
FAIR Data APIs in the FAIR in Vivo Data Sharing
Platform⋆

Felix Schwagereit1,*,†, Martin Romacker1,*,†, Fabien Richard1,†, Robert Trypuz1,†,
Thomas Liener1,† and Olivier Roche1,†

1Roche Pharma Research and Early Development, Data & Analytics, Roche Innovation Center Basel, Switzerland

Abstract
Exposing and integrating data and its metadata in an industry production setting is challenging due
to the amount of data and the number of systems, technologies, and people involved. We propose
FAIR data APIs, based on REST endpoints and JSON-LD, as a method to accomplish machine-actionable
interoperability and semantic awareness. This paper demonstrates a concrete implementation of such a
FAIR data API as we discuss Roche’s FAIR in vivo data sharing platform (FISH).

Keywords
FAIR Principles, FAIR Data API, FAIR API, Ontology, Roche Terminology Service, Model-driven APIs

1. Introduction

Data, the collection of digital objects, is an asset that brings tremendous value to an organization
if it can be reused at any time and in any way without investing any major additional financial
and human resources [1, 2, 3]. To accomplish this, the data must be well understood externally
and internally. By external understanding, we mean machine-actionable1 information about
ownership, license conditions, permissions, formats, access points, and everything that can
be said about the data as an information artifact. In [4, p.4], it is named “the contextual
metadata surrounding a digital object (‘what is it?’)”. By internal understanding, we mean
an ontology that provides meaning to the data content and the means that make this data
machine-actionable through an ontology—in [4, p.4], it is named “the content of the digital
object itself (‘how do I process it/integrate it?’)”. As pointed out in the [4, p.3], technology is
no longer the reason why data still lacks proper external and internal understanding within
an organization; “the reason is, that we do not pay our valuable digital objects the careful

SEMANTICS 2022 EU: 18th International Conference on Semantic Systems, September 13-15, 2022, Vienna, Austria
*Corresponding authors.
†
These authors contributed equally.
$ felix.schwagereit@roche.com (F. Schwagereit); martin.romacker@roche.com (M. Romacker);
fabien.richard@roche.com (F. Richard); robert.trypuz@roche.com (R. Trypuz); thomas.liener@roche.com
(T. Liener); olivier.roche@roche.com (O. Roche)
� 0000-0003-2696-672X (F. Schwagereit); 0000-0001-6898-0226 (M. Romacker); 0000-0001-8192-3023 (F. Richard);
0000-0003-4042-9947 (R. Trypuz); 0000-0003-3257-9937 (T. Liener)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1We understand the phrase ‘machine actionable’ in the same way as in [4, p.3], i.e., as “a continuum of possible states
wherein a digital object provides increasingly more detailed information to an autonomously-acting, computational
data explorer.”

mailto:felix.schwagereit@roche.com
mailto:martin.romacker@roche.com
mailto:fabien.richard@roche.com
mailto:robert.trypuz@roche.com
mailto:thomas.liener@roche.com
mailto:olivier.roche@roche.com
https://orcid.org/0000-0003-2696-672X
https://orcid.org/0000-0001-6898-0226
https://orcid.org/0000-0001-8192-3023
https://orcid.org/0000-0003-4042-9947
https://orcid.org/0000-0003-3257-9937
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


attention they deserve.” The FAIR Guiding Principles have been proposed to help with better
data management, providing data owners with the means to expose proper machine-actionable
external and internal understanding. However, to our knowledge, implementing these principles
when building a FAIR system in the industry has not been described in detail yet.

This paper aims to show how the FAIR Guiding Principles have been followed when building
the FAIR in vivo data sharing platform (henceforward, FISH) at Roche. We will present how the
FAIRness of FISH has been achieved using application ontologies/models and carefully designed
API endpoints to expose FAIR data and metadata to other systems (henceforward, FAIR Data
APIs).

The paper is written with the following structure. Section 2 describes the FISH application
models, their design, and their rationale. Section 3 introduces the concept of FAIR Data API
and its usage in the software development process. Section 4 is dedicated to assessing the
FAIRness of FISH, focusing on the FAIR Data API as an essential component contributing to
FISH’s FAIRness. Finally, section 5 concludes the paper and presents an outlook on possible
enhancements of the FAIR Data API concept to turn it into a FAIR API.

2. Application ontologies with local restrictions

The FISH platform exposes FAIR data about non-clinical in vivo studies and consists of several
components (henceforward, applications) where each of them manages and stores data about
one primary digital object e.g. the Study Registration System (SRS) for studies, the Animal
Registration System (ARS) for animals, the Study Designer (SD) for study designs and executions,
the Biospecimen Registration System (BRS), and Assay Structure Definer (ASD) for assay
protocols. FISH platform architecture consists of microservices between and within the FISH
applications, relational databases for back-ends, JSON-based REST FAIR Data APIs, and graphic
user interfaces.

2.1. Application ontologies

With FAIRness in mind, the first step was to create the semantic application ontologies on
which the relational database schemas of FISH have been based. Semantic FISH ontologies
are modularized in the same way as the FISH application is. Every application ontology is
self-contained, i.e., contains only classes and properties relevant to the distinct FISH application
and specifies the meaning of vocabulary used in the application. However, FISH application
ontologies can share classes and properties when several FISH applications use those classes
and properties. For instance, the SD ontology contains selected properties of the class ‘Study’
that are specified by/in the Study Registration System’s ontology.

Regarding the expressive power of the FISH application ontologies, they are RDFS ontologies
extended with OWL classes and all types of OWL properties. Each application ontology is stored
in a separate named graph. Application ontologies are created through the Roche Terminology
Service (RTS) (see figure 1). Nevertheless, they can be serialized, e.g., to Turtle, and used by
external ontology editors.

In RTS, classes and properties of an application ontology (called "application model" ) come
from a reference ontology, called “Reference Model” (see the left column of the window in figure



Figure 1: Study design and its properties in RTS

1), that is founded on the Basic Formal Ontology and contains all the classes and properties
used by the RTS application models. The Reference Model contributes to data harmonization
and interoperability across all the Roche applications described by the RTS application models.
Classes and properties are organized into taxonomies and have labels and definitions compliant
with the Naming and Textual Definitions conventions of the Open Biological and Biomedical
Ontologies (OBO) Foundry.

An RTS application model can enforce a more restrictive meaning of classes and properties
in the context of a given application. For instance, the FISH SD application requires that a study
design is planned for exactly one non-clinical in vivo study (see figures 1 and 2). This constraint
may not generally be valid outside of the FISH SD application. That is why we decided to use
SHACL2 node shapes instead of OWL restrictions to specify cardinality constraints, domains,
and ranges of properties within application models (see figure 3). The SHACL shapes of an
application model are stored in the named graph of the model. RTS allows for translating the
application models with the SHACL shapes into OWL ontologies with OWL restrictions (see
figure 2) and serializing them to Turtle. However, it should be remembered that such obtained
OWL restrictions do not specify the general meaning of the classes and properties but reflect

2https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/


local business rules specific to the application model.

Figure 2: Study design htbpand OWL restriction

The application models’ role extends beyond being conceptual schemas for the FISH databases
and specifying the business rules since they also provide a vocabulary for the FISH’s REST APIs.
Namely, the payloads of the REST APIs are required to be serialized as JSON-LD and compliant
with the application models. Section 3 will elaborate on this topic.

2.2. GUPRIs for application ontology elements and data instances

There is no FAIR without Globally Unique, Persistent and Resolvable Identifiers (GUPRIs).
The FISH architecture decisions were that each FISH application is the reference system of
some FISH application ontology classes and provides GUPRIs for the data instances classified
by these classes. For instance, the Study Registration System (SRS) is the only authorized
system to provide GUPRIs for the class ‘Study’ data instances. All the other systems must
use the SRS GUPRIs when using or exposing the class ‘Study’ data instances. RTS is another
example of a reference system and provides the FISH applications with the GUPRIs of the
RTS application models’ elements, i.e., the classes, properties, terminologies, and their digital
objects. The FISH GUPRIs have the following schemas: when a class is the primary digital
object defined by a FISH application), the GUPRI schema for the data instances of this class is
https://id.roche.com/[FISH_component_code]/accession (e.g. https://id.roche.com/a2/123 for the
FISH Study No 123), when a class is not a primary digital object, the GUPRI schema for the data
instances of this class is https://id.roche.com/[FISH_component_code]/[classname]/accession,
where accession is the primary key of a class instance generated by a FISH application database.
The RTS GUPRI schema is https://ontology.roche.com/ROX[uniquenumber], for defining the

https://id.roche.com/[FISH_component_code]/accession
https://id.roche.com/a2/123
https://id.roche.com/[FISH_component_code]/[class name]/accession
https://ontology.roche.com/ROX[unique number]


prefix objects within the application model the dash:stem3 property is used.

3. FAIR Data APIs

Data stored in a semantic-aware database like a triple store can be easily retrieved using SPARQL.
However, underlying systems often use more traditional tabular-based databases, as in FISH’s
case. To exchange data between systems, the de-facto standard in a microservice architecture is
JSON-based API. We wrote above that FISH data stored in the relational databases is application
ontology-compliant. The challenge was making the data machine-actionable through the JSON-
based APIs, letting the external agents know what data FISH provides, and letting the external
systems understand the APIs’ payloads so they can benefit from FISH data. We propose the idea
of FAIR Data APIs that use the application ontologies and JSON-LD to expose FAIR data. We
believe semantically aware APIs should be vital to any industry-scale microservice architecture.

3.1. JSON-LD for payload

FISH FAIR Data APIs use JSON-LD for their payloads (i.e., the APIs’ requests and responses).
JSON-LD is a serialization format based on JSON. It is a W3C recommendation and is extensively
used by many important projects to encode knowledge (e.g., schema.org and Google Knowledge
Graph). By turning JSON into JSON-LD, it is possible to add semantics to the API reply, which
adds much value: instead of “just” data, FAIR data is retrieved from databases via the API.
JSON-LD combines three advantages: 1) it can serialize semantic triples, 2) it is JSON-based
and therefore allows the use of the existing tools supporting JSON, and 3) it is widely used
by application developers. Thus, JSON-LD provides a common ground where (semantic) data
modelers and (application) developers can meet and communicate.

The application ontologies restrict requests and responses of the FAIR Data APIs. Similarly to
schema.org they specify what classes and properties can be used and determine the properties’
domains and ranges. Additionally, the application ontologies specify cardinality restrictions by
SHACL shapes (see figure 3).

Below we present a FISH GET API response that finds study designs by the local study design
identifier (id). For study design id equal 1 we have:

Listing 1: FISH GET API response for study design id equal 1.
1 {
2 "@context":{
3 "@import":"https://ontology-service.roche.com/rts2-api/v3/appmodels/ROX38389248444017485/context

?version=2022-06-08T09%3A05%3A30.000Z"
4 },
5 "@id":"https://id.roche.com/a6/1",
6 "@type":"StudyDesign",
7 "plannedFor":{
8 "@id":"https://id.roche.com/a2/1",
9 "@type":"NonClinicalInVivoStudy"

10 },
11 "numberOfFirstStudyDay":1,
12 "comment":"some comment",

3https://datashapes.org/constraints.html#StemConstraintComponent

dash:stem
https://datashapes.org/constraints.html#StemConstraintComponent


13 "reviewedBy":{
14 "@id":"https://id.roche.com/xyz/fishcur1",
15 "@type":"Employee",
16 "userName":"GLO FISH CURATOR"
17 },
18 "realizedBy":{
19 "@id":"https://id.roche.com/ao/8",
20 "@type":"StudyDesignExecution"
21 },
22 "isPrimaryTopicOf":{
23 "@id":"https://id.roche.com/a6/DatasetRecord/1"
24 "@type":"DatasetRecord",
25 "createdBy":{
26 "@id":"https://id.roche.com/xyz/max007",
27 "@type":"Employee",
28 "userName":"Max Mustermann"
29 },
30 "lastModifiedBy":{
31 "@id":"https://id.roche.com/xyz/max007",
32 "@type":"Employee",
33 "userName":"Max Mustermann"
34 },
35 "createdOn":"2022-05-27T14:49:23.904+00:00",
36 "lastModifiedOn":"2022-05-31T11:52:28.197+00:00",
37 "status":{
38 "@id":"ROX38098944443956511",
39 "prefLabel":"Archived"
40 }
41 }
42 }

In the above example of a JSON-LD response from a FAIR Data API we find GUPRIs of the
instance data e.g. https://id.roche.com/a6/1 for the study design id=1 and https://id.roche.com/
ao/8 for a study design execution id=8 that the FISH applications has created according to
the GUPRI schemas (see section 2.2). It is strongly recommended to make the GUPRI and the
instance type explicit via @id and @type.

The payload is structured by the usage of keys and values, e.g., "@type" and
"StudyDesign". The keys are usually not directly defined as GUPRIs but as speaking

character strings. JSON-LD allows for using strings instead of GUPRIs as long as a mapping
from strings to GUPRIs is defined in the JSON-LD context (see listing 2). In RTS we assign
and record a key (called "local technical key" e.g. studyDesign) for the GUPRI of a class or a
property within an application model. Local technical keys are defined by means of SHACL’s
node shapes (see figure 3). Each shape can have a property called prefLocalTechId. We have
the obvious requirement that the local technical keys are unique within one application model;
otherwise, they could not be used as local keys to identify a shape in the application model
(e.g. the node shape provided below) or generate a valid JSON-LD context from the application
model.

The local technical keys are used to establish a mapping between SHACL shapes and key-
value pairs in JSON-LD. Such mapping can be expressed in the JSON-LD context. Using the
local technical keys, we have implemented a method to generate a context for a SHACL model
automatically. The principle for the context generation is to create for each local technical key
mapping to the class or property GUPRI (see listing 2) that the node shape or Property Shape
is defined on. These contexts can always be generated on the fly, and RTS offers a context

https://id.roche.com/a6/1
https://id.roche.com/ao/8
https://id.roche.com/ao/8


Figure 3: SHACL shape expressing a local restriction that every study design is planned for exactly one
non-clinical in vivo study. It also provides the local technical key and the DASH stem/GUPRI prefix.

service for other applications. In JSON-LD payloads, our context generation REST endpoint
can be referenced via @import with some agreed parameters so that the context for a specific
SHACL model can always be looked up (see figure 3). A fragment of the context imported by
the payload above looks like in listing 2.

Listing 2: An example of context
1 {
2 "@context":{
3 "@base":"http://ontology.roche.com/",
4 "id":"@id",
5 "type":"@type",
6 "rts":"http://ontology.roche.com/",
7 "xsd":"http://www.w3.org/2001/XMLSchema#",
8 "StudyDesign":"rts:ROX38338272444006752",
9 "plannedFor":{



10 "@id":"rts:ROX38338272444006757",
11 "@type":"@id"
12 },
13 "numberOfFirstStudyDay":{
14 "@id":"rts:ROX38347776444009619",
15 "@type":"xsd:integer"
16 },
17 "comment":{
18 "@id":"rts:ROX38350368444009851",
19 "@type":"xsd:string"
20 },
21 ...
22 }
23 }

With the generated context, we are able to translate a given JSON-LD back into triples with
the application ontologies’ URIs. Based on the generated context, we can offer a validation
service that accepts a JSON-LD payload and responds to whether the payload fulfills a specific
SHACL model (or not). The service is currently implemented with the RDF4J-SHACL library.

3.2. JSON-LD payload examples

To support the implementation and usage of FAIR data APIs and, in particular, to support the
developers in their daily work, we offer one more helpful way to use the information we have
specified within the application models. We have implemented a simple heuristic to generate
valid JSON-LD payloads that cover all shapes in the application model by generating artificial
(i.e., exemplary) objects and triples. In this algorithm, we use classes, properties, datatypes
of datatype properties, and known object URIs to auto-generate a payload that mimics a real
payload that a real REST API endpoint can implement.

We want to highlight a particular aspect due to one fundamental difference between a JSON-
LD representation and an RDF representation of triples. Both are directed graphs, but JSON-LD
is also a tree with a root element. In typical REST API endpoints, the root element is the object
the endpoint is working on. E.g., an endpoint to retrieve details on a particular id of a registered
object of type Study will retrieve a JSON-LD object as the root element of type Study. We made
the node shape a parameter of our payload generation algorithm so that the algorithm starts
traversing the graph of SHACL shapes at this shape further down to other shapes connected
via Property Shapes to generate the example payload until a given depth is reached.

Listing 3: An example of automatically generated payload
1 {
2 "@context":"https://ontology-services.roche.com/rts2-api/v3/appmodels/ROX38389248444017485/context?

version=2022-04-07T14%3A46%3A15.000Z",
3 "@graph":{
4 "@id":"https://id.roche.com/a6/1",
5 "@type":"StudyDesign",
6 "comment":"string",
7 "containsPlanOfActivitySequence":[
8 {
9 "@type":"PlanOfActivitySequence",

10 "@id":"https://id.roche.com/a6/1/planActivitySeq/1",
11 "doneOn":{
12 "@type":"SubjectGroup",
13 "@id":"https://id.roche.com/a6/1/studyGroups/1"



14 }
15 },
16 ...
17 ],
18 "isPrimaryTopicOf":{
19 "@id":"https://id.roche.com/a6/DatasetRecord/1"
20 "@type":"DatasetRecord",
21 "createdBy":{
22 "@id":"https://id.roche.com/xyz/bond_007",
23 "@type":"Employee"
24 },
25 "createdOn":"2021-08-26T14:44:11.882Z",
26 "lastlyModifiedBy":{
27 "@id":"https://id.roche.com/xyz/bond_007",
28 "@type":"Employee"
29 },
30 "lastlyModifiedOn":"2021-08-26T14:44:11.882Z",
31 "status":{
32 "@id":"rts:ROX1446033330206",
33 "prefLabel":"Drafted"
34 }
35 },
36 "numberOfFirstStudyDay":123,
37 "plannedFor":{
38 "@type":"NonClinicalInvivoStudy",
39 "hasParticipant":[
40 {
41 "@type":"Subject",
42 "@id":"https://id.roche.com/a6/1/subjects/1"
43 },
44 ...
45 ]
46 },
47 ...
48 }
49 }

3.3. Usage in the software development process

Figure 4: Model-driven API development

The building blocks de-
scribed above have been
made part of the software
development process as
outlined in Figure 4. We
support this process by
implementing these build-
ing blocks within our RTS
application that the soft-
ware developers can di-
rectly use.

Based on the functional
requirements, the applica-
tion model is developed by
model engineers with on-



tology elements from the Reference Model. The application model should cover all the data
elements received as input or provided as output from the API that will be built. Once designed,
the application model is used to auto-generate a single JSON-LD in the RTS application. This
generated context is referenced in all JSON-LD payloads of the API (e.g., in Listing 1). On
demand, the API developers can also use the RTS application to auto-generate JSON-LD ex-
ample payloads for objects based on the application model as a blueprint for implementing
or interpreting payloads within the API. When an API implementation has been coded, the
developer can then use functionality in RTS to auto-validate the payloads of their particular
endpoints against the application model to check if the implementation is aligned with the
application model.

4. FAIR Data APIs and the FAIR Guiding Principles

It is evident that to have a FAIR data ecosystem, the API itself plays an essential role. No
less important are modeling, preparing, and cleaning the data. Also, additional services like
a terminology service might be necessary to accomplish a FAIR Data API. The FAIR maturity
indicators have been published to help assess the FAIRness of data or systems (see e.g. [5, 6, 7]).
Many FAIR maturity indicators—namely F1, F2, F3, A2, I2 and I3—need to be fulfilled as a
prerequisite for implementing a FAIR Data API, and be taken into account during the design
phase of a FAIR system. Some FAIR maturity indicators can be facilitated and supported by
implementing the FAIR Data API e.g. F4, A1, A1.1, A1.2, and I1. Below we show how each
FAIR maturity indicator is addressed by FISH and its FAIR Data APIs.

• F1. (meta)data are assigned a globally unique and persistent identifier
Both FISH GUPRIs, for instance, data (see section 2.2), and RTS GUPRIs, for metadata and
onotology elements, are resolvable, unique, and persistent.

• F2. data are described with rich metadata (defined by R1 below)
Primary digital objects are described with the resource (aka dataset) records by using
properties “has status”, “is created by”, “is created on”, “is lastly modified by”, “is lastly
modified on”, and “is locked by source system” (see lines 22-40 in listing 1)

• F3. metadata clearly and explicitly include the identifier of the data it describes
Primary digital objects and the resource records are linked with the property “is primary
topic of” (see line 22 in listing 1).

• F4. (meta)data are registered or indexed in a searchable resource
FAIR Data APIs dedicated to search make this principle fulfilled. Responses of the APIs
are serialized in JSON-LD and comply with the application models.

• A1, A1.1, A1.2 (meta)data are retrievable by their identifier using a standardized communi-
cations protocol, the protocol is open, free, and universally implementable, and the protocol
allows for an authentication and authorization procedure, where necessary
HTTPs is used as a communication protocol, and usage of the API can be restricted to
groups and users.

• A2. metadata are accessible, even when the data are no longer available
FISH data and metadata are stored in separate databases and can be accessed by different
APIs.



• I1. (meta)data use a formal, accessible, shared and broadly applicable language for knowledge
representation
The application models describe metadata and are expressed in the RDFS extended with
some OWL elements (see section 2.1); FISH FAIR Data APIs’ responses—that are serialized
in JSON-LD and are application models compliant (see section 3.1)– guarantee that I1 is
fulfilled for FISH.

• I2. (meta)data use vocabularies that follow FAIR principles
RTS controls the application models, which strive to be FAIR even though RTS is not
open. FISH FAIR Data APIs are compliant with the FISH application models (see section
2.1), which makes FISH (meta)data machine-actionable.

• I3. (meta)data include qualified references to other (meta)data
The rich catalog of cross-references that RTS provides connects the in-house digital
objects to the reference ontology ones.

• R1, R1.1, R1.2, R1.3 meta(data) are richly described with a plurality of accurate and
relevant attributes, (meta)data are released with a clear and accessible data usage license,
(meta)data are associated with detailed provenance, and (meta)data meet domain-relevant
community standards
They are fulfilled by re-using community standards (e.g DCAT, SKOS) as much as possible
and including provenance data in the application models. As FISH is an internal system,
licensing is not applicable.

5. Conclusion

The FAIR Guiding Principles are essential to maximizing the value of data, especially in a
data-heavy and complex landscape like the life science industry. We have described an imple-
mentation of an API designed to expose FAIR data using ontologies and JSON-LD to reveal
the meaning and context of digital objects. The shown example, the FAIR in vivo data sharing
platform, is a system in production that takes full advantage of semantic technologies.

The sheer size and complexity of a company like Roche and the “in silo” implementation
of numerous systems make data fragmentation inevitable. We see FAIR Data APIs as a way
to have a semantic layer on top of data silos, enabling semantic data and system integration.
The FAIR Guiding Principles should be considered for data, processes, and technical solutions
like API design to accomplish the vision of a company-wide integrated data ecosystem. In a
company with a data-centric culture digital objects, their exchange and governance must be
treated as first-class assets.

We discussed FAIR data APIs in this paper. However, we did not discuss the FAIRness of the
API itself. We believe there is a difference between a FAIR Data API and a FAIR API. We propose
that a FAIR API has to contain 1) FAIR metadata about itself (e.g., owned by, contact, is about,
description), 2) must not but should contain FAIR data, and 3) must contain HATEOAS links to
support machine interpretability: given a root endpoint, one should be able to explore the API
without prior knowledge. The semantic meaning of keys and values in a FAIR API should be
captured, e.g., via JSON-LD context.



Acknowledgments

We would like to thank Joachim Rupp and Eng. Krzysztof Majewski for their insightful comments
and suggestions while working on the FAIR Data API concept. We would also like to extend
our thanks to the project teams of RTS and FISH, particularly Christian Blumenröhr, for their
professional approach and openness to implementing the FAIR Guiding Principles.

References

[1] Maximizing data value for biopharma through FAIR and quality implementation: FAIR plus
Q, Drug Discovery Today 27 (2022) 1441–1447.

[2] H. van Vlijmen, A. Mons, A. Waalkens, et al., The need of industry to go FAIR, Data
Intelligence 2 (2020) 276 – 284.

[3] J. Wise, A. G. de Barron, A. Splendiani, et al., Implementation and relevance of FAIR data
principles in biopharmaceutical R&D, Drug Discovery Today 24 (2019) 933–938.

[4] M. Wilkinson, M. Dumontier, et al., The FAIR Guiding Principles for scientific data manage-
ment and stewardship: Comment, Scientific Data 3 (2016).

[5] M. D. Wilkinson, M. Dumontier, et al., Evaluating FAIR Maturity Through a Scalable,
Automated, Community-Governed Framework, Scientific Data 6 (2019).

[6] FAIR Data Maturity Model: specification and guidelines, 2020. URL:
https://www.rd-alliance.org/group/fair-data-maturity-model-wg/outcomes/
fair-data-maturity-model-specification-and-guidelines-0.

[7] The Pistoia Alliance FAIR Toolkit, 2022. URL: https://fairtoolkit.pistoiaalliance.org.

https://www.rd-alliance.org/group/fair-data-maturity-model-wg/outcomes/fair-data-maturity-model-specification-and-guidelines-0
https://www.rd-alliance.org/group/fair-data-maturity-model-wg/outcomes/fair-data-maturity-model-specification-and-guidelines-0
https://fairtoolkit.pistoiaalliance.org

	1 Introduction
	2 Application ontologies with local restrictions
	2.1 Application ontologies
	2.2 GUPRIs for application ontology elements and data instances

	3 FAIR Data APIs
	3.1 JSON-LD for payload
	3.2 JSON-LD payload examples
	3.3 Usage in the software development process

	4 FAIR Data APIs and the FAIR Guiding Principles
	5 Conclusion

