossover of chromosomes.

The first two features of genetic and evolutionary algorithms determine their effectiveness in
solving multi-objective optimization problems.

Encoding solutions as chromosomes allows one to simulate solutions of various problems.
For example in clustering, chromosomes can directly represent clusters.

Using population of chromosomes is suitable for creating Pareto optimal solutions. There are
several well-known multi-objective evolutionary algorithms (MOEAs) focused on obtaining
Pareto optimal solutions: Niched Pareto Genetic Algorithm (NPGA), Strength Pareto Evolution-
ary Algorithm (SPEA), Non-dominated Sorting Genetic Algorithm (NSGA), and others reviewed
in [11].



The mentioned algorithms are used in solving various problems of multi-objective optimization
in engineering, business and science. They are also used in data clustering [12]. In this work,
the use MOEAs in multimodal clustering of formal contexts represents their new application.

2.2. Multimodal Clustering Problem in FCA

In FCA, multimodal clustering is formulated as follows.
If 𝑅 ⊆ 𝐷1×𝐷2×· · ·×𝐷𝑛 is a relation on data domains 𝐷1, 𝐷2, . . . , 𝐷𝑛 then formal context

is an 𝑛+ 1 set:

K =< 𝐾1,𝐾2, . . . ,𝐾𝑛, 𝑅 > (1)

where 𝐾𝑖 ⊆ 𝐷𝑖. Multimodal clusters on the context (1) are n – sets

C =< 𝑋1, 𝑋2, . . . , 𝑋𝑛 > (2)

which have the closure property [4]:

∀𝑢 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝑋1, 𝑋2, . . . , 𝑋𝑛, 𝑢 ∈ 𝑅 (3)

∀𝑗 = 1, 2, . . . , 𝑛, ∀𝑥𝑗 ∈ 𝐷𝑗 ∖𝑋𝑗 < 𝑋1, . . . , 𝑋𝑗 ∩ {𝑥1}, . . . , 𝑋𝑛 > does not satisfy (3).
A multimodal cluster is a subset in the form of combinations of elements from different sets𝐾𝑖.

It is also defined as a closed n-set [3] since the closure property (3) provides its “self-sufficiency”:
it cannot be enlarged without violating closure property.

Formal concepts on multimodal formal context are those multimodal clusters where for all
𝑢 = (𝑥1, 𝑥2, . . . , 𝑥𝑘) ∈ 𝑋1, 𝑋2, . . . , 𝑋𝑘, 𝑢 ∈ 𝑅 and 𝑘 is maximally possible. In other words,
they are the largest possible k-dimensional hypercubes completely filled with units. The concept
of the density of a multimodal cluster is introduced in FCA and formal concepts are interpreted
as absolutely dense clusters [3].

There are some practical arguments in favour of studying multimodal clusters as none dense
concepts additionally to studying formal concepts. Non-dense multimodal clusters can contain
important information. For example, the very fact that there are certain data instances in a
subset of a cluster may be an indicator of the importance of this fact. If the cluster is not dense,
then to find the rest of the data that is combined with the found instance, one need to refer to
the formal context. However, the search in this case will be limited by the size of the found
cluster.
The Need of Multi-objective Optimization. In addition to the density of clusters, their

other characteristics of volume, modality, diversity and coverage have been introduced [6]. These
characteristics illustrate the quality of multimodal clustering and in some cases help to interpret
the contents of clusters.

Having a set of clustering quality parameters, the multimodal clustering problem is formu-
lated as an optimization problem in which the extremum of the criterion based on mentioned
characteristics is searched for [5, 6]. In fact, some of these characteristics, for example, the
volume of clusters and their density, form conflicting criteria.

Therefore, multimodal clustering on formal context may be formulated as a multi-objective
optimization problem.



There are directions in FCA in which the construction of multimodal clusters is associated
with the solution of optimization problems [6, 7].

3. Experimental Framework

Consider the main functional elements of the proposed framework.

3.1. Evolutionary Multi-Objective Algorithm for Multimodal Clustering

The basis of our system is evolutionary multi-objective algorithm for multimodal clustering. The
algorithm uses Evolutionary computation. Evolutionary approach is applied in Pareto-optimal
optimization.

Our algorithm is based on the NSGA-II algorithm [13], which was adapted for clustering. We
also expanded it with functions for visualization Pareto fronts.

The algorithm is shown on the Fig. 1. As any evolutionary algorithm, it contains functions
being characteristic for genetic algorithms.

doSelection function realizes selection chromosomes according to the selection method. There
are proportional, random universal, tournament and truncation selection methods realized in the
algorithm. The specific selection method is picked through the user interface.

The doMultipleCrossover function, in addition to performing a crossover, accesses the original
tensor in order to filter out the wrong chromosomes. We have also provided the crossover mode
which is performed only in certain sections of chromosomes.

Encoding scheme. Encoding chromosomes is core element in evolutionary algorithms. After
analyzing the several variants of chromosome encoding [12], we settled on the binary scheme
organized according to the principle "one chromosome – one cluster". If formal context has
modality n then a chromosome has n modal sections. In the sections, a number of gene is the
number of an element of corresponding set in multimodal context. The units in the chromosome
representing the cluster denote the elements included in this cluster. This binary encoding
scheme is not compact because for large contexts with high modality the chromosomes will be
very long. Nevertheless, in the task of clustering, it is much more convenient to work with such
chromosomes than with chromosomes with more compact length. Explicit representation of
clusters in the form of separate chromosomes does not require additional computations, which
are necessary for other encodings. In addition, handling large binary strings is not a problem.



Figure 1: Evolutionary multi-objective algorithm for multimodal clustering.

The following characteristics of multimodal clusters are used in the clustering algorithm.
Cluster density and volume. For a cluster (2) its density is defined as

𝑑(C) =
|𝑅 ∩ (𝑋1 ×𝑋2 × · · · ×𝑋𝑛)|
|𝑋1| × |𝑋2| × · · · × |𝑋𝑛|

(4)

and volume of a cluster has the following form

v(C) = |𝑋1| × |𝑋2| × · · · × |𝑋𝑛| (5)

Cluster density and volume are contradictory criteria for cluster quality. A large and dense
cluster is interesting because combinations of elements of its subsets set a property that manifests
itself on a large number of elements and, possibly, means a regularity. However, often the
clustered data is sparse and the existence of large and dense clusters on them is unlikely.
Therefore, when selecting clusters, a trade-off between density and volume is provided by the
algorithm.



Coverage and diversity. These two cluster characteristics were discussed and defined for
triclustering problem in [6]. They also have generalized for multimodal clustering. Coverage
is defined as a fraction of the tuples of the context included in at least one of the multimodal
clusters. This can be defined by analogy with the definition in [6]:

𝜎(Ω) =
∑︁

(𝑥1,𝑥2,...,𝑥𝑛)∈𝑅

[(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈
⋃︁

(𝑥1,𝑥2,...,𝑥𝑛)∈Ω

(𝑥1 × 𝑥2 × · · · × 𝑥𝑛)/|𝑅|], (6)

where Ω is a set of multimodal clusters.
The data of the sets that make up the cluster modalities have different meanings. Sometimes

it is important to control the coverage of the context by some subset of the cluster. In this case,
in the expression (6), instead of a whole tuple (𝑥1, 𝑥2, . . . , 𝑥𝑛) one of its elements is used.

The definition of cluster diversity given in [6] is valid for multimodal clusters:

𝜏(Ω) = 1−

∑︀
𝑗

∑︀
𝑖<𝑗

𝛾(Ω𝑖,Ω𝑗)

|Ω|(|Ω|−1)
2

, (7)

where 𝛾(Ω𝑖,Ω𝑗) is an intersection function which is equal to 1 if clusters Ω𝑖,Ω𝑗 intersect at
least one of their subsets and 0 otherwise.
Elitist Nondominated Sorting. Evolution of solutions in the evolutionary algorithm is

performed by applying genetic operators of selection, mutation and crossover to chromosome
population. If the probability of mutation and crossover is high enough and the crossover is
not tied to the peculiarities of chromosome encoding, then the algorithm performs random
uncontrolled walks in the search space. By this way, the algorithm may explore most of the
search space to find the global extremum of the fitness function. However, such walks reduce
the convergence of the algorithm and, in principle, do not exclude its cycling in the regions of
local extrema. Moreover, when calculating the Pareto front, random walks can lead to a "loss
of the front", when the constructed Pareto front is destroyed at the next step of evolution. To
exclude such phenomena we apply elitism [12, 13]. Elitism may be considered as an operator
which preserves the better of parent and child solutions (or populations or Pareto fronts) so that
a previously found better solution is never deleted. In the case of Pareto optimization, elitism
is associated with dominance, and it is necessary to preserve not individual solutions, but, if
possible, the entire front. In the MOEAs, elitism is realized as nondominated sorting [13].

3.2. Framework Realization

Considered framework is currently realized as desktop PC application with the use of some
elements of Wolfram Mathematica™ environment. We use several Mathematica kernels for
parallel computation. Since parallelization is natural for evolutionary algorithms, it can be
realized on Mathematica kernels and helps to increase computing performance.

Java technology is also applied in the framework. Json data format is used for representing
multidimensional formal contexts. We also plan to apply Java in future Web realization of the
framework.



The framework uses program interface (API) Mathematica – Java and user interface with
visualization Pareto fronts during evolution of computation.

a) b)

Figure 2: The initial (a) and final (b) Pareto fronts visualizations.

Fig. 2 illustrates the evolution of solutions in the evolutionary algorithm. The area of the
search space in the initial generation on the Fig. 2 a) was expanded in the final generation on
the Fig. 2 b).

4. Experiments

To demonstrate functionalities of the framework we present some results of multimodal cluster-
ing on the several data sets.
Data sets. The first data set contains data about offenses committed by juveniles [14]. We

selected this data set to be able to compare our results with the results of triclustering performed
by FCA algorithm of Data-Peeler [4]. This data set contains 30 objects which are the offense
names, 7 attributes being the age group (m/f) which had the most amount of the certain sort
offense, and 23 conditions being the years when offenses took place. Tricontext is presented as
690 incidents in the form {offense name, age group, year}. There are 79 formal concepts acquired
from the context by Data-Peeler algorithm.

Other data sets are five tensors of dimensions from 2 to 6 generated randomly on the set
{1, 2, . . . , 10}. They are used in experiments to study the scaling of the algorithm.
Comparison with Data-Peeler. Using the juvenile offenses data set from [14] we have

the possibility to compare the results of evolutionary clustering with the results of acquiring
formal concepts from this data set performed by Data-Peeler algorithm [4]. The results of the
comparison are as follows.

Juvenile offenses data have a feature that manifests itself in the multimodal clustering. All
formal concepts found by Data-Peeler algorithm, with the exception of concepts having empty



subsets of elements, contain unique attribute values denoting the gender and age of juveniles.
Most of these concepts, namely 46 ones, contain attribute m_17 denoting boys of 17 years old.
On the Fig. 3 a) there are examples of three such formal concepts. They are intersecting over
subsets of objects and conditions and may be united into clusters having a larger volume and
containing the same information as the set of small clusters.

Our algorithm, following the principle of increasing the volume of the cluster, finds namely
these, coarse-grained clusters. Example of such cluster is shown on the Fig. 3 b). It demonstrates
the fact that 17 years old boys had all types of offenses at all the years of observation.

a)

b)

Figure 3: a): Three formal concepts from 46 ones acquired by Data-Peeler and containing only boys of
17 years old (m_17) as attributes; b): the coarse-grained dense cluster that equivalent to these formal
concepts.

Guided evolution. Our algorithm finds coarse-grained clusters of high density, which at the
same time have the maximum volume. However, formal concepts of small volume containing
no more than one element in one or several subsets are of particular interest. Among the formal
concepts in the juvenile offenses data set there is the following one: Runaway, f_16, (2007, 2009,
2010). This cluster cannot be found when the algorithm is configured to the maximum density
and volume of clusters. It is necessary either to look for clusters with a minimum volume
and maximum density, or to use the evolution control tools inherent in the algorithm. In our
case, we supplement the principle of nondominated sorting with additional conditions for the
preservation of chromosomes containing only one unit in the first and second sections. This



requires running a separate experiment, in which previously found clusters may be lost, but
the desired clusters of small volume are found, reflecting the unique features of the data. Fig. 4
illustrates the result of applying guided evolution on the previous example of a single formal
concept.

Figure 4: Formal concept and dense cluster of small volume.

Scaling the algorithm. The NSGA-II algorithm has computational complexity of 𝑂(𝑀 *𝑁2)
where 𝑀 is the number of objectives and 𝑁 is the population size [13]. In the problem of
multimodal clustering on formal contexts, it is useful to estimate the performance of algorithms
depending on the dimension of the formal context. For our algorithm, in which the dimension
of the context determines the size of the chromosomes, such estimates are especially important.

Fig. 5 shows the results of testing algorithm on the randomly generated formal contexts
having dimensions from 2 to 6. The population size was constant equal to 100 chromosomes,
mutation probability was 0.01.

Figure 5: The dependence of the execution time and the number of steps required to construct the
Pareto front on the dimension of the formal context.

The execution time is not an objective performance characteristic of algorithms, especially



for evolutionary algorithms which have a population size as a parameter. However, we use
the execution time to roughly estimate the scaling of the algorithm. The dependence of the
execution time on the dimension of the formal context on the Fig. 5 is approximately estimated
as 10(𝑘 − 2) where 𝑘 is dimension on formal context.

The number of steps required to construct the Pareto front has no explicit dependence on
the dimension of the context. This corresponds to the well-known properties of evolutionary
algorithms, in which the number of evolution steps randomly depends on several parameters of
the algorithm.

5. Conclusion

Evolutionary algorithms have certain advantages in implementing Pareto-optimal solutions to
multi-objective optimization problems. Among them, there is one important which consists in
the fact that the presence of a population of solutions supported by the algorithm allows one to
naturally organize the formation of the Pareto front.

In this paper, we propose two innovations, which may be interested in FCA community.
The first innovation is the application of multi-objective optimization for the construction of

multimodal clusters on formal contexts.
The second innovation is the ability to control the process of building multimodal clusters

through the use of an evolutionary optimization algorithms.
In the future research, we plan to perform a deeper comparison of the work of the evolutionary

algorithm with other well-known FCA algorithms [3].
Also we plan to explore several other encodings in evolutionary algorithm to exclude the

appearance of extra chromosomes in the population.
We hope that the modeling framework proposed here would be useful for the FCA community.
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