
Organizing Contexts as a Lattice of Decision Trees for
Machine Reading Comprehension
Boris Galitsky1, Dmitry Ilvovsky2 and Elizaveta Goncharova2,3

1Knowledge Trail Inc, San Jose, CA, USA
2Higher School of Economics, Moscow, Russia
3AIRI, Moscow, Russia

Abstract
Supported decision trees that have been first proposed to boost the performance and the explainability of
the expert systems built upon the texts can become a great basis for the machine reading comprehension
(MRC) systems. The supported decision tree is based on building and combining the corresponding
discourse trees for the text passage. In this work, we build an environment of supported decision trees
for the MRC task. Each answer is represented by a path of a supported decision tree and the whole
corpus of answers is then form a lattice of supported decision trees. This environment gives a boost to
MRC performance, handling cases where it is nontrivial to determine which document/passage MRC
needs to be applied to.

Keywords
decision tree, Machine reading comprehension, discourse structure

1. Introduction

Machine reading comprehension (MRC) is a question answering task where the goal of the
model is to read and understand text passages and answer the question about them. MRC is
designed to check the language model’s ability to understand text written in natural language,
thus, in some cases, an answer cannot be retrieved from the given text passage, or it requires
some world knowledge to answer a question. In such cases, a model should have access to
the external knowledge base to retrieve the correct answer. The most promising technique to
answer such questions is to augment the language model with the external knowledge database,
such as Wikipedia, and to ensemble it with the additional retrieval component that supports
the system with the relevant documents [1, 2].

Thus, in the cases, when an answer cannot be retrieved directly from a text, the system is split
into two core components [3], where the former is an information retrieval system designed to
identify useful pieces of text from the knowledge source (the retriever); and a system to produce
the answer given the retrieved documents and the question (the reader).

Published in Sergei O. Kuznetsov, Amedeo Napoli, Sebastian Rudolph (Eds.): The 10th International Workshop ”What
can FCA do for Artificial Intelligence?”, FCA4AI 2022, co-located with IJCAI-ECAI 2022, July 23 2022, Vienna, Austria,
Proceedings, pp. 75–87.
Envelope-Open bgalitsky@hotmail.com (B. Galitsky); dilvovsky@hse.ru (D. Ilvovsky); egoncharova@hse.ru (E. Goncharova)
Orcid 0000−0003−0670−8520 (B. Galitsky); 0000−0002−5484−372X (D. Ilvovsky); 0000−0001−8358−9647 (E. Goncharova)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:bgalitsky@hotmail.com
mailto:dilvovsky@hse.ru
mailto:egoncharova@hse.ru
https://orcid.org/0000−0003−0670−8520
https://orcid.org/0000−0002−5484−372X
https://orcid.org/0000−0001−8358−9647
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


The existing models that perform this problem are based on the transformer architecture
and retrieve the relevant text passages based on the constructed latent representations. The
main drawback of these techniques is the lack of explainability and limitation of the external
documents that a model has access to (e.g., Wikipedia only). In this work, we propose to use
supported decision trees DecTSup, first presented in [4] for expert systems as the basis for
the relevant passages retrieval. The system allows to enrich the current textual corpora with
external documents and use the organized rule-based structure in order to retrieve the relevant
text passages that contain an answer to the asked question.

In comparison to our previous work, we show that the DecTSups can be built for the texts of
the arbitrary genre. For the experimental evaluation, we refer to theMRC problem in the medical
domain and show that utilizing DecTSup-based retrieval procedure improves the performance
of the QA model over the standard MRC pipelines by up to 6% for the F1-score.

In a conventional MRC architecture, documents are not organized in any structure, and
once a passage deemed most relevant is retrieved, the other documents are ignored. However,
when humans answer questions, the answer is backed up by supporting documents so that
the answer can be explained. In the real world question answering, the corpus of available
documents serves the purpose of providing additional information and clarification on the
answer topic. In this work we attempt to reproduce this feature of systematized MRC and
organize the documents and passages into such structure as lattice. As multiple questions for a
set of documents are answered, the involved documents are embedded into this lattice to form
chains of explanation for obtained answer. We analyze the advantages of this lattice-based MRC
architecture for delivering precise and explainable answers in a systematic way.

2. Background

2.1. Supported Decision Trees

DecTSups have been first presented in [4] as the basis for the expert systems that should retrieve
some instructions from the textual data based on the input query. There, the authors claim
that a flow of potential recommendations can be easily retrieved from the textual data and
organized in the format of the decision tree (DecT) as for the standard numerical attributes. This
flow of recommendations or instructions is extracted in the form of a discourse tree [5], where
the nodes of the DecT are the elementary discourse units (EDUs) obtained from the discourse
tree expressing some condition, and the edges are some type of the rhetorical relations that
connect EDUs corresponding to different nodes. The DecT constructed from textual data can be
enriched with the additional knowledge retrieved from the specific rhetorical relation and, thus,
to construct the supported decision tree (DecTSup). DecTSup can be easily integrated into the
expert system as a basis to perform dialogue management that improves information retrieval
procedure.

To turn a DecT into a corresponding DecTSup, each edge should be labeled with the informa-
tion extracted from text for the given decision step:

1. The extracted entity;
2. The extracted phrase for the attribute for this entity;



3. The rhetorical relation;
4. The full nucleus and satellite EDUs.

3. Decision Chains and Discourse Structure

3.1. Rhetorical Structure Theory and Decision Chains Construction

A discourse tree (DT) is a basis for the DecT and DecTSup respectively. DT is a hierarchical
structure that describes the relations that hold between text units in a document. Several
theories have been proposed in the past to describe the discourse structure, among which RST
[6] is one of the most developed. During discourse parsing, one can segment a document into
non-overlapping text spans (contiguous units for clauses) called EDUs. Each of these EDUs can
be tagged as either a nucleus or a satellite, where nucleus nodes are more central and satellite
nodes more peripheral. Nucleus units consist of the main information the author expresses
in the text, and satellite units contain additional information supporting the one presented in
a nucleus. The EDU itself can be of different lengths, i.e., it can contain just one word or a
word sequence. The discourse units are organized in the hierarchy by rhetorical relations (e.g.,
Antithesis, Elaboration, List, etc.) that reflect the function of these EDUs. As a result, we can
represent the discourse structure of the text as a DT, where the relations at the top level cover
the relations at the bottom.

To build the corresponding DecT, first, a decision chain should be retrieved from the DT. A deci-
sion chain is defined as a sequence of EDUs with rhetorical relations between sequence elements
[7]. Elements of a decision chain are connected with 𝑟ℎ𝑒𝑡𝑜𝑟 𝑖𝑐𝑎𝑙𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 between a premise and a
decision. It can be read as “If ⟨𝑝𝑟𝑒𝑚𝑖𝑠𝑒⟩ then make ⟨𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⟩ according to 𝑟ℎ𝑒𝑡𝑜𝑟 𝑖𝑐𝑎𝑙_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛”. In
a decision chain, each consecutive member starting from the second one is a ⟨𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛⟩.

An example of the decision chains and a fragment of DecTSup for a text passage presented
below is given in Figure 1.

“Although there is no cure for type 2 diabetes, studies show it is possible for some people to
reverse it. Through diet changes and weight loss, you may be able to reach and hold normal blood
sugar levels without medication. This does not mean you are completely cured. Type 2 diabetes
is an ongoing disease. Even if you are in remission, which means you are not taking medication
and your blood sugar levels stay in a healthy range, there is always a chance, that symptoms will
return. But it is possible for some people to go years without trouble controlling their glucose and
the health concerns that come with diabetes.”
elaboration
explanation
contrast
TEXT: Although there is no cure for type 2 diabetes,
attribution
TEXT: studies show
enablement
TEXT: it is possible for some people
TEXT: to reverse it.

evaluation



condition
TEXT: Through diet changes and weight loss,
manner-means
TEXT: you may be able to reach and hold normal blood sugar levels
TEXT: without medication.

TEXT: This does not mean you are completely cured.
elaboration
TEXT: Type 2 diabetes is an ongoing disease.
contrast (RightToLeft)
elaboration(RightToLeft)
same-unit
condition
TEXT: Even if you are in remission,
joint
TEXT: which means you are not taking medication
TEXT: and your blood sugar levels stay in a healthy range ,

TEXT: there is always a chance ,
TEXT: that symptoms will return .

background
TEXT: But it is possible for some people to go years
elaboration
TEXT: without trouble
elaboration
TEXT: controlling their glucose and the health concerns

When a text is represented as a discourse tree, it is split into elementary discourse units
(EDUs), denoted by ‘TEXT’ tag. EDUs are organized hierarchically according to rhetorical
relations between them. Using the constructed DT, for an arbitrary rhetorical relation, we can
define some patterns defining, how EDUs are connected to each other. In particular, relation
of Elaboration, ⟨satellite⟩ elaborates (provides additional information) on ⟨nucleus⟩. Certain
rhetorical relations have an obvious interpretations in terms of what decision ⟨satellite⟩ can
be made by means of ⟨nucleus⟩. For example, Enablement(result) ⇒ possible to achieve result
⟨nucleus⟩ by the way of ⟨satellite⟨. Based on this logical connection identified by the specific
EDUs, we can retrieve possible decision chains for the read passage given bellow:

diet changes and weight loss ⇒𝑐𝑜𝑛𝑑𝑖𝑡 𝑖𝑜𝑛 without medication ⇒𝑚𝑎𝑛𝑛𝑒𝑟−𝑚𝑒𝑎𝑛𝑠 sugar(normal)
Remission ⇒𝑐𝑜𝑛𝑑𝑖𝑡 𝑖𝑜𝑛 not taking medications sugar(normal) ⇒𝑒𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 chance symptoms(yes)
OR Remission ⇒𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 control(sugar(normal)) ⇒𝑒𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛 symptoms(no)
We denote sugar(normal) as a formal representation of target values. Formal representations

are shown in italic, and original text – in a regular font.
chance, possibility are the modalities which do not change the configuration of a DecTSup

but control the probability of navigation of the given decision chain.
Formally, a decision chain is defined as a sequence of EDUs with rhetorical relations between

sequence elements [7]. Each element is a whole original EDU or its representation as a logic
form that can be obtained as a result of a semantic parsing: it depends whether an entity from
this EDU occurs in an available ontology or not. We encourage the readers to refer to [8] for a



Figure 1: Two sections of decision chains

detailed explanation of how to obtain semantic-based representation of the EDU. For formalized
elements of decision chains, it is easier to establish a correspondence or synonymy between
entities to form a decision navigation graph.

Elements of a decision chain are connected with ⇒𝑟ℎ𝑒𝑡𝑜𝑟 𝑖𝑐𝑎𝑙_𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 between a premise and a
decision. It can be read as “If ⟨premise⟩ then make ⟨decision⟩ according to rhetorical_relation”.
In a decision chain, each consecutive member starting from the second one is a ⟨decision⟩. Each
previous member is a ⟨premise⟩.

Figure 1 shows two sections of decision chains extracted from the two texts above. Arrows
connect the same (or corresponding) entities, (possibly, parameterized diferently) such as
𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑠𝑢𝑔𝑎𝑟(_)) → 𝑠𝑢𝑔𝑎𝑟(𝑛𝑜𝑟𝑚𝑎𝑙)).

In the first formalized decision expression 𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑠𝑢𝑔𝑎𝑟(_)), the outermost predicate is
𝑐𝑜𝑛𝑡𝑟𝑜𝑙(_) that ranges over control subjects such as 𝑠𝑢𝑔𝑎𝑟(_) with an anonymized variable
‘_’.

4. DecTSup Environment for Machine Reading Comprehension

4.1. Basic Example

MRC is a task to retrieve the correct answer span from the given textual context. However, the
context which is given to MRC system usually restricts its applicability in real-life applications.
As, in many cases, the given passage may not contain the necessary information. Efforts made
in multi-passage MRC research have somewhat broken the limitation of the given context, but
there is still a long way to go as how to �nd the most relevant resources for MRC systems
effectively determines the performance of answer prediction. Moreover, the existing DL MRC
systems often fail to capture long-range dependencies existing in a text, thus, even if an answer
can be retrieved from a context, the system may not be able to find it. It calls for a deeper
combination of information retrieval and machine reading comprehension, which we do in this
work.

Let us consider the example, where in order to answer a simple question, MRC model should
be aware of the additional information.



Passage: There is an ice cube in a glass of water. When the ice cube melts, will the water
level have risen, fallen, or remained the same? We have an ice cube floating in the water. If it is
floating in equilibrium, then it will have to displace enough water to support its weight. When
the ice has melted, it turns into exactly the same volume as it displaced before. So the added
volume is the same, so the level of the water will not change.

Question: Into what does ice melt?
Answer: The same volume as it displaced before.
Relying on this text, the transformer-based MRC system cannot answer a very basic question

about melting ice into water. Required knowledge is not spelled out in explanation but instead
is assumed to be known to the reader. As MRC has no means to acquire it, this knowledge
should be added in some way or another. A complete hypothetical decision tree for inferring a
solution to a physics problem contains hints on which texts and/or ontology expressions are
needed to answer all question about the physical system described in the formulated problem.

We postulate a hypothesis that answering a question, given a passage constitutes navigating
a fragment of a decision tree build from this passage. While this approach seems natural when
this passage describes some form of a decision explicitly, and certain abstraction is required for
an arbitrary text genre where decisions are hypothetical.

4.2. DecTSup MRC Architecture

We propose to treat any text as some kind of problem formulation so that a respective decision
tree would tell the MRC system which knowledge is necessary to have complete domain
coverage. Usually, a text describes just a single path in a decision tree. Mining for other texts
helps reconstruct texts for other paths. Otherwise, it is unclear if even basic questions can
be answered (see 4.1). Hence forming a DecTSup for a given passage assure better domain
coverage so that the user can expect any relevant question to be answered reasonably well.

If a question requires building a logical chain of facts or forming a decision, the construction
of a decision tree in the course of question-answering seems natural. The assumption we make
in this study is that a logical chain of facts and respective decision structure is associated with
any text, of an arbitrary genre. Considering a given text passage within a decision structure is
necessary to determine which other passages need to be involved. This approach is expected
to be much more robust and precise than a traditional information retrieval (IR) based, where
candidate passages are determined based on keywords.

Under regular MRC architecture, an IR component first finds a document and a passage, and
then MRC finds an exact answer in this passage. In the proposed MRC architecture, the IR
system finds candidate documents along with DecTSup built for these documents, if available.
Then the DecTSup-MRC components use the lattice of DecTSups to decide on which passages
need to be involved in the answer.

We draw the feature-by-feature comparison of three MRC environments: default, retrieval-
augmented [9] and DecTSup-based in Table 1.

In Figure 2, we present the architecture for the standard MRC pipeline and MRC with the
DecTSup.



Table 1
Comparison of the IR-based MRC environments

Feature / Architecture Default MRC
Retrieval-augmented
approach

DecTSup-based

How passages and an-
swers are organized

Unordered set
of passages and
answers

A model decides
which passages to
involve

Passages are linked with
each other via DecTSups
which are in turns orga-
nized in a lattice

Treatment of texts de-
scribing decisions

– No special treatment

Decision structure is re-
flected in how passages are
organized. Relying on an
assumption that a question
concern a single decision
step

Inter-connection be-
tween answers / passages
/ document

– implicit
Answers are inter-
connected

How links between pas-
sages and documents can
be expressed

– implicit
Via common parts of a path
in a DecTSup

Explanation for why the
exact answer is chosen

–
Implicit, via optimiza-
tion

Via the full path in DecT-
Sup

Explanation for why the
documents containing
the answer are selected

–
Implicit, via optimiza-
tion

Via the lattice of DecTSups

Explanation for why cer-
tain entities occur in the
answer

– – –

Training for document re-
triever

–

marginalization over
sets of retrieved
documents is ap-
proximated using
an expectation-
maximization algo-
rithm.

–

Providing background
info

– –
A search session can be fol-
lowed by a navigation ses-
sion

4.3. An Algorithm for Building DecTSup Environment

The essence of building DecTSup environment for MRC is organizing mapping between set of
passages 𝑃 and DecTSups. This algorithm is given a set of documents/passages 𝑃𝑠 in a corpus
and a set of external documents/passages 𝐸𝑠, and also given a sequence of queries 𝑄𝑠 against 𝑃𝑠,
builds a set of supported decision trees DecTSups.

An answer 𝑎 is obtained as a function MRC(⟨𝑞, 𝑝⟩). A true answer 𝑎𝑡𝑟𝑢𝑒 may need another
passage, not necessarily 𝑝, including other passages 𝑝′ external document ℎ belong to 𝐸𝑠. The



Figure 2: MRC pipelines: a) classical NRC pipeline; b) retrieval-based MRC pipeline based on DecTSup

whole passage 𝑝 corresponds to a DecTSup(𝑝) and an answer 𝑎 – to a path of this DecTSup(𝑝) ←
𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑝)(𝑎). There is a many-to-many mapping between multiple passages and DecTSups.

An algorithm for building this DecTSup is as follows.
Initially, DecTSup = ∅. Given a corpus of passages 𝑃𝑠, iterate through all available queries 𝑄𝑠

and build a set ∪𝑝∈𝑃𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑝).
For each ⟨𝑞, ?⟩

1. Compute 𝑎 = 𝑀𝑅𝐶(⟨𝑞, 𝑝⟩).
2. Compute 𝑎𝑡𝑟𝑢𝑒 checking if passage 𝑝 is suitable. If not find another 𝑝′ or a suitable external

doc 𝑝 = ℎ, using the lattice 𝐿. Decide whether to substitute or to augment 𝑝.
3. Build a chain of phrases from 𝑎𝑡𝑟𝑢𝑒 for DecTSup(𝑎).
4. Build 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎) from this chain of phrases. Only 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑝) is currently available,

not the whole tree.
5. Extend 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎) towards a DecTSup by turning all phrases into negations.
6. Update the DecTSups system, identifying a location for 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎):
a. Find existing path 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑝) for ⟨𝑞, 𝑝⟩ and verify 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑝) covers 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎).
b. If not, find current DecTSup(𝑝) and augment it with 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎). Check for overlapping

nodes and do the path merge if appropriate;
c. If no such DecTSup(𝑝) exists, form a fragment of new DecTSup(𝑝) from 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎).

Once all available queries 𝑞 ∈ 𝑄𝑠 are ran, organize a set of DecTSup(𝑝) into a lattice (see 4.4).
When a new batch of queries arrive, re-apply this algorithm and then recompute the lattice.

The procedure of extension of 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎) towards a 𝐷𝑒𝑐𝑇 𝑆𝑢𝑝 is implemented by turning
all phrases into negations works as follows. For each phrase associated with a path node, we
consider its negation and branch it off this node. If a phrase in 𝑝𝑎𝑡ℎ𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑎) is already a
negation, remove this negation.

This algorithm is also naturally applied when 𝑃 is a book split into passages, the result can
be viewed as a book hyperlink graph.

During MRC environment construction, each query produces an answer that maps into a
path in the DecTSup- based MRC environment. Initially, most queries form new paths which



Figure 3: Building the lattice of DecTSup.

are then merged into a part of the future DecTSups. Once new batches of queries does not
construct new DecTSups, we form a lattice from them.

In Figure 3, we show the end of the learning session for building the lattice of DecTSups.
Most individual DecTSups are now built and new queries do not initiate additions of new paths
to DecTSups. Most of the DecTSups are completed and now form a lattice (shown by dotted
lines). Black nodes of DecTSup show nodes that have been formed by the time queries q1001, ...
are launched.

Parts of the DecTSups corresponding to the given queries are shown in color. For example,
query q1001 is connected by the blue arrow with its answer and then with its blue path in
the top-left DecTSup. This blue path has just been added. On the contrary, query q1002 is
mapped into the existing part of the DecTSup (shown in dotted red). Query q1001 requires a
new external passage h1004.

4.4. Decision Trees and Concept Lattices

The following phase is responsible for retrieving the relevant text passages from the obtained
DecTSupp of the documents. In this work, we propose to form a concept lattice of all DecTSups
for a corpus of documents to enable this corpus with a structure assuring effective MRC. For a
text and its DecTSup, we extract entities and their attributes used for decisions and form the
formal context.

We use the essential ideas of Lindig [10] algorithmwhich efficiently generates formal concepts
together with their subconcept-superconcept hierarchy in the form of concept lattice. The
algorithm builds the concept lattice by iteratively generating the neighbor concepts of a concept
⟨𝐴, 𝐵⟩, either top-down the lattice by adding new attributes to concept intents or bottom-up by
adding new objects to concept extents.

For each 𝐴 ⊆ 𝑋 and 𝐵 ⊆ 𝑌 we denote by 𝐴
′
a subset of 𝑌 and by 𝐵

′
a subset of 𝑋 defined by

𝐴
′
= {𝑦 ∈ 𝑌 | for each 𝑥 ∈ 𝐴 ∶ ℎ𝑥, 𝑦 𝑖 ∈ 𝐼 },

𝐵
′
= {𝑥 ∈ 𝑋 | for each 𝑦 ∈ 𝐵 ∶ ℎ𝑥, 𝑦 𝑖 ∈ 𝐼 }.

That is, 𝐴
′
is the set of all attributes (text entities) from Y shared by all objects (DecTSups)



from A (and similarly for 𝐵
′
).

A formal concept consists of a set A (so-called extent) of objects which fall under the concept
and a set B (so-called intent) of attributes that fall under the concept such that A is the set of all
objects sharing all attributes from B and, conversely, B is the collection of all attributes from Y
shared by all objects from A.

The algorithm is based on the fact that a concept ⟨𝐶, 𝐷⟩ is a neighbor of a given concept
⟨𝐴, 𝐵⟩ if 𝐷 is generated by 𝐵 ∪ {𝑦}, i.e. 𝐷 = (𝐵 ∪ {𝑦})

″
, where 𝑦 ∈ 𝑌\𝐵 is an attribute such that for

all attributes 𝑧 ∈ 𝐷 −- 𝐵 it holds that 𝐵 ∪ {𝑧} generates the same concept ⟨𝐶, 𝐷⟩, i.e. neighbors of
⟨𝐴, 𝐵⟩ = {⟨𝐶, 𝐷⟩|𝐷 = (𝐵 ∪ {𝑦})

″
, 𝑦 ∈ 𝑌\𝐵 such that (𝐵 ∪ {𝑧})

″
= 𝐷 for all 𝑧 ∈ 𝐷𝐵}.

Then a selection of a tree of concepts from the part of the concept lattice occurs. First, for
each concept 𝑐 = ⟨𝐴, 𝐵⟩ the number 𝐿𝑐 of all of its lower concepts is computed. Each lower
concept is counted for each different attribute added to the concept 𝑐, 𝑙𝑐. For instance, if a
concept 𝑑 = ⟨𝐶, 𝐷⟩ is generated from concept 𝑐 by adding either attribute 𝑥 or attribute 𝑦 (i.e.
𝐷 = (𝐵 ∪ {𝑥})

″
or 𝐷 = (𝐵 ∪ {𝑦})

″
, respectively), the concept 𝑑 is counted twice and 𝑙𝑐 is increased

by two.
Then a tree of concepts is chosen from the part of the concept lattice by iteratively going

from the greatest concept (generated by no attributes or, equivalently, by all objects) to minimal
concepts. The selection is based on the number 𝑙𝑐 of lower concepts of the currently considered
concept 𝑐.

4.5. Online Selection of Passages for a Query

At search time, to select the passage, we match the query with a chain of phrases for a path in
a DecTSup. We try to find such DecTSup so that as many chain phrases path(i) match query
phrases as possible.

𝐷𝑒𝑐𝑇 𝑆𝑢𝑝 ∶ ∑
𝑖

𝑠𝑐𝑜𝑟𝑒(𝑞 ∧ 𝑝𝑎𝑡ℎ(𝑖)𝐷𝑒𝑐𝑇 𝑆𝑢𝑝) → 𝑚𝑎𝑥

∧ is a syntactic generalization operator [11].
Once a single DecTSup is identified, we select the passages 𝑝𝑠 associated with matched nodes

of DecTSup.
In some cases, the best match between the query and path phrases can be distributed through

multiple DecTSups. Then the condition of connectedness in the lattice 𝐿 of DecTSups must be
maintained:

𝐷𝑒𝑐𝑇 𝑆𝑢𝑝𝑠(𝑗) ∶ ∑
𝑖,𝑗

𝑠𝑐𝑜𝑟𝑒(𝑞 ∧ 𝑝𝑎𝑡ℎ(𝑖)𝐷𝑒𝑐𝑇 𝑆𝑢𝑝(𝑗)) → 𝑚𝑎𝑥 &

& 𝑛𝑜𝑑𝑒(𝐷𝑒𝑐𝑇 𝑆𝑢𝑝𝑠(𝑗) ∈ 𝐷𝑒𝑐𝑇 𝑆𝑢𝑝𝑠(𝑘)) ∈ 𝐿.

To summarize the preference for the occurrence of an answer in a corpus of documents, we
prefer it to be in a single passage. If it is not possible, we extend this passage towards other
passages connected vis a DecTSup. If it is still insufficient for answer identification, we further
extend passages towards foreign DecTSups linked in a lattice. Finally, in the worst case scenario,
passages come from unrelated documents associated with DecTSups anywhere in the lattice.



Table 2
Evaluation results

Search domain
Baseline F1 (IR-
based)

F1 with synt.
gen. between 𝑞
and 𝑝

F1 with a set of
DecTSups

F1 with a lattice
of DecTSups

Bloating 76.3 77.0 79.3 80.4
Cough 75.2 76.8 76.9 82.4
Diarrhea 77.0 75.9 78.0 79.3
Dizziness 77.9 77.1 79.8 81.9
Fatigue 72.6 75.4 80.4 82.7
Fever 71.9 74.5 78.0 79.3
Headache 74.6 74.8 81.5 82.7
Muscle Cramp 77.3 76.0 80.6 81.0
Nausea 72.1 76.4 78.4 80.7
Throat irritation 75.9 73.2 79.5 82.3
Average 75.1 75.7 79.2 81.3

Linked lattice nodes correspond to passages containing the same entities plus minus one or
two, therefore, closely related. This is maintained by how the lattice is defined on the set of all
DecTSups.

5. Evaluation

We check the MRC model performance on the collection of medical instruction collected from
the WebMD website and syntactically generate the question that could be asked regarding the
retrieved passages. We select ten classes of diseases to diversify the experiments, and track
each processing step to identify the performance bottleneck. It should be mentioned that the
F1-score reported to assess the model’s performance is applied for each topic independently
assessing whether a retrieved answer is correct or not.

In the baseline, we rely on IR to identify passages in the fixed corpus of documents, so the
main source of errors is an improperly selected passage or a lack of appropriate passage in the
corpus. Our second baseline in the third column is syntactic generalization between query 𝑞
and passage 𝑝 which is better than keyword frequency maintained by IR but lags behind the
approach developed in this paper. In the fourth column, we show F1 of DecTSup-enabled MRC
environment. The fifth column shows the contribution of ideal, corrected DecTSups and the
last, sixth column should the contribution of the lattice of DecTSups, where individual trees are
organized to systematically identify additional passages which need to be involved in finding
the exact answer.

The second baseline is only 0.6% better then the IR-based document identification, which
makes the syntactic generalization insufficient for the robust identification of relevant passages
to form the exact comprehensive answer. We observe that an unstructured MRC can have a
boost of 4% F1-score by finding the best document by DecTSup environment. Proceeding from
IR passage selection to the one based on independent DecTSups turns out to be an ultimate win



for the MRC environment. A further upgrade from a set of DecTSups to a lattice gives further
2% boost in search performance.

6. Conclusion

In this work, we explored away to build decision trees from text relying on discourse analysis and
use this environment to boost the MRC model’s performance. We use DecTSup environment
for retrieving the relevant documents and passages, where the answer can be found. We
compare the DecTSup-based retrieval procedures with several baselines including syntactic
generalization for matching questions and passages and keywords matching on the set of the
medical instructions texts. We show that utilizing the DecTSup as the description of texts and
combining them into the concept lattice improves the performance of MRC by up to 6% on
average. In future studies, we will consider building a concept lattice from a textual description
of data [11], instead of a decision tree for authors’ instructions on how to do things and make
decisions in the course of it.

References

[1] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, W. Cohen, Open domain
question answering using early fusion of knowledge bases and text, in: Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing, Association
for Computational Linguistics, Brussels, Belgium, 2018, pp. 4231–4242. doi:10.18653/v1/
D18-1455.

[2] Y. Wang, K. Liu, J. Liu, W. He, Y. Lyu, H. Wu, S. Li, H. Wang, Multi-passage machine
reading comprehension with cross-passage answer verification, in: Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Association for Computational Linguistics, Melbourne, Australia, 2018, pp. 1918–1927.
doi:10.18653/v1/P18-1178.

[3] D. Chen, A. Fisch, J. Weston, A. Bordes, Reading Wikipedia to answer open-domain
questions, in: Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Association for Computational Linguistics,
Vancouver, Canada, 2017, pp. 1870–1879. doi:10.18653/v1/P17-1171.

[4] B. Galitsky, Chapter 3 - Obtaining supported decision trees from text for health system ap-
plications, Academic Press, 2022. doi:https://doi.org/10.1016/B978-0-12-824521-7.
00013-2.

[5] B. Galitsky, Matching parse thickets for open domain question answering, Data Knowledge
Engineering 107 (2017) 24–50. doi:https://doi.org/10.1016/j.datak.2016.11.002.

[6] W. Mann, S. Thompson, Rhetorical structure theory: Toward a functional theory of text
organization, Text 8 (1988). doi:10.1515/text.1.1988.8.3.243.

[7] B. Galitsky, Managing Customer Relations in an Explainable Way, Springer International
Publishing, Cham, 2020, pp. 309–377. doi:10.1007/978-3-030-52167-7_8.

[8] B. A. Galitsky, D. Ilvovsky, Validating correctness of textual explanation with complete
discourse trees, in: FCA4AI@IJCAI, 2019.

http://dx.doi.org/10.18653/v1/D18-1455
http://dx.doi.org/10.18653/v1/D18-1455
http://dx.doi.org/10.18653/v1/P18-1178
http://dx.doi.org/10.18653/v1/P17-1171
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-824521-7.00013-2
http://dx.doi.org/https://doi.org/10.1016/B978-0-12-824521-7.00013-2
http://dx.doi.org/https://doi.org/10.1016/j.datak.2016.11.002
http://dx.doi.org/10.1515/text.1.1988.8.3.243
http://dx.doi.org/10.1007/978-3-030-52167-7_8


[9] D. S. Sachan, S. Reddy, W. Hamilton, C. Dyer, D. Yogatama, End-to-end training of
multi-document reader and retriever for open-domain question answering, in: NeurIPS,
2021.

[10] C. Lindig, Fast concept analysis, in: Working with Conceptual Structures – Contributions
to ICCS 2000, Shaker Verlag, 2000, pp. 152–161.

[11] B. Galitsky, G. Dobrocsi, J. Rosa, S. Kuznetsov, Using generalization of syntactic parse
trees for taxonomy capture on the web, volume 6828, 2011, pp. 104–117. doi:10.1007/
978-3-642-22688-5_8.

http://dx.doi.org/10.1007/978-3-642-22688-5_8
http://dx.doi.org/10.1007/978-3-642-22688-5_8

	1 Introduction
	2 Background
	2.1 Supported Decision Trees

	3 Decision Chains and Discourse Structure
	3.1 Rhetorical Structure Theory and Decision Chains Construction

	4 DecTSup Environment for Machine Reading Comprehension
	4.1 Basic Example
	4.2 DecTSup MRC Architecture
	4.3 An Algorithm for Building DecTSup Environment
	4.4 Decision Trees and Concept Lattices
	4.5 Online Selection of Passages for a Query

	5 Evaluation
	6 Conclusion

