
Strong Admissibility, a Tractable Algorithmic
Approach
Martin Caminada1, Sri Harikrishnan1

1Cardiff University, School of Computer Science & Informatics

Abstract
In the current paper, we present two polynomial algorithms for constructing relatively small strongly
admissible labellings, with associated min-max numberings, for a particular argument. These labellings
can be used as relatively small explanations for the argument’s membership of the grounded extension.
Although our algorithms are not guaranteed to yield an absolute minimal strongly admissible labelling
for the argument (as doing so would have implied an exponential complexity), our best performing
algorithm yields results that are only marginally larger. Moreover, the runtime of this algorithm is
an order of magnitude smaller than that of the existing approach for computing an absolute minimal
strongly admissible labelling for a particular argument. As such, we believe that our algorithms can be of
practical value in situations where the aim is to construct a minimal or near-minimal strongly admissible
labelling in a time-efficient way.

Keywords
strong admissibility, polynomial algorithms

1. Introduction

In formal argumentation, one would sometimes like to show that a particular argument is
(credulously) accepted according to a particular argumentation semantics, without having
to construct the entire extension the argument is contained in. For instance, to show that
an argument is in a preferred extension, it is not necessary to construct the entire preferred
extension. Instead, it is sufficient to construct a set of arguments that is admissible. Similarly,
to show that an argument is in the grounded extension, it is not necessary to construct the
entire grounded extension. Instead, it is sufficient to construct a set of arguments that is strongly
admissible.

The concept of strong admissibility was introduced by Baroni and Giacomin [1] as one of the
properties to describe and categorise argumentation semantics. It was subsequently studied
by Caminada and Dunne [2, 3] who further developed strong admissibility in both its set and
labelling form. As a strongly admissible set (labelling) can be used to explain that a particular
argument is in the grounded extension (for instance, by using the discussion game of [4]) a
relevant question is whether one can identify an explanation that is minimal. That is, given an
argument 𝐴 that is in the grounded extension, how can one obtain:
(1) a strongly admissible set that contains 𝐴, of which the number of arguments is minimal

SAFA’22: Fourth International Workshop on Systems and Algorithms for Formal Argumentation 2022, September 13,
2022, Cardiff, Wales, United Kingdom
$ CaminadaM@cardiff.ac.uk (M. Caminada); HarikrishnanS@cardiff.ac.uk (S. Harikrishnan)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

33

mailto:CaminadaM@cardiff.ac.uk
mailto:HarikrishnanS@cardiff.ac.uk
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Martin Caminada et al. CEUR Workshop Proceedings 33–44

among all strongly admissible sets containing 𝐴, and
(2) a strongly admissible labelling that labels 𝐴 in, of which the number of in and out labelled
arguments (its size, cf. [5]) is minimal among all strongly admissible labellings that label 𝐴 in.

It has been found that the verification problem of (1) is NP-complete [6] whereas the veri-
fication problem of (2) is co-NP-complete [5]. Moreover, it has also been observed that even
computing a 𝑐-approximation for the minimum size of a strongly admissible set for a given
argument is NP-hard for every 𝑐 ≥ 1 [6]. This is in sharp contrast with the complexity of the
general verification problem of strong admissibility (i.e. verifying whether a set/labelling is
strongly admissible, without the constraint that it also has to be minimal) which has been found
to be polynomial [3].

The complexity results related to minimal strong admissibility pose a problem when the
aim is to provide the user with a relatively small explanation of why a particular argument
is in the grounded extension. For this, one can either apply an algorithmic approach that
yields an absolute minimal explanation, but has an exponential runtime, or one can apply an
algorithmic approach that has a less than exponential runtime, but does not come with any
formal guarantees of how close the outcome is to an absolute minimal explanation. The former
approach is taken in [6]. The latter approach is taken in our current paper. As the complexity
results from [6] prevent us from giving any theory-based guarantees regarding how close the
outcome of the algorithm is to an absolute minimal strongly admissible labelling, we will instead
assess the performance of the algorithm using a wide range of benchmark examples.

2. Preliminaries

In the current section, we briefly restate some of the key concepts of formal argumentation
theory, including strong admissibility. For current purposes, we restrict ourselves to finite
argumentation frameworks.

Definition 1. An argumentation framework is a pair (Ar , att) where Ar is a finite set of
arguments and att is a binary relation on Ar . For any 𝑥, 𝑦 ∈ Ar we say that 𝑥 attacks 𝑦 iff
(𝑥, 𝑦) ∈ att .

If 𝑥 is an argument, we write 𝑥+ for the arguments attacked by 𝑥 and 𝑥− for the arguments
that attack 𝑥. As for notation, we use lower case letters at the end of the alphabet (such as 𝑥, 𝑦
and 𝑧) to denote variables containing arguments, upper case letters at the end of the alphabet
(such as 𝑋 , 𝑌 and 𝑍) to denote program variables containing arguments, and upper case letters
at the start of the alphabet (such as 𝐴, 𝐵 and 𝐶) to denote concrete instances of arguments.
For current purposes, we apply the labelling-based version of abstract argumentation theory,
following [7, 8].

Definition 2. Let (Ar , att) be an argumentation framework. An argument labelling is a function
ℒ𝑎𝑏 : Ar → {in, out, undec}. An argument labelling is called an admissible labelling iff for
each 𝑥 ∈ Ar it holds that:

• if ℒ𝑎𝑏(𝑥) = in then for each 𝑦 that attacks 𝑥 it holds that ℒ𝑎𝑏(𝑦) = out

• if ℒ𝑎𝑏(𝑥) = out then there exists a 𝑦 that attacks 𝑥 such that ℒ𝑎𝑏(𝑦) = in

34

Martin Caminada et al. CEUR Workshop Proceedings 33–44

ℒ𝑎𝑏 is called a complete labelling iff it is an admissible labelling and for each 𝑥 ∈ Ar it also holds
that:

• if ℒ𝑎𝑏(𝑥) = undec then there is a 𝑦 that attacks 𝑥 such that ℒ𝑎𝑏(𝑦) = undec, and for
each 𝑦 that attacks 𝑥 such that ℒ𝑎𝑏(𝑦) ̸= undec it holds that ℒ𝑎𝑏(𝑦) = out

As a labelling is a function, we sometimes write it as a set of pairs. Also, if ℒ𝑎𝑏 is a labelling,
we write in(ℒ𝑎𝑏) for {𝑥 ∈ Ar | ℒ𝑎𝑏(𝑥) = in}, out(ℒ𝑎𝑏) for {𝑥 ∈ Ar | ℒ𝑎𝑏(𝑥) = out} and
undec(ℒ𝑎𝑏) for {𝑥 ∈ Ar | ℒ𝑎𝑏(𝑥) = undec}. As a labelling is also a partition of the arguments
into sets of in-labelled arguments, out-labelled arguments and undec-labelled arguments, we
sometimes write it as a triplet (in(ℒ𝑎𝑏), out(ℒ𝑎𝑏), undec(ℒ𝑎𝑏)).
Definition 3 ([9]). Let ℒ𝑎𝑏 and ℒ𝑎𝑏′ be argument labellings of argumentation framework
(Ar , att). We say that ℒ𝑎𝑏 ⊑ ℒ𝑎𝑏′ iff in(ℒ𝑎𝑏) ⊆ in(ℒ𝑎𝑏′) and out(ℒ𝑎𝑏) ⊆ out(ℒ𝑎𝑏′).
Definition 4. Let ℒ𝑎𝑏 be a complete labelling of argumentation framework (Ar , att). ℒ𝑎𝑏 is
said to be the grounded labelling iff ℒ𝑎𝑏 is the (unique) smallest (w.r.t. ⊑) complete labelling.

We refer to the size of a labellingℒ𝑎𝑏 as |in(ℒ𝑎𝑏)∪out(ℒ𝑎𝑏)|. We observe that ifℒ𝑎𝑏 ⊑ ℒ𝑎𝑏′
then the size of ℒ𝑎𝑏 is smaller or equal to the size of ℒ𝑎𝑏′, but not necessarily vice versa. In
the remainder of the current paper, we use the terms smaller, bigger, minimal and maximal in
relation to the size of the respective labellings, unless stated otherwise.

The next step is to define a strongly admissible labelling. In order to do so, we need the
concept of a min-max numbering [3].1

Definition 5. Let ℒ𝑎𝑏 be an admissible labelling of argumentation framework (Ar , att). A
min-max numbering is a total functionℳℳℒ𝑎𝑏 : in(ℒ𝑎𝑏) ∪ out(ℒ𝑎𝑏)→ N ∪ {∞} such that
for each 𝑥 ∈ in(ℒ𝑎𝑏) ∪ out(ℒ𝑎𝑏) it holds that:

• if ℒ𝑎𝑏(𝑥) = in then ℳℳℒ𝑎𝑏(𝑥) = 𝑚𝑎𝑥({ℳℳℒ𝑎𝑏(𝑦) | 𝑦 attacks 𝑥 and ℒ𝑎𝑏(𝑦) =
out}) + 1 (with 𝑚𝑎𝑥(∅) defined as 0)

• if ℒ𝑎𝑏(𝑥) = out thenℳℳℒ𝑎𝑏(𝑥) = 𝑚𝑖𝑛({ℳℳℒ𝑎𝑏(𝑦) | 𝑦 attacks 𝑥 and ℒ𝑎𝑏(𝑦) =
in}) + 1 (with 𝑚𝑖𝑛(∅) defined as∞)

It has been proved that every admissible labelling has a unique min-max numbering [3]. A
strongly admissible labelling can then be defined as follows [3].

Definition 6. A strongly admissible labelling is an admissible labelling whose min-max number-
ing yields natural numbers only (no argument is numbered∞).

As an example (taken from [3]), consider the argumentation framework of Figure 1. Here,
the admissible labelling ℒ𝑎𝑏1 = ({𝐴,𝐶, 𝐹,𝐺}, {𝐵,𝐸,𝐻}, {𝐷}) has min-max numbering
{(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐸 : 4), (𝐹 : 5), (𝐺 : ∞), (𝐻 : ∞)}, which means that it is not
strongly admissible. The admissible labelling ℒ𝑎𝑏2 = ({𝐴,𝐶,𝐷, 𝐹}, {𝐵,𝐸}, {𝐺,𝐻}) has
min-max numbering {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐷 : 1), (𝐸 : 2), (𝐹 : 3)}, which means that it
is strongly admissible.

It has been shown that the strongly admissible labellings form a lattice (w.r.t. ⊑) of which
the all-undec labelling is the bottom element and the grounded labelling is the top element [3].
1Please notice that for the purpose of Definition 5, ∞ is defined such that ∀𝑥 ∈ N : ∞+𝑥 = ∞ and𝑚𝑎𝑥({𝑥,∞}) =
∞. Also, the condition that “ℒ𝑎𝑏(𝑦) = out” in the first point of Definition 5 is technically superfluous, but has
been added for clarity.

35

Martin Caminada et al. CEUR Workshop Proceedings 33–44

HG

A

D

B

E F

C

Figure 1: An example of an argumentation framework.

3. The Algorithms

In the current section, we present an algorithmic approach for computing a relatively small
strongly admissible labelling. For this, we provide three different algorithms. The first algorithm
(Algorithm 1) basically constructs a strongly admissible labelling bottom-up, starting with the
arguments that have no attackers and continuing until the main argument (the argument for
which one want to construct the strongly admissible labelling, sometimes also referred to as
the argument in question) is labelled in. The second algorithm (Algorithm 2) then takes the
output of the first algorithm and tries to prune it. That is, it tries to identify only those in

and out labelled arguments that are actually needed for the strongly admissible labelling. The
third algorithm (Algorithm 3) then combines Algorithm 1 (which is used as the construction
phase) and Algorithm 2 (which is used as the pruning phase). Overall, we assume that it has
already been established that the main argument is in the grounded extension and that the aim
is merely to find a (relatively small) explanation for this.

3.1. Algorithm 1

The basic idea of Algorithm 1 is to start constructing the grounded labelling bottom-up, until we
reach the main argument (that is, until we reach the argument that we are trying to construct
a strongly admissible labelling for; this argument should hence be labelled in). As such, the
idea is to take an algorithm for computing the grounded labelling and modify it accordingly.
We have chosen the algorithm of [10] for this purpose, as it has been shown to run faster than
some of its alternatives (such as [11]). We had to adjust this algorithm in two ways. First, as
mentioned above, we want the algorithm to stop once it hits the main argument, instead of
continuing to construct the entire grounded labelling. Second, we want it to compute not just
the strongly admissible labelling itself, but also its associated min-max numbering.

Obtaining the min-max numbering is important, as it can be used to show that the obtained
admissible labelling is indeed strongly admissible, through the absence of ∞. Additionally,
the min-max numbering is also needed for some of the applications of strong admissibility, in
particular the Grounded Discussion Game [4] where the combination of a strongly admissible
labelling and its associated min-max numbering serves as a roadmap for obtaining a winning
strategy.

Instead of first computing the strongly admissible labelling and then proceeding to compute
the min-max numbering, the idea is to compute both the strongly admissible labelling and the
min-max numbering in just a single pass, in order to achieve the best runtime performance.

To see how the algorithm works, consider again the argumentation framework of Figure
1. Let 𝐶 be the main argument. At the start of the first iteration of the while loop (line

36

Algorithm 1 Construct a strongly admissible labelling that labels 𝐴 in and its associated
min-max numbering.

Input: An argumentation framework AF = (Ar , att),
an argument 𝐴 ∈ Ar that is in the grounded extension of AF .
Output: A strongly admissible labelling ℒ𝑎𝑏 where 𝐴 ∈ in(ℒ𝑎𝑏),
the associated min-max numberingℳℳℒ𝑎𝑏.

1: // We start with the type definitions
2: ℒ𝑎𝑏 : Ar → {in, out, undec}
3: ℳℳℒ𝑎𝑏 : in(ℒ𝑎𝑏) ∪ out(ℒ𝑎𝑏)→ N ∪ {∞}
4: undec_pre : Ar → N
5: unproc_in : [𝑋1, ...𝑋𝑛] (𝑋𝑖 ∈ Ar for each 1 ≤ 𝑖 ≤ 𝑛, with 𝑛 ≥ 0)
6:

7: // Next, we initialize and process the arguments that have no attackers
8: unproc_in← [] // unproc_in becomes the empty list of arguments
9: for each 𝑋 ∈ Ar do

10: ℒ𝑎𝑏(𝑋)← undec

11: undec_pre(𝑋)← |𝑋−|
12: if undec_pre(𝑋) = 0 then
13: add 𝑋 to the rear of unproc_in
14: ℒ𝑎𝑏(𝑋)← in

15: ℳℳℒ𝑎𝑏(𝑋)← 1
16: if 𝑋 = 𝐴 then return ℒ𝑎𝑏 andℳℳℒ𝑎𝑏
17: end if
18: end for
19:

20: // We proceed to process the arguments that do have attackers
21: while unproc_in is not empty do
22: let 𝑋 be the argument at the front of unproc_in
23: remove 𝑋 from unproc_in
24: for each 𝑌 ∈ 𝑋+ with ℒ𝑎𝑏(𝑌) ̸= out do
25: ℒ𝑎𝑏(𝑌)← out

26: ℳℳℒ𝑎𝑏(𝑌)←ℳℳℒ𝑎𝑏(𝑋) + 1
27: for each 𝑍 ∈ 𝑌 + with ℒ𝑎𝑏(𝑍) = undec do
28: undec_pre(𝑍)← undec_pre(𝑍)− 1
29: if undec_pre(𝑍) = 0 then
30: add 𝑍 to the rear of unproc_in
31: ℒ𝑎𝑏(𝑍)← in

32: ℳℳℒ𝑎𝑏(𝑍)←ℳℳℒ𝑎𝑏(𝑌) + 1
33: if 𝑍 = 𝐴 then return ℒ𝑎𝑏 andℳℳℒ𝑎𝑏
34: end if
35: end for
36: end for
37: end while
38:

39: // If we get here, A is not in the grounded extension,
40: // so we may want to print an error message

Martin Caminada et al. CEUR Workshop Proceedings 33–44

21) it holds that ℒ𝑎𝑏 = ({𝐴,𝐷}, ∅, {𝐵,𝐶,𝐸, 𝐹,𝐺,𝐻}), ℳℳℒ𝑎𝑏 = {(𝐴 : 1), (𝐷 : 1)}
and unproc_in = [𝐴,𝐷]. At the first iteration of the while loop, the argument in front of
unproc_in (𝐴) is selected (line 22). This then means that 𝐵 gets labelled out and 𝐶 gets
labelled in. Hence, the algorithm hits the main argument (𝐶) at line 33 and terminates. This
yields a labelling ℒ𝑎𝑏 = ({𝐴,𝐶,𝐷}, {𝐵}, {𝐸,𝐹,𝐺,𝐻}) and associated min-max numbering
ℳℳℒ𝑎𝑏 = {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐷 : 1)}.

Algorithm 1 (especially lines 22 and 30) implements a FIFO queue for the in labelled arguments
it processes. This is an important difference from the algorithm of [10], which uses a set for
this purpose. Using a set will work fine if the aim is merely to compute a strongly admissible
labelling (as is the case for [10] where the aim is to compute the grounded labelling). However,
if the aim is also to compute the associated min-max numbering, having a set as the basic data
structure could compromise the algorithm’s correctness.

As an example, consider again the argumentation framework of Figure 1. Let 𝐹 be the main
argument. Now suppose that unproc_in is a set instead of a queue. In that case, at the start of
the first iteration of the while loop (line 21) it holds thatℒ𝑎𝑏 = ({𝐴,𝐷}, ∅, {𝐵,𝐶,𝐸, 𝐹,𝐺,𝐻}),
ℳℳℒ𝑎𝑏 = {(𝐴 : 1), (𝐷 : 1)} and unproc_in = {𝐴,𝐷}. At the first iteration of the while
loop, an argument 𝑋 from unproc_in is selected (line 22). As a set has no order, it would
be possible to select 𝐴 (so 𝑋 = 𝐴). This then means that 𝐵 gets labelled out and 𝐶 gets
labelled in. Hence, at the end of the first iteration of the while loop (and therefore at the start
of the second iteration of the while loop) it holds that ℒ𝑎𝑏 = ({𝐴,𝐶,𝐷}, {𝐵}, {𝐸,𝐹,𝐺,𝐻}),
ℳℳℒ𝑎𝑏 = {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐷 : 1)} and unproc_in = {𝐶,𝐷}. At the second
iteration of the while loop, suppose 𝐶 is the selected argument (so 𝑋 = 𝐶). This means that 𝐸
gets labelled out and 𝐹 gets labelled in. Hence, at the moment the algorithm hits the main
argument (𝐹 , at line 33) and terminates, it holds that ℒ𝑎𝑏 = ({𝐴,𝐶,𝐷, 𝐹}, {𝐵,𝐸}, {𝐺,𝐻})
andℳℳℒ𝑎𝑏 = {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐷 : 1), (𝐸 : 4), (𝐹 : 5)}. Unfortunatelyℳℳℒ𝑎𝑏
is incorrect. This is because out labelled argument 𝐸 is numbered 4, whereas its two in labelled
attackers 𝐶 and 𝐷 are numbered 3 and 1, respectively, so the correct min-max number of 𝐸
should be 2 instead of 4, which implies that the correct min-max number of 𝐹 should be 3
instead of 5.

One of the conditions of a min-max numbering is that the min-max number of an out labelled
argument should be the minimal value of its in labelled attackers, plus 1. This seems to require
that the min-max number of each in labelled attackers is already known, before being able to
assign the min-max number of the out labelled argument. At the very least, it would seem
that the min-max number of an out labelled argument needs to be recomputed each time the
min-max number of one of its in labelled attackers becomes known. Yet, Algorithm 1 does
none of this. It determines the min-max number of an out labelled argument as soon as the
min-max number of its first in labelled attacker becomes known (line 26) without waiting for
the min-max number of any other in labelled attacker to become available. In spite of this,
Algorithm 1 still manages to always yield the correct min-max numbering.

The key to understanding how Algorithm 1 manages to do this is that the in labelled
arguments are processed in the order of their min-max numbers. That is, once an in labelled
attacker is identified, any subsequently identified in labelled attacker will have a min-max
number greater or equal to the first one and will therefore not change the minimal value (in the
sense of Definition 5, first bullet point). This avoids having to recalculate the min-max number

38

Martin Caminada et al. CEUR Workshop Proceedings 33–44

of an out labelled attacker when more of its in labelled arguments become available, therefore
speeding up the algorithm.

To make sure that arguments are processed in the order of their min-max numbers, we need
to apply a FIFO queue instead of the set that was applied by [10]. This FIFO queue is a key
component of Algorithm 1, as the correctness of the algorithm critically depends on it. Overall,
the correctness of the algorithm can be stated as follows.2

Theorem 1. Let AF = (Ar , att) be an argumentation framework and let 𝐴 be an argument in
the grounded extension of AF . Let both AF and 𝐴 be given as input to Algorithm 1. Let ℒ𝑎𝑏 and
ℳℳℒ𝑎𝑏 be the output of the algorithm. It holds that ℒ𝑎𝑏 is a strongly admissible labelling that
labels 𝐴 in and hasℳℳℒ𝑎𝑏 as its min-max numbering.

It turns out that the algorithm runs in polynomial (cubic) time.

Theorem 2. Let AF = (Ar , att) be an argumentation framework and let 𝐴 be an argument in
the grounded extension of AF . Let both AF and 𝐴 be given as input to Algorithm 1. Let ℒ𝑎𝑏 and
ℳℳℒ𝑎𝑏 be the output of the algorithm. It holds that Algorithm 1 computes ℒ𝑎𝑏 andℳℳℒ𝑎𝑏 in
O(𝑛3) time

3.2. Algorithm 2

The basic idea of Algorithm 2 is to prune the part of the strongly admissible labelling that is not
needed, by identifying the part that actually is needed. This is done in a top-down way, starting
by including the main argument (which is labelled in), then including all its attackers (which
are labelled out), for each of which a minimally numbered in labelled attacker is included,
etc. The idea is to keep doing this until reaching the (in labelled) arguments that have no
attackers. Each argument that has not been included by this process is unnecessary for the
strongly admissible labelling and can be made undec, resulting in a labelling that is smaller or
equal to the strongly admissible labelling one started with.

To see how the algorithm works, consider again the argumentation framework of Figure 1. Let
𝐶 be the main argument. Suppose the input labelling ℒ𝑎𝑏𝐼 is ({𝐴,𝐶,𝐷}, {𝐵}, {𝐸,𝐹,𝐺,𝐻})
and its associated input labelling numberingℳℳℒ𝑎𝑏𝑂 is {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐷 : 1)}.3
At the start of the first iteration of the while loop, it holds thatℒ𝑎𝑏𝑂 = ({𝐶}, ∅, {𝐴,𝐵,𝐷,𝐸, 𝐹,
𝐺,𝐻}),ℳℳℒ𝑎𝑏𝑂 = {(𝐶 : 1)} and unproc_in = [𝐶]. The first iteration of the while loop
then removes 𝐶 from unproc_in (line 14), labels its attacker 𝐵 out (line 16), numbers 𝐵
with 2 (line 17), adds 𝐴 to unproc_in (line 20), labels 𝐴 in (line 21) and numbers 𝐴 with
1 (line 22). The second iteration of the while loop then removes 𝐴 from unproc_in (line
14). However, as 𝐴 does not have any attackers, the for loop (lines 15-24) is skipped. As
unproc_in is now empty, the while loop is finished and the algorithm terminates, with ℒ𝑎𝑏𝑂 =
({𝐴,𝐶}, {𝐵}, {𝐷,𝐸, 𝐹,𝐺,𝐻}) andℳℳℒ𝑎𝑏𝑂 = {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3)} being its results.

We now proceed to state some of the formal properties of the algorithm, the first property
being correctness.

2The formal proof of this result, as well as of some of the other results, had to be omitted due to a lack of space, but
can be found in a separate technical report [12].

3The reader may have noticed that this was the output of Algorithm 1 for the example that was given in Section 3.1.

39

Martin Caminada et al. CEUR Workshop Proceedings 33–44

Algorithm 2 Prune a strongly admissible labelling that labels 𝐴 in and its associated min-max
numbering.

Input: An argumentation framework AF = (Ar , att),
an argument 𝐴 ∈ Ar that is in the grounded extension of AF , A strongly admissible
labelling ℒ𝑎𝑏𝐼 where 𝐴 ∈ in(ℒ𝑎𝑏𝐼), the associated min-max numberingℳℳℒ𝑎𝑏𝐼 .
Output: A strongly admissible labelling ℒ𝑎𝑏𝑂 ⊑ ℒ𝑎𝑏𝐼 where 𝐴 ∈ in(ℒ𝑎𝑏𝑂),
the associated min-max numberingℳℳℒ𝑎𝑏𝑂 .

1: // We start with the type definitions
2: ℒ𝑎𝑏𝑂 : Ar → {in, out, undec}
3: ℳℳℒ𝑎𝑏𝑂 : in(ℒ𝑎𝑏) ∪ out(ℒ𝑎𝑏)→ N ∪ {∞}
4: unproc_in : [𝑋1, ...𝑋𝑛] (𝑋𝑖 ∈ Ar for each 1 ≤ 𝑖 ≤ 𝑛) // list of arguments
5: // Initialize ℒ𝑎𝑏𝑂 and include the main argument
6: ℒ𝑎𝑏𝑂 ← (∅, ∅,Ar) // ℒ𝑎𝑏𝑂 becomes the all-undec labelling
7: unproc_in← [𝐴]
8: ℒ𝑎𝑏𝑂(𝐴)← in

9: ℳℳℒ𝑎𝑏𝑂(𝐴)←ℳℳℒ𝑎𝑏𝐼(𝐴)
10:

11: // Next, process the other arguments in a top-down way
12: while unproc_in is not empty do
13: let 𝑋 be the argument at the front of unproc_in
14: remove 𝑋 from unproc_in
15: for each attacker 𝑌 of 𝑋 do
16: ℒ𝑎𝑏𝑂(𝑌)← out

17: ℳℳℒ𝑎𝑏𝑂(𝑌)←ℳℳℒ𝑎𝑏𝐼(𝑌)
18: if there is no minimal (w.r.tℳℳℒ𝑎𝑏𝐼) in labelled (w.r.t ℒ𝑎𝑏𝐼) attacker of 𝑌 that is

also labelled in by 𝐿𝑎𝑏𝑂 then
19: Let 𝑍 be a minimal (w.r.tℳℳℒ𝑎𝑏𝐼) in labelled (w.r.t 𝐿𝑎𝑏𝐼) attacker of 𝑌
20: Add Z to the rear of unproc_in
21: ℒ𝑎𝑏𝑂(𝑍)← in

22: ℳℳℒ𝑎𝑏𝑂(𝑍)←ℳℳℒ𝑎𝑏𝐼(𝑍)
23: end if
24: end for
25: end while

Theorem 3. Let AF = (Ar , att) be an argumentation framework, 𝐴 be an argument in the
grounded extension of AF , ℒ𝑎𝑏𝐼 be a strongly admissible labelling where 𝐴 is labelled in and
ℳℳℒ𝑎𝑏𝐼 be the associated min-max numbering. Let AF , 𝐴, ℒ𝑎𝑏𝐼 andℳℳℒ𝑎𝑏𝐼 be given as
input to Algorithm 2. Let ℒ𝑎𝑏𝑂 andℳℳℒ𝑎𝑏𝑂 be the output of Algorithm 2. It holds that ℒ𝑎𝑏𝑂
is a strongly admissible labelling that labels 𝐴 in and hasℳℳℒ𝑎𝑏𝑂 as its min-max numbering.

Theorem 4. Let AF = (Ar , att) be an argumentation framework, 𝐴 be an argument in the
grounded extension of AF , ℒ𝑎𝑏𝐼 be a strongly admissible labelling where 𝐴 is labelled in and

40

Martin Caminada et al. CEUR Workshop Proceedings 33–44

ℳℳℒ𝑎𝑏𝐼 be the associated min-max numbering. Let AF , 𝐴, ℒ𝑎𝑏𝐼 and ℳℳℒ𝑎𝑏𝐼 be given
as input to Algorithm 2. Let ℒ𝑎𝑏𝑂 andℳℳℒ𝑎𝑏𝑂 be the output of Algorithm 2. It holds that
ℒ𝑎𝑏𝑂 ⊑ ℒ𝑎𝑏𝐼

It turns out that the algorithm runs in polynomial (cubic) time.

Theorem 5. Let AF = (Ar , att) be an argumentation framework, 𝐴 be an argument in the
grounded extension of AF , ℒ𝑎𝑏𝐼 be a strongly admissible labelling where 𝐴 is labelled in and
ℳℳℒ𝑎𝑏𝐼 be the correct min-max numbering of ℒ𝑎𝑏𝐼 . Let AF , 𝐴, ℒ𝑎𝑏𝐼 andℳℳℒ𝑎𝑏𝐼 be given
as input to Algorithm 2. Let ℒ𝑎𝑏𝑂 andℳℳℒ𝑎𝑏𝑂 be the output of Algorithm 2. It holds that
Algorithm 2 computes ℒ𝑎𝑏𝑂 andℳℳℒ𝑎𝑏𝑂 in O(𝑛)3 time.

3.3. Algorithm 3

The idea of Algorithm 3 is to combine Algorithm 1 and Algorithm 2, by running them in
sequence. That is, the output of Algorithm 1 is used as input for Algorithm 2.

Algorithm 3 Construct a relatively small strongly admissible labelling that labels 𝐴 in and its
associated min-max numbering.

Input: An argumentation framework AF = (Ar , att),
an argument 𝐴 ∈ Ar that is in the grounded extension of AF .
Output: A strongly admissible labelling ℒ𝑎𝑏 where 𝐴 ∈ in(ℒ𝑎𝑏), the associated min-max
numberingℳℳℒ𝑎𝑏.

1: run Algorithm 1
2: ℒ𝑎𝑏𝐼 ← ℒ𝑎𝑏
3: ℳℳℒ𝑎𝑏𝐼 ←ℳℳℒ𝑎𝑏
4: run Algorithm 2
5: ℒ𝑎𝑏← ℒ𝑎𝑏𝑂
6: ℳℳℒ𝑎𝑏 ←ℳℳℒ𝑎𝑏𝑂

As an example, consider again the argumentation framework of Figure 1. Let 𝐶 be the
main argument. Running Algorithm 1 yields a labelling ({𝐴,𝐶,𝐷}, {𝐵}, {𝐸,𝐹,𝐺,𝐻}) with
associated numbering {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3), (𝐷 : 1)} (as explained in Section 3.1). Feeding
this labelling and numbering into Algorithm 2 then yields an output labelling ({𝐴,𝐶}, {𝐵},
{𝐷,𝐸, 𝐹,𝐺,𝐻}) with associated output numbering {(𝐴 : 1), (𝐵 : 2), (𝐶 : 3)} (as explained
in Section 3.2).

Given the properties of Algorithm 1 and Algorithm 2, we can prove that Algorithm 3 correctly
computes a strongly admissible labelling and its associated min-max numbering, yields an
output that is smaller or equal to the output of Algorithm 1, and runs in polynomial (cubic)
time.

Theorem 6. Let AF = (Ar , att) be an argumentation framework and let 𝐴 be an argument in
the grounded extension of AF . Let both AF and 𝐴 be given as input to Algorithm 3. Let ℒ𝑎𝑏 and
ℳℳℒ𝑎𝑏 be the output of the algorithm. It holds that ℒ𝑎𝑏 is a strongly admissible labelling that
labels 𝐴 in and hasℳℳℒ𝑎𝑏 as its min-max numbering.

41

Martin Caminada et al. CEUR Workshop Proceedings 33–44

Proof. This follows from Theorem 1 and Theorem 3.

Theorem 7. Let AF = (Ar , att) be an argumentation framework, 𝐴 be an argument in the
grounded extension of AF . Let AF and 𝐴 be given as input to Algorithm 1 and Algorithm 3. Let
ℒ𝑎𝑏𝐼 andℳℳℒ𝑎𝑏𝐼 be the output of Algorithm 1 and let ℒ𝑎𝑏3 andℳℳℒ𝑎𝑏3 be the output of
Algorithm 3. It holds that ℒ𝑎𝑏3 ⊑ ℒ𝑎𝑏𝐼

Proof. This follows from Theorem 4, together with Theorem 1 and the way Algorithm 3 is
defined (by successively applying Algorithm 1 and Algorithm 2)

Theorem 8. Let AF = (Ar , att) be an argumentation framework and let 𝐴 be an argument in
the grounded extension of AF . Let both AF and 𝐴 be given as input to Algorithm 3. Let ℒ𝑎𝑏 and
ℳℳℒ𝑎𝑏 be the output of the algorithm. It holds that Algorithm 3 computes ℒ𝑎𝑏 andℳℳℒ𝑎𝑏 in
𝑂(𝑛3) time.

Proof. This follows from Theorem 2 and Theorem 5.

4. Empirical Results

Now that the formal properties of our algorithms have been stated, the next step is to empirically
evaluate their performance. For this, we looked at the benchmark examples that have applied
in ICCMA’17 and ICCMA’19,4 of which we used the 277 example argumentation frameworks
whose grounded extension is not empty. We implemented our algorithms in C++ and ran the
performance tests on a MacBook Pro 2020 with 8GB of memory and an Intel Core i5 processor.

Compared to the grounded labelling, we found that Algorithm 1 yields an output that is
smaller than the grounded labelling in 63% of the examples, with the average output size
being 76% of the size of the grounded labelling. Algorithm 3 yields an output that is smaller
than the grounded labelling in 88% of the examples, with the average output size being just
25% of the size of the grounded labelling. These findings are relevant as the only previously
available polynomial algorithms for strong admissibility are those for computing the grounded
extension/labelling (e.g. [10]).

Next, we compared the output of our best performing algorithm (Algorithm 3) for finding a
small strongly admissible labelling with the size of an absolute minimal strongly admissible
labelling for the argument in question, for which we used the ASPARTIX encodings of [6]. We
found that in 91% of the examples, the output of Algorithm 3 is of the same size as an absolute
minimal strongly admissible labelling for the argument in question, with the average output
being just 3% bigger than the size of an absolute smallest strongly admissible labelling for the
argument in question.

As for runtime, we first compared the runtime of our Algorithm 3 with the runtime of
Algorithm 3 of [10] for computing the grounded labelling.5 We found that the differences in
runtime are minimal, with the former algorithm taking just 0.02 seconds (3%) longer than the

4See http://argumentationcompetition.org/
5We modified the latter algorithm to return the grounded labelling instead of the grounded extension. We also made
minor corrections by removing some duplicate code.

42

http://argumentationcompetition.org/

Martin Caminada et al. CEUR Workshop Proceedings 33–44

latter algorithm.6 Next, we compared the runtime of our Algorithm 3 with the runtime of the
ASPARTIX encodings of [6] for computing an absolute minimal strongly admissible labelling.7

We found that the latter approach has a runtime that is 12.5 seconds (907%) longer than the
former approach. That is, our Algorithm 3 is able to provide an answer in less than a tenth of
the time it would have taken to compute an absolute minimal answer. A more detailed analysis
of our results, including a pointer to the source code of our software, can be found in [12].

5. Discussion

In the current paper, we provided two polynomial algorithms (Algorithm 1 and Algorithm 3)
for constructing a relatively small strongly admissible labelling and its associated min-max
numbering, for a particular argument. The correctness and complexity of the algorithms has
been stated in a formal way, with proofs available in [12].

The fact that the 𝑐-approximation problem for minimal strong admissibility is NP-complete
for every 𝑐 ≥ 1 means that polynomial algorithms (such as ours) cannot give any formal
guarantees of how close their output is to having the size of an absolute minimal strongly
admissible labelling for the argument in question. As such, we had to rely on an empirical
evaluation of this (using the benchmark examples of ICCMA’17 and ICCMA’19). Overall, our
results indicate that the output of Algorithm 3 is only marginally larger (3%) than an absolute
minimal strongly admissible labelling for the argument in question, while taking less than a
tenth of the runtime that would be needed to compute such a minimal strongly admissible
labelling.

As a strongly admissible labelling and its associated min-max numbering can serve as an
explanation of membership of the grounded extension, our algorithms can be useful for obtaining,
in a time-efficient way, an explanation that is not overly long. Such an explanation can then
for instance be used as the basis for the argument-based discussion game of [4], where the
combination of the strongly admissible labelling and its associated min-max numbering serves
as a roadmap for selecting the moves to be played by the computer when reacting to the user’s
possible counterarguments [4].

In the current paper, we focussed on strong admissibility, but a similar development of
algorithms and associated empirical analysis could be done as future research in the context
of admissible labellings and ideal labellings, in order to obtain relatively small explanations
for (credulous) preferred semantics and ideal semantics, which could be used in the respective
discussion games for these semantics [13].

References

[1] P. Baroni, M. Giacomin, On principle-based evaluation of extension-based argumentation
semantics, Artificial Intelligence 171 (2007) 675–700.

6Please be aware, however, that Algorithm 3 of [10] does not yield the min-max numbering, whereas Algorithm 3
does.

7Please notice that the latter is currently the only implementation for minimal strong admissibility.

43

Martin Caminada et al. CEUR Workshop Proceedings 33–44

[2] M. Caminada, Strong admissibility revisited, in: S. Parsons, N. Oren, C. Reed, F. Cerutti
(Eds.), Computational Models of Argument; Proceedings of COMMA 2014, IOS Press, 2014,
pp. 197–208.

[3] M. Caminada, P. Dunne, Strong admissibility revised: theory and applications, Argument
& Computation 10 (2019) 277–300.

[4] M. Caminada, A discussion game for grounded semantics, in: E. Black, S. Modgil,
N. Oren (Eds.), Theory and Applications of Formal Argumentation (proceedings TAFA
2015), Springer, 2015, pp. 59–73.

[5] M. Caminada, P. Dunne, Minimal strong admissibility: a complexity analysis, in:
H. Prakken, S. Bistarelli, F. Santini, C. Taticchi (Eds.), Proceedings of COMMA 2020,
IOS Press, 2020, pp. 135–146.

[6] W. Dvořák, J. Wallner, Computing strongly admissible sets, in: H. Prakken, S. Bistarelli,
F. Santini, C. Taticchi (Eds.), Proceedings of COMMA 2020, IOS Press, 2020, pp. 179–190.

[7] M. Caminada, On the issue of reinstatement in argumentation, in: M. Fischer, W. van der
Hoek, B. Konev, A. Lisitsa (Eds.), Logics in Artificial Intelligence; 10th European Conference,
JELIA 2006, Springer, 2006, pp. 111–123. LNAI 4160.

[8] M. Caminada, D. Gabbay, A logical account of formal argumentation, Studia Logica 93
(2009) 109–145. Special issue: new ideas in argumentation theory.

[9] M. Caminada, G. Pigozzi, On judgment aggregation in abstract argumentation, Au-
tonomous Agents and Multi-Agent Systems 22 (2011) 64–102.

[10] S. Nofal, K. Atkinson, P. Dunne, Computing grounded extensions of abstract argumentation
frameworks, The Computer Journal 64 (2021) 54–63.

[11] S. Modgil, M. Caminada, Proof theories and algorithms for abstract argumentation frame-
works, in: I. Rahwan, G. Simari (Eds.), Argumentation in Artificial Intelligence, Springer,
2009, pp. 105–129.

[12] M. Caminada, S. Harikrishnan, Strong Admissibility, a Tractable Algorithmic Approach
(proofs), Technical Report, Cardiff University, 2022. Https://arxiv.org/abs/2204.03551.

[13] M. Caminada, Argumentation semantics as formal discussion, in: Handbook of Formal
Argumentation, volume 1, College Publications, 2018, pp. 487–518.

44

	1 Introduction
	2 Preliminaries
	3 The Algorithms
	3.1 Algorithm 1
	3.2 Algorithm 2
	3.3 Algorithm 3

	4 Empirical Results
	5 Discussion

