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Abstract
THEIA is a labeling-based system computing the complete extensions of an abstract argumentation

framework. Like other backtracking solvers, THEIA does this by repeatedly choosing an argument and

labelling it until either a contradiction with respect to the labels is reached or a complete extension

is found. THEIA reduces the number of backtracking steps needed by using propagation techniques

that use a larger set of labels. These labels keep track of arguments that cannot be labeled IN, OUT or

UNDEC during a state in the search. THEIA is also using an extensive look-ahead strategy to prune

branches. It is shown that THEIA outperforms related labeling-based backtracking solvers by the use of

more sophisticated propagation and pruning rules and forward-looking strategy.
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1. Introduction

Argumentation theory is a multidisciplinary area connected to philosophy, law and linguis-

tics [1, 2, 3, 4]. In recent years, argumentation has been extensively studied formally and

computationally, especially also since Phan Minh Dung presented abstract argumentation

frameworks [5] (see also [6]). Abstract argumentation frameworks are a simple but powerful

approach to formal argumentation. They represent arguments as nodes in a graph which

attack other arguments. Interpreting these graphs by finding meaningful sets of arguments

is a non-trivial task that may require significant computational time and effort. For instance,

so-called backtracking algorithms gradually label arguments to analyse the graph and backtrack

whenever contradicting labels are found. Examples of backtracking solvers are for example

[7, 8, 9, 10, 11, 12].

THEIA, the system presented here, enumerates the set of complete extensions of an abstract

argumentation framework. THEIA is in particular inspired by HEUREKA [7] and DREDD [8].

The system THEIA differs from HEUREKA and DREDD due to its use of more sophisticated rules

during propagation and pruning and by a forward looking strategy. The basic idea is to keep
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Figure 1: An argumentation framework. Note that argument C is attacking itself.

track of arguments that cannot be labeled 𝐼𝑁 , 𝑂𝑈𝑇 , or 𝑈𝑁𝐷𝐸𝐶 while searching for complete

extensions. This can reduce the number of backtracking steps during the search as conflicting

labels can be discovered early.

This paper gives an overview of the relevant background and related work in Section 2.

Section 3 gives an overview of the system’s design, which elaborates on propagation tech-

niques, the look-ahead strategy and heuristics used. This is followed by an experimental

evaluation in Section 4 and a discussion in Section 5. The code of THEIA is available at

github.com/LukasKinder/THEIA.

2. Background

An abstract argumentation framework [5] is a tuple 𝐴𝐹 = ⟨𝒜,ℛ⟩. Here 𝒜 is the set of

arguments and ℛ ⊆ 𝒜 × 𝒜 is the attack relation. A pair (𝑎, 𝑏) ∈ ℛ can be interpreted as

argument 𝑎 attacking argument 𝑏. An example for an argumentation framework is shown in

Figure 1.

For an argument 𝑎𝑟𝑔 ∈ 𝒜, define 𝑎𝑟𝑔+ as the set of arguments that are attacked by 𝑎𝑟𝑔 and

𝑎𝑟𝑔− as the set of arguments attacking 𝑎𝑟𝑔. Likewise, given a set of arguments 𝐴𝑟𝑔𝑠 ⊆ 𝒜,

define 𝐴𝑟𝑔𝑠+ = {𝑏 | ∃𝑎 ∈ 𝐴𝑟𝑔𝑠 : 𝑏 ∈ 𝑎+} and 𝐴𝑟𝑔𝑠− = {𝑏 | ∃𝑎 ∈ 𝐴𝑟𝑔𝑠 : 𝑏 ∈ 𝑎−}.
An argumentation framework can be interpreted by finding meaningful sets of arguments.

A set 𝐸 ⊆ 𝒜 is conflict-free if there do not exist any 𝑎𝑟𝑔1, 𝑎𝑟𝑔2 ∈ 𝐸 such that 𝑎𝑟𝑔1
attacks 𝑎𝑟𝑔2. A set 𝐸 is admissible if 𝐸 is conflict-free and 𝐸− ⊆ 𝐸+

. Further, a

set 𝐸 is complete if 𝐸 is admissible and there does not exist an argument 𝑎𝑟𝑔 such that

𝑎𝑟𝑔 /∈ 𝐸 and 𝑎𝑟𝑔− ⊆ 𝐸+
. The grounded set is the smallest (wrt. set inclusion) complete set.

More about relations and properties of these sets can be found in [5].

A variant of the above set-based interpretation of argumentation frameworks, is the labelling-

based interpretation [13]. Here, each argument is assigned a label 𝐼𝑁 , 𝑂𝑈𝑇 or 𝑈𝑁𝐷𝐸𝐶 using

a labeling function ℒ.

ℒ : 𝒜 ↦−→ {𝐼𝑁,𝑂𝑈𝑇,𝑈𝑁𝐷𝐸𝐶}

Define 𝑖𝑛(ℒ) = {𝑥|ℒ(𝑥) = 𝐼𝑁}; 𝑜𝑢𝑡(ℒ) = {𝑥|ℒ(𝑥) = 𝑂𝑈𝑇}; 𝑢𝑛𝑑𝑒𝑐(ℒ) = {𝑥|ℒ(𝑥) =
𝑈𝑁𝐷𝐸𝐶}.

Definition 1. A labeling is is a complete labeling ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 if and only if:

• For all arguments 𝑎 ∈ 𝑖𝑛(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) it holds that there does not exist an argument 𝑏 such
that (𝑏, 𝑎) ∈ ℛ and 𝑏 ∈ 𝑖𝑛(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) or 𝑏 ∈ 𝑢𝑛𝑑𝑒𝑐(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒).
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• For all arguments 𝑎 ∈ 𝑜𝑢𝑡(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) it holds that there exists an argument 𝑏 such that
(𝑏, 𝑎) ∈ ℛ and 𝑏 ∈ 𝑖𝑛(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒).

Note that this implicitly defines that for all arguments 𝑎 ∈ 𝑢𝑛𝑑𝑒𝑐(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) it holds that there

exists an argument 𝑏 such that (𝑏, 𝑎) ∈ ℛ and 𝑏 ∈ 𝑢𝑛𝑑𝑒𝑐(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) and there does not exist

an argument 𝑐 such that (𝑐, 𝑎) ∈ ℛ and 𝑐 ∈ 𝑖𝑛(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒). Note that ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is a complete

labelling only if 𝑖𝑛(ℒ𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒) is a complete extension [13].

2.1. Existing Solvers

In this work, we are interested in the problem of enumerating all complete extensions of a given

abstract argumentation framework 𝐴𝐹 , which is highly intractable [14]. This motivates the

need to develop sophisticated algorithms. A method that can be applied for this task is the DPLL-

algorithm (Davis-Putnam-Logemann-Loveland) [15]. The structure of a basic backtracking

algorithm is shown in Algorithm 1 (where the procedure to select the next argument and the

procedure propagateLabels are left unspecified, these are defined by the concrete system). Every

iteration an argument is chosen and each possible label for this argument is tried out. The

respective new label is then propagated to find labels of other arguments. This may cause a

contradiction if it is necessary to re-label an argument. A solution is reached once all arguments

got assigned a label. An intuitive way to think about this algorithm is that a search tree is

created in which new branches are generated whenever different labels of an argument are

tried out. This method is for example used by ArgTools [10], HEUREKA [7] and DREDD [8].

The above-mentioned systems are referred to as direct solvers, which directly work within

the formalism of abstract argumentation to solve problems [16]. However, the state of the art

in solvers for abstract argumentation typically rely on reductions to other problem-solving

paradigms such as SAT-solving or answer set programming. For example, 𝜇-toksia [17] is a

solver that makes iterative calls to a SAT-solver to enumerate all complete extensions.

Algorithm 1 The pseudo-code of a basic backtracking algorithm.

procedure findComplete(𝐴𝐹 )

if all arguments are labeled then
print(Solution(𝐴𝐹 ))

return
𝑎←− choose an unlabeled argument

for all labels do
label 𝑎 with the next label

if propagateLabels(𝐴𝐹 ) != CONTRADICTION then
findComplete(𝐴𝐹 )
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3. Algorithm Design

Our algorithm is following the basic structure of Algorithm 1. However, THEIA differs from

other direct solvers insofar as it uses a significantly extended set of propagation techniques, a

look-ahead strategy to find contradicting labels earlier, and chooses an argument to split the

search based on the exact amount of labels that can be propagated. These three components are

discussed in the following sections.

3.1. Additional Propagation Techniques

The procedure propagateLabels corresponds to unit propagation in SAT-solving [15]. It sets the

labels of further arguments, whose status is already determined by the set labels. For example,

if an argument has been labelled 𝐼𝑁 , it is clear that all arguments attacked by this argument

must be labelled 𝑂𝑈𝑇 . Existing solvers [10, 7, 8] use this and similar rules to implement the

procedure propagateLabels.
In the following, we significantly extend the set of existing propagation rules by introducing

additional labels. The labels 𝑁𝑂𝑇𝐼𝑁 , 𝑁𝑂𝑇𝑂𝑈𝑇 and 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 can be assigned for

arguments for which it is known that they cannot be labeled 𝐼𝑁 , 𝑂𝑈𝑇 or𝑈𝑁𝐷𝐸𝐶 respectively.

We refer to the labels 𝐼𝑁 , 𝑂𝑈𝑇 and 𝑈𝑁𝐷𝐸𝐶 as final labels, and to the respective opposite

labels 𝑁𝑂𝑇𝐼𝑁 , 𝑁𝑂𝑇𝑂𝑈𝑇 and 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 as intermediate labels. We use the label

𝐵𝐿𝐴𝑁𝐾 for unlabeled arguments. During the search, arguments with the label 𝐵𝐿𝐴𝑁𝐾
may be relabeled to intermediate or final labels and arguments with intermediate labels may

still be relabeled to final labels.

We distinguish the propagation rules by the position of the argument that gets assigned a

label, relative to the argument that causes the rule to apply:

• Forward rule: Applying the propagation rule on an argument 𝑎𝑟𝑔 forces a new label on

an argument in 𝑎𝑟𝑔+.

• Backward rule: Applying the propagation rule on an argument 𝑎rg forces a new label

on an argument in 𝑎𝑟𝑔−.

• Sideward rule: Applying the propagation rule on an argument 𝑎𝑟𝑔 forces a new label

on an argument in (𝑎𝑟𝑔+)−.

Table 1 contains propagation rules for argument labels. The three basecases can be applied

to arguments without considering the labels of other arguments. In practice, checking if a

propagation rule can be applied to an argument 𝑎 can be done in 𝒪(|𝑎+|). This requires each

argument to keep track of how many attackers are labeled 𝑂𝑈𝑇 , 𝑈𝑁𝐷𝐸𝐶 or 𝑁𝑂𝑇𝐼𝑁 .

Situations in which basecases can be applied are shown in Figure 6 and situations in which

the propagation rules can be applied are shown in Figure 7 in the appendix. Note that the

propagation rules 7 and 13, 9 and 14, 11 and 15 as well as 12 and 16 are all pairs that essentially

express the same. The difference is that the label assignment of the argument that causes the

rule to apply, is at a different position.

We omit the explanation of each of these rules, but give two examples:

• Rule 3: An argument that is attacked by at least one argument labeled 𝑈𝑁𝐷𝐸𝐶 and

otherwise only by arguments that cannot be relabeled to 𝐼𝑁 (I.e. 𝑂𝑈𝑇 , 𝑈𝑁𝐷𝐸𝐶 and
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Table 1
A collection of propagation rules.

Argument 𝑎
has label:

Prerequisite Enforced label

- 𝑎− = ∅ ℒ(𝑎) = 𝐼𝑁
Basecase - 𝑎 ∈ 𝑎− ℒ(𝑎) = 𝑁𝑂𝑇𝐼𝑁

- {𝑎} = 𝑎− ℒ(𝑎) = 𝑈𝑁𝐷𝐸𝐶

Forward
rules

1.)ℒ(𝑎) = 𝑂𝑈𝑇 (𝑎, 𝑏) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑏) ∈ ℛ −→ ℒ(𝑐) = 𝑂𝑈𝑇 ] ℒ(𝑏) = 𝐼𝑁
2.)ℒ(𝑎) = 𝐼𝑁 (𝑎, 𝑏) ∈ ℛ ℒ(𝑏) = 𝑂𝑈𝑇

3.)
ℒ(𝑎) = 𝑂𝑈𝑇 or
ℒ(𝑎) = 𝑈𝑁𝐷𝐸𝐶 or
ℒ(𝑎) = 𝑁𝑂𝑇𝐼𝑁

(𝑎, 𝑏) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑏) ∈ ℛ −→ ℒ(𝑐) ∈ {𝑂𝑈𝑇,𝑈𝑁𝐷𝐸𝐶,
𝑁𝑂𝑇𝐼𝑁}] ∧ ∃𝑑[(𝑑, 𝑏) ∈ ℛ ∧ ℒ(𝑑) = 𝑈𝑁𝐷𝐸𝐶]

ℒ(𝑏) = 𝑈𝑁𝐷𝐸𝐶

4.)ℒ(𝑎) = 𝑁𝑂𝑇𝑂𝑈𝑇 or
ℒ(𝑎) = 𝑈𝑁𝐷𝐸𝐶

(𝑎, 𝑏) ∈ ℛ ℒ(𝑏) = 𝑁𝑂𝑇𝐼𝑁

5.)ℒ(𝑎) = 𝑂𝑈𝑇 or
ℒ(𝑎) = 𝑁𝑂𝑇𝐼𝑁

(𝑎, 𝑏) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑏) ∈ ℛ −→ ℒ(𝑐) ∈ {𝑁𝑂𝑇𝐼𝑁,𝑂𝑈𝑇}] ℒ(𝑏) = 𝑁𝑂𝑇𝑂𝑈𝑇

6.)ℒ(𝑎) = 𝑂𝑈𝑇 or
ℒ(𝑎) = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶

(𝑎, 𝑏) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑏) ∈ ℛ −→ ℒ(𝑐) ∈ {𝑂𝑈𝑇,𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶}] ℒ(𝑏) = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶

Backward
rules

7.)ℒ(𝑎) = 𝑂𝑈𝑇
(𝑏, 𝑎) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑎) ∈ ℛ −→ (𝑐 = 𝑏
∨ℒ(𝑐) ∈ {𝑂𝑈𝑇,𝑈𝑁𝐷𝐸𝐶,𝑁𝑂𝑇𝐼𝑁})] ℒ(𝑏) = 𝐼𝑁

8.)ℒ(𝑎) = 𝐼𝑁 (𝑏, 𝑎) ∈ ℛ ℒ(𝑏) = 𝑂𝑈𝑇
9.)ℒ(𝑎) = 𝑈𝑁𝐷𝐸𝐶 (𝑏, 𝑎) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑎) ∈ ℛ −→ (𝑐 = 𝑏 ∨ ℒ(𝑐) = 𝑂𝑈𝑇 )] ℒ(𝑏) = 𝑈𝑁𝐷𝐸𝐶

10.)ℒ(𝑎) = 𝑁𝑂𝑇𝑂𝑈𝑇 or
ℒ(𝑎) = 𝑈𝑁𝐷𝐸𝐶

(𝑏, 𝑎) ∈ ℛ ℒ(𝑏) = 𝑁𝑂𝑇𝐼𝑁

11.) ℒ(𝑎) = 𝑁𝑂𝑇𝐼𝑁 (𝑏, 𝑎) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑎) ∈ ℛ −→ (𝑐 = 𝑏 ∨ ℒ(𝑐) = 𝑂𝑈𝑇 )] ℒ(𝑏) = 𝑁𝑂𝑇𝑂𝑈𝑇
12.)ℒ(𝑎) = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 (𝑏, 𝑎) ∈ ℛ ∧ ∀𝑐[(𝑐, 𝑎) ∈ ℛ −→ (𝑐 = 𝑏 ∨ ℒ(𝑐) = 𝑂𝑈𝑇 )] ℒ(𝑏) = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶

Sideward
rules

13.)
ℒ(𝑎) = 𝑂𝑈𝑇 or
ℒ(𝑎) = 𝑈𝑁𝐷𝐸𝐶 or
ℒ(𝑎) = 𝑁𝑂𝑇𝐼𝑁

(𝑎, 𝑏) ∈ ℛ ∧ ℒ(𝑏) = 𝑂𝑈𝑇 ∧ (𝑐, 𝑏) ∈ ℛ ∧ ∀𝑑[(𝑑, 𝑏) ∈ ℛ
−→ (𝑑 = 𝑐 ∨ ℒ(𝑑) ∈ {𝑂𝑈𝑇,𝑈𝑁𝐷𝐸𝐶,𝑁𝑂𝑇𝐼𝑁})] ℒ(𝑐) = 𝐼𝑁

14.)ℒ(𝑎) = 𝑂𝑈𝑇
(𝑎, 𝑏) ∈ ℛ ∧ ℒ(𝑏) = 𝑈𝑁𝐷𝐸𝐶 ∧ (𝑐, 𝑏) ∈ ℛ ∧ ∀𝑑[(𝑑, 𝑏) ∈ ℛ
−→ (ℒ(𝑑) = 𝑂𝑈𝑇 ∨ 𝑑 = 𝑐)]

ℒ(𝑐) = 𝑈𝑁𝐷𝐸𝐶

15.)ℒ(𝑎) = 𝑂𝑈𝑇
(𝑎, 𝑏) ∈ ℛ ∧ ℒ(𝑏) = 𝑁𝑂𝑇𝐼𝑁 ∧ (𝑐, 𝑏) ∈ ℛ ∧ ∀𝑑[(𝑑, 𝑏) ∈ ℛ
−→ (ℒ(𝑑) = 𝑂𝑈𝑇 ∨ 𝑑 = 𝑐)]

ℒ(𝑐) = 𝑁𝑂𝑇𝑂𝑈𝑇

16.)ℒ(𝑎) = 𝑂𝑈𝑇
(𝑎, 𝑏) ∈ ℛ ∧ ℒ(𝑏) = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 ∧ (𝑐, 𝑏) ∈ ℛ ∧ ∀𝑑[(𝑑, 𝑏) ∈ ℛ
−→ (ℒ(𝑑) = 𝑂𝑈𝑇 ∨ 𝑑 = 𝑐)]

ℒ(𝑐) = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶

𝑁𝑂𝑇𝐼𝑁 ) should get labeled 𝑈𝑁𝐷𝐸𝐶 . This is because (in a complete labeling) an

argument that is not attacked by an argument labeled 𝐼𝑁 can not be labeled 𝑂𝑈𝑇 and

argument that is attacked by an argument labeled 𝑈𝑁𝐷𝐸𝐶 can not be labeled 𝐼𝑁 , which

leaves 𝑈𝑁𝐷𝐸𝐶 as the only option.

• Rule 11: This rule is applied in a situation in which we have an argument for which it is

known that it cannot have the label 𝐼𝑁 . This means that it should not be the case that

all attackers are labeled 𝑂𝑈𝑇 . Consequently, if all attackers except one argument 𝑏 are

labeled 𝑂𝑈𝑇 , then 𝑏 should be marked with 𝑁𝑂𝑇𝑂𝑈𝑇 .

It should be quite easy to see that all rules depicted in Table 1 are correct.

3.2. Look-Ahead

In each iteration, before an argument gets chosen to split the search, THEIA is testing every

possible label for all arguments with non-final labels (a similar idea had already been suggested

in [9]). Note that the number of combinations for this is 6 * 𝑛_𝑏𝑙𝑎𝑛𝑘 + 2 * 𝑛_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒
with 𝑛_𝑏𝑙𝑎𝑛𝑘 being the number of arguments labeled 𝐵𝐿𝐴𝑁𝐾 and 𝑛_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 being

the number of arguments having intermediate labels. After assigning a label to an argument,

this label is propagated and it is checked if this causes a contradiction (A contradiction is caused
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if a propagation rule forces a label on an argument that can not be relabeled based on its current

label). If this is the case, the argument permanently gets labeled the opposite label. For example

if labeling an argument 𝑁𝑂𝑇𝐼𝑁 was leading to a contradiction, then it gets labeled 𝐼𝑁 . If

assigning the opposite label also leads to a contradiction, then the whole branch needs to be

backtracked.

3.3. Choosing an Argument to Split the Search

THEIA repeatedly chooses an argument 𝑎𝑟𝑔 that does not have a final label yet to split the

search. For this argument two labels are selected and propagated respectively. If 𝑎𝑟𝑔 had the

label 𝐵𝐿𝐴𝑁𝐾 , then the two labels need to be a final label and the opposite of the the final

label (either 𝐼𝑁 /𝑁𝑂𝑇𝐼𝑁 , 𝑂𝑈𝑇 /𝑁𝑂𝑇𝑂𝑈𝑇 or 𝑈𝑁𝐷𝐸𝐶/𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶). If 𝑎𝑟𝑔 had an

intermediate label, then there are only two distinct labels 𝑎𝑟𝑔 can be relabeled to. For example

if 𝑎𝑟𝑔 had the label 𝑁𝑂𝑇𝑂𝑈𝑇 , then 𝑙1 and 𝑙2 need to be 𝐼𝑁 and 𝑈𝑁𝐷𝐸𝐶 .

During the look-ahead phase, all possible labels of all arguments with nonfinal labels were

already tested out and propagated. Therefore, for all arguments 𝑌 with nonfinal labels and

for any label 𝑋 such that 𝑌 can be relabeled to 𝑋 we know the amount 𝑍 such that when

assigning label 𝑋 to argument 𝑌 and propagating this label causes 𝑍 other arguments to be

assigned a label.

The knowledge about the amount 𝑍 for every argument-label combination is used as a

heuristic to decide how to split the search, in the sense that an argument-label combination is

chosen such that the lowest amount of remaining solving time is expected. An intuitive heuristic

would be to choose the argument-label combination such that the sum of propagated labels in

both branches is maximal. However, the remaining solving time of a branch usually increases

exponentially with the number of unlabeled arguments. Therefore, being able to propagate

𝑛 labels in both resulting branches is usually much better than propagation 2𝑛 labels in one

branch and 0 in the other. This idea motivated us to experiment with three other heuristics

elaborated in the results section.

3.4. Combining All Steps

The pseudocode outlining the system THEIA is shown in Algorithm 2. Given an argumenta-

tion framework 𝐴𝐹 the basecases are used first to find the initial labels of arguments. The

propagation rules are recursively used to propagate labels for each option and the algorithm

backtracks as soon as a contradiction is found. The look-ahead method is not only used to

detect contradictions, but also to determine additional label assignments. A complete set is

found as soon as all arguments got assigned final labels.

Note that opposed to Algorithm 1, during label-propagation there will never be a contradiction.

This is because the look-ahead method already detects if labeling any argument with any label

leads to a contradiction and prunes the branch accordingly.

An example of how the complete extensions of an argumentation framework are found is

shown in Figure 2.
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Algorithm 2 THEIA

procedure findComplete(𝐴𝐹 )

ℒ ←− such that ℒ(𝑎) = 𝐵𝐿𝐴𝑁𝐾 for all 𝑎 ∈ 𝒜
for all 𝑎 ∈ 𝒜 and all basecases 𝑏 do

if 𝑏 enforeces label 𝑙 on 𝑎 then
propagateLabel(𝐴𝐹,ℒ, 𝑏, 𝑙)

findCompleteRec(𝐴𝐹,ℒ)

procedure findCompleteRec(𝐴𝐹,ℒ)

if lookAhead(𝐴𝐹,ℒ) = CONTRADICTION then
return

if ℒ is a complete labeling then
print all labels with label 𝐼𝑁
return

Choose an argument 𝑎 that can be relabeled to 𝑙1 or 𝑙2.

for 𝑙 ∈ {𝑙1, 𝑙2} do
propagateLabel(𝐴𝐹,ℒ, 𝑎, 𝑙)
findCompleteRec(𝐴𝐹,ℒ)

reverse label assignments by propagateLabels() and findCompleteRec()

procedure propagateLabel(𝐴𝐹,ℒ, 𝑎, 𝑙)
ℒ(𝑎)←− 𝑙
for all propagation rules 𝑝 do

for all 𝑏, 𝑙_𝑛𝑒𝑤 such that applying 𝑝 on 𝑎 enforces label 𝑙_𝑛𝑒𝑤 on 𝑏 do
propagateLabel(𝐴𝐹,ℒ, 𝑏, 𝑙𝑛𝑒𝑤)

4. Experimental Evaluation

The goal of our experimental evaluation is to compare the runtime behaviour of THEIA with

existing solvers on the problem of enumerating complete extensions (i. e., on the track EE-CO

of the ICCMA competitions; see argumentationcompetition.org).

4.1. Experimental Setup

We evaluate the runtime performance on the same benchmark data as used in the ICCMA15

(192 instances) and ICCMA19 (326 instances) competitions (we did not use the benchmark data

from the ICCMA17 and ICCMA21 competitions, due to the size of the solutions for these data

sets and our resource restrictions).

THEIA is written in the C programming language and is not using any external libraries. We

used four different heuristics for selecting the next argument during search, giving rise to four

different variants of our THEIA solver:
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𝐶 = 𝑁𝑂𝑇𝐼𝑁 Basecase 2
𝐹 = 𝑁𝑂𝑇𝐼𝑁 look-ahead

𝐶 = 𝑈𝑁𝐷𝐸𝐶 Rule 5, from F

↘↘
↙↙

𝐹 = 𝑂𝑈𝑇
𝐴 = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 look-ahead

𝐵 = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 Rule 6, from A
𝐷 = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 Rule 6, from A
𝐸 = 𝑁𝑂𝑇𝑈𝑁𝐷𝐸𝐶 Rule 6, from D

↓↓ ↘↘

𝐹 = 𝑈𝑁𝐷𝐸𝐶
𝐵 = 𝑁𝑂𝑇𝐼𝑁 Rule 10, from F
𝐸 = 𝑁𝑂𝑇𝐼𝑁 Rule 10, from F
𝐴 = 𝑁𝑂𝑇𝑂𝑈𝑇 Rule 5, from B
𝐷 = 𝑁𝑂𝑇𝐼𝑁 Rule 4, from A
𝐸 = 𝑈𝑁𝐷𝐸𝐶 Rule 5, from D
𝐷 = 𝑈𝑁𝐷𝐸𝐶 Rule 9, from E
𝐴 = 𝑈𝑁𝐷𝐸𝐶 Rule 9, from D
𝐵 = 𝑈𝑁𝐷𝐸𝐶 Rule 3, from A

Solution:[]
𝐸 = 𝐼𝑁

𝐷 = 𝑂𝑈𝑇 Rule 8, from E
𝐴 = 𝐼𝑁 Rule 7, from D
𝐵 = 𝑂𝑈𝑇 Rule 2, from A

Solution:[𝐴,𝐸]

𝐸 = 𝑂𝑈𝑇
𝐷 = 𝐼𝑁 Rule 7, from E

𝐴 = 𝑂𝑈𝑇 Rule 8, from D
𝐵 = 𝐼𝑁 Rule 1, from A

Solution:[𝐵,𝐷]

Figure 2: An example of a search graph produced by THEIA when solving the argumentation framework
in Figure 1. Labeling argument 𝐹 to 𝐼𝑁 would force 𝐵 and 𝐸 to be labeled 𝑂𝑈𝑇 , which would
consequently force 𝐴 and 𝐷 to be labeled 𝐼𝑁 . However, if 𝐴 is labeled 𝐼𝑁 , then 𝐷 should instead be
labeled 𝑂𝑈𝑇 . This contradiction is found using the look-ahead strategy, which causes 𝐹 to be labeled
𝑁𝑂𝑇𝐼𝑁 .

• THEIAmin: Given an argument-label combination that can split the search, lets call the

"short branch" the branch that results in a lower amount of labels propagated than the

other branch. The 𝑚𝑖𝑛-heuristic is choosing the argument-label combination with the

longest short branch.

• THEIAsum: The argument-label combination is chosen that maximises the sum of propa-

gated labels in both resulting branches.

• THEIAexp: The solving time of a branch is estimated using 3
1
20

*𝑛𝐵𝐿𝐴𝑁𝐾 *
2

1
20

*𝑛𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸
with 𝑛𝐵𝐿𝐴𝑁𝐾 being the number of arguments labeled 𝐵𝐿𝐴𝑁𝐾

and 𝑛𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸 being the number of arguments with intermediate labels. The

argument-label combination is chosen that minimizes the cumulative estimated solving

time of both resulting branches.

• THEIA
adp

: The idea of this heuristic is that it adapts itself to the given argumentation

framework. The solving time of a branch is estimated using (3− 3 * 𝑎𝑣𝑔𝐸𝑟𝑟)
𝑛𝐵𝐿𝐴𝑁𝐾

1+𝑑𝑒𝑐𝐵𝑙𝑎𝑛𝑘 *
(2− 2 * 𝑎𝑣𝑔𝐸𝑟𝑟)

𝑛𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸
1+𝑑𝑒𝑐𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 with 𝑛𝐵𝐿𝐴𝑁𝐾 being the number of arguments labeled

𝐵𝐿𝐴𝑁𝐾 and 𝑛𝐼𝑁𝑇𝐸𝑅𝑀𝐸𝐷𝐼𝐴𝑇𝐸 being the number of arguments with intermediate

labels. 𝑎𝑣𝑔𝐸𝑟𝑟 is the proportion of branches that are backtracked and 𝑑𝑒𝑐𝐵𝑙𝑎𝑛𝑘 and

𝑑𝑒𝑐𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 are the average number of arguments with a 𝐵𝐿𝐴𝑁𝐾 or intermediate

label respectively, that are relabeled each iteration. The values 𝑎𝑣𝑔𝐸𝑟𝑟, 𝑑𝑒𝑐𝐵𝑙𝑎𝑛𝑘 and

𝑑𝑒𝑐𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 are initially 0, but these values get approximated while the solver is

exploring the search tree of a given argumentation framework.

We compared the runtime performance of these four THEIA solvers with 𝜇-toksia version

2019.04.07 [17] and HEUREKA version 0.2 [7]. The 𝜇-toksia solver is based on iterative SAT

calls and can be regarded as the state-of-the-art solver for that problem, since that version won
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the EE-CO track in ICCMA 2019 and the competition of 2021 did not feature the EE-CO track.

The solver HEUREKA can be regarded as a baseline for direct approaches to solve EE-CO.

We used probo2 (available at github.com/aig-hagen/probo2) as evaluation environ-

ment and conducted the experiments on a dedicated server with Intel Xeon CPUs (3.4 GHz,

only a single CPU was used) with 192 GB RAM and running Ubuntu 20.04.4. We set a 600s

CPU-time cutoff time, as used in the ICCMA competitions.

4.2. Results

Table 3 and Table 2 show the results for the two benchmark data sets ICCMA15 and ICCMA19,

respectively. For each solver we report the number of correctly solved instances (Corr), the

number of times the solver could not give the correct answer within the given time (TO) and

the cumulative runtime over solved instances (RT). The performances of the solvers are further

compared in Figures 3 and 4. We also provide scatter plots for both benchmark data sets

comparing THEIAexp and 𝜇-toksia which are shown in Figure 5a and 5b, respectively.

Table 2
Results for ICCMA 2015

Solver Corr TO RT
𝜇-toksia 192 0 1790
THEIAexp 189 3 8545
THEIAsum 188 4 9962
THEIAadp 187 5 9989
THEIAmin 145 47 1364
HEUREKA 139 53 1298

Table 3
Results for ICCMA 2019

Solver Corr TO RT
𝜇-toksia 326 0 601
THEIAexp 326 0 3061
THEIAsum 326 0 4146
THEIAadp 326 0 4214
THEIAmin 303 23 3808
HEUREKA 285 41 943

We observe that all versions of THEIA timed out a significantly smaller number of times than

HEUREKA. Except for THEIAmin the amount of timeouts was almost as good as 𝜇-toksia, but

𝜇-toksia still dominated in regard to the cumulative runtime over solved instances. However,

as the scatter plots 5a and 5b show, the runtime differences between THEIAexp and 𝜇-toksia
are rarely larger than one order of magnitude (those are instances outside of the green bar) and

there is also a number of instances where THEIAexp outperformed 𝜇-toksia. Although the

overall performance of THEIA is still below that of 𝜇-toksia we see the results as a significant

step forward in the development of direct argumentation solvers.
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Figure 3: Cactus plot of runtimes for the ICCMA 2015 benchmark.

Figure 4: Cactus plot of runtimes for the ICCMA 2019 benchmark.

5. Summary and Conclusion

In this paper we presented the system THEIA that extends current backtracking solvers for

abstract argumentation by means of more refined propagation techniques and look-ahead

strategies to find complete sets. The results show a clear improvement over the backtracking

120



Lukas Kinder et al. CEUR Workshop Proceedings 111–123

(a) ICCMA 2015 (b) ICCMA 2019

Figure 5: Scatter plot comparing the performance in runtime between 𝜇-toksia (x-axis) and THEIAexp

(y-axis). The task was to enumerate the complete extensions of the argumentation frameworks of the
ICCMA 2015 benchmark (a) and the ICCMA 2019 benchmark (b).

solver HEUREKA. We were also able to reduce the performance gap between SAT-based solvers

like 𝜇-toksia and direct solvers.

In future work, it would be interesting to investigate which types of argumentation frame-

works THEIA is better or worse than other solvers, as well as to analyse how much the different

implemented mechanisms contribute to the performance.
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Appendix

(a) Basecase 1

(b) Basecase 2
(c) Basecase 3

Figure 6: A collection of structures of arguments that enforce a label on the node marked with "?".
Nodes with a thick border are necessary, nodes with a thin boarder are optional.

(a) Rule 1
(b) Rule 2 (c) Rule 3

(d) Rule 4

(e) Rule 5
(f) Rule 6 (g) Rule 7 and 13

(h) Rule 8

(i) Rule 9 and 14 (j) Rule 10

(k) Rule 11

and 15 (l) Rule 12 and 16

Figure 7: A collection of structures of arguments that enforce a label on the node marked with "?". A
Nodes with a thick border represent one or more arguments with a specific label. Nodes with a thin
boarder mark zero or more arguments with a specific label. The "[...]" marks arguments that can have
any label.
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