

Handling Software Icebergs

Jaak Henno
1
, Hannu Jaakkola

2 and Jukka Mäkelä
3

1 Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
2 Tampere University, Pori Campus, P.O. Box 300, FI-28101 Pori, Finland
3 University of Lapland, Rovaniemi, Finland

Abstract
Once upon a time programming was done just writing commands of a programming

language in a proper order, but currently software is created using libraries, API-s

(Application Programming Interface), frameworks, Dockers, Kubernetes etc. Libraries load

other libraries, API-s call other API-s and as a result seemingly short and simple programs

may have amazing depth of code and complexity, what causes for programmers many

problems, especially for students. For interpreted code this depth could be (approximately)

measured with the ratio of the visual code vs code in libraries. It is shown that the number of

LOC (Lines Of Code) in invisible code – code in libraries, modules, API-s etc. is even in

small practical programs thousands-millions times greater than the number of lines in the

visible code. Innovations (cloud computing, multicore CPU-s etc.) cause introduction of new

libraries and modules which enable use of new possibilities in existing software ecosystem,

but also introduce bigger and bigger amounts of invisible code. During the pandemic grow

student's use of WWW tutorials, but abundance of code in programming examples/tutorials

on WWW is sometimes unnecessary, caused by obsolete or unneeded packages and libraries

and sometimes also by desire to earn on adverting (un-needed, but popular) code packages

for high-paying customers. In the following are analyzed some Python 3 and JavaScript

examples.

Keywords 1
Software complexity, libraries, modules, API, LOC

1. Introduction

With exhaustion of Earth's natural resources humanity is constantly increasing scientific research,

which nowadays is based on world-wide programming and communication ecosystem. Once upon a

time programming was done just writing commands of a programming language in a proper order.
Modern software is created using libraries, API-s (Application Programming Interface), selecting

commands from menus in frameworks, packed with Dockers, Kubernetes etc. Libraries load other

libraries, API-s call other API-s and as a result programs have amazing depth of code. For not-

compiled (interpreted code) that depth could be (approximately) measured with the ratio of the visual
code vs code in libraries - the total number of lines used in visible code is thousands-millions times

greater than the number of lines in the visible code. This abundance of code is often unnecessary,

caused by obsolete or unneeded packages and libraries, but sometimes also by desire to earn on
adverting (un-needed, but popular) code packages for high-paying customers. This creates many

difficulties for students, who often cannot understand the programming task but try to solve it using

'top-down' programming – first import all libraries and packages, what have been used in some
previous project and then just start googling trying to get from Internet sources as many snippets

(which may be useful) as possible. Such 'top-down' programmers often do never become a 'real'

SQAMIA 2022: Workshop on Software Quality, Analysis, Monitoring, Improvement, and Applications, September 11--14, 2022, Novi Sad, Serbia

Emails:
1
jaak.henno@taltech.ee (corresponding author);

2
hannu.jaakkola@iki.fi;

3
jumakela20@gmail.com

ORCID: 0000-0003-0188-7507 (Hannu Jaakkola)

© 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

7:1

programmers, but continue creating new packages and libraries, which 'just work' and further

contaminate the software ecosystem.

1.1. World-wide ecosystem of programming and communication

With exhaustion of Earth's natural resources humanity is constantly increasing scientific

research. Spending on sciences has increased in last four years worldwide by 19% and the

number of scientists grew by 13.7% reaching currently already to 8.8 million [1].

Fig. 1. Wordwide spending on IT technology is rapidly growing (the yellow line – linear approximation, growth >

18%))

Modern Science is based on worldwide ecosystem of programs and communication and spending

on IT technology is growing rapidly. Since the start of 2020, the COVID-19 crisis further boosted

this trend. We constantly need more and more programmers. But software development today is

orders of magnitude more complex than one or two decades ago and is increasing with every new

innovation in hardware, new method in software, new encryption method.

2. Changes in programs and in programming

Once upon a time programming was done just writing commands of a programming language in

a proper order, but these times are long gone. While e.g. the language Python 3.7 has only 35

keywords and 59 symbols, the real power of the language is in its libraries and modules, e.g. in

the computer used to write this text are installed 361 Python 3.7 modules. Currently

programming is done with modules, libraries, API-s, Dockers, Kubernetes etc. Every module

presents some functionality what is (usually) far more complex than a single command of a

programming language. Modules and API-s call other modules, libraries, API-s, what makes

modern programs complex hierarchical systems, where the visible part (code what is inspect able

in the program) is a minuscule part of the invisible in final code, hidden in libraries, API-s etc.

Modern software is like icebergs in Antarctic – the main part is invisible.

In the following are presented some (simple) examples showing this 'iceberg-style' programming

and an analyse of the reasons for programs 'blow-up', since the depth/complexity is causing many

problems for students, but also for the whole modern world-wide software ecosystem. To

illustrate the issue here is introduced program's visibility index: ratio of visible code vs code

loaded in libraries/modules.

2.1. A simple graph

 The following graph depicts development of the SQAMIA conference over 2012..2019 in terms of

number of pages in the conference proceedings; the yellow line is a second-order (square)

approximation of the process.

7:2

Fig. 2. Growth of the SQAMIA conference –by number of pages in Proceedings (the yellow line – second-order

approximation)

The above graph was produced by 17 lines (including commentaries – they are important to

make a program easier to understand for humans) of Python 3 code :

1. import numpy as np
2. import matplotlib.pyplot as plt
3. # x axis values
4. x_sqamia = range(2012,2020)
5. # corresponding y axis values
6. y_sqamia = [18,108,114,80,109,192,154,176] # Sqamia
7. plt.plot(x_sqamia, y_sqamia)
8. # naming the x axis
9. plt.xlabel('year')
10. # naming the y axis
11. plt.ylabel('pages in Proceedings ')
12. # giving to graph a title
13. plt.title("Growth of the Sqamia conference")
14. # calculating coefficients of the approximation line
15. a2, a1, a0 = np.polyfit(x_sqamia, y_sqamia, 2)
16. plt.plot(x_sqamia, a2*x_sqamia*x_sqamia + a1*x_sqamia + a0)
17. plt.show()

This text is understandable also for non-programmers. But programmers looking the above code

will wonder – no loops ??? The 'classical' program, i.e. using only commands from a programming

language without any libraries would have to use several loops – using the x_sqamia iterator,

projecting values to axes, solving the system of equations for creating square approximation in

order to calculate correlation parameters a2,a1,a0. Totally is hidden the AI (Artificial

Intelligence) – calculating the size and visually pleasing placement of axes and their scales.

All the functionality of the above program is hidden in the two explicitly called libraries numpy,

matplotlib and many others, called from these two. The pyinstaller [2] tool reveals, that for

drawing of this graph are 162 modules called all together:
bootlocale • _collections_abc • _weakrefset • abc • codecs • collections •

collections.abc • copyreg • encodings • encodings.aliases • encodings.ascii … …

sre_constants • sre_parse • tokenize • traceback • types • warnings • weakref …

Tracing the files for these modules revealed, that they all together contain 18378 lines of Python

code (together with commentaries) and the added modules increased 31882 times the size (on

disk) of the program – from 2 KB to 63764 KB.

The 'blow-up' and then 'missing' together make programming (at least for students) a non-

deterministic exercise, thus difficult/impossible to learn) is in (this case mainly) caused by

modern exceedingly diverse executing environments – Windows (32/64 bit), MacOS, GNU/Linux,

AIX, Solaris, FreeBSD and OpenBSD, IBM-style mainframes, diverse lot of mobile devices, which

all have some differences, thus for them are called different modules. Many of them are specific

to current environment, e.g. ntpath exists only on Windows, but the posixpath exists only on

7:3

Posix/Unix/Mac systems and is missing in Windows environment (but the compiler is still trying

to load it). This creates (in every environment) many modules which compiler marks as 'missing'.

There are several types of missing modules:

 optional - imported within a try-except-statement

 delayed - imported from within a function

 conditional - imported within an if-statement

 top-level - imported at the top-level; they are most important and may cause the program

misfunction

The same module may fall into several categories, e.g. for this program the missing module

org.python was called by module copy (optional), xml.sax (delayed, conditional) and by module

setuptools.sandbox (conditional).

In Windows 64bit environment was the PyInstaller able to access only 41 packages (ca 25%).

The PyInstaller (in the same environment) even searched for more and did not find 238

modules, but it also warned "This does not necessarily mean this module is required for

running you program" – missing modules are required in some other operating environment, e.g.

the list of modules contained 125 encodings:

encodings.ascii • encodings.base64_codec • encodings.big5 • encodings.big5hkscs •

encodings.bz2_codec • encodings.charmap • encodings.cp037 • encodings.cp1006 •

encodings.cp1026 …

(missing were codecs for Egypt, Cuba, UAR etc,).

All together were among missing modules 150 optional, 106 delayed, 94 conditional and 313 top-

level. Large number of missing top-level modules does not mean, that the code can not be

executed – a missing top-level module were called from a module, which itself is optional.

But the highest level of program's execution is the OS (Operating System, often called also as

Operating Environments) [3], in this case Windows 10 64bit. Microsoft also uses several options

in different OS-es. The program's manifest shows, that Microsoft approves the code in 5

Operating Systems (all Windows versions before Windows 7 are already missing) :

<supportedOS Id="{e2011457-1546-43c5-a5fe-008deee3d3f0}"/> <!-- Windows Vista -

->

<supportedOS Id="{35138b9a-5d96-4fbd-8e2d-a2440225f93a}"/><!-- Windows 7 -->

<supportedOS Id="{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}"/><!-- Windows 8 and

Windows Server 2012 -->

<supportedOS Id="{1f676c76-80e1-4239-95bb-83d0f6d0da78}"/><!-- Windows 8.1 and

Windows Server 2012 R2 -->

<supportedOS Id="{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a}"/><!-- Windows 10,

Windows 11, Windows Server 2016, Windows Server 2019 and Windows Server 2022 -->

In modules found by PyInstaller where all together 18378 LOC (Lines Of Code), thus the index

of code visibility, i.e. relation to what in code is visible and what is hidden is rather astonishing:

() 18

0.0000979431
() 1837

_

_ 8

LOC visible code
visibility

LOC invisible code

It is rather difficult (e.g. for students) to understand fully a program when they can inspect only

0.0000979431-th size part of it – e.g. what should be done with the program for the above graph

in order to include two missing years 2020, 2021 to it ? It turns out, that a quite new concept –

data filtering – is needed, and from inspecting the above program (as an educational simple

example for producing data graphs) this is not easy to produce.

2.2. A simple web page

Unnecessary lines of code may be also inserted deliberately – either by ignorance of authors or by

desire to advertise some popular library.

A typical program for beginners (using any programming language/system) is to produce a

program to create a visible display "Hello World". In html5 for this are needed only some lines

of html5 code (in basic mode).

7:4

But the programming powerhouse Facebook (currently Meta) needs thousands of such files (with

largely increased functionality for tracking users). Thus they created a Javascript+Html5 library

react.js advertising it with "React makes it painless to create interactive User Interfaces." [4].

The www-tutorials site W3Schools introduces react.js with an example to create just this

example for visible display of string "Hello World" [5] using 17 lines of html5 code.

<!DOCTYPE html>

<html>

 <head>

 <script src="https://unpkg.com/react@18/umd/react.development.js"

crossorigin></script>

 <script src="https://unpkg.com/react-dom@18/umd/react-dom.development.js"

crossorigin></script>

 <script src="https://unpkg.com/@babel/standalone/babel.min.js"></script>

 </head>

 <body>

 <div id="mydiv"></div>

 <script type="text/babel">

 function Hello() {

 return <h1>Hello World!</h1>;

 }

 ReactDOM.render(<Hello />, document.getElementById('mydiv'))

 </script>

 </body>

</html>

 This script has some strange features:

 (lines 11:.13) - why for displaying a static string "Hello World!" (without any variables) is

created a function in an environment ReactDOM – the html5 language (without any

Javascript) can perfectly show a static string in a pre-defined div?

 (line 14) - why is for displaying/rendering the string used a proprietary function

"ReactDim.render" – in an html-document rendering anything on screen is always done

by browser, a script can only use the available CSS functions (CSS is not used)?

 (lines 4..6) - why for creating this functionality are loaded three Javascript libraries with

altogether 73571+3358+26275 = 103204 lines (after un-minifying) of JavaScript code,

which are not needed at all?

 (lines 4..5) - the crossorigin scripting has been for years considered extremely unsafe

[6], so why it us used in a worldwide tutorials site proposed/presented to many students?

 the example is missing the title tag, which by the html5 standard is obligatory (missing

</title> should cause the browser to ignore the rest of the page [7])

The (absolutely excessive, hidden) lines of Javascript code make this example extremely

unhealthy:

() 17
0.000164722

() 1032

_

_ 04

LOC visible code
visibility

LOC invisible code

Using plain html5 would return an easily understandable script, producing exactly the same

page:

<!DOCTYPE html>

<html>

 <head>

 <title> Hello !</title>

 </head>

 <body>

 <div id="mydiv">Hello World!</div>

 </body>

</html>

7:5

() 11
1.0

_ 1

_

() 1

LOC visible code
visibility

LOC invisible code

 The main burden – 73571 lines of code (after un-minifying) comes from the Babel library for

interpreting Ecmascript ES6 (the official name for Javascript). All major browsers can handle

ES6 already for last five years [8], thus Babel is not needed at all [9], it only increases page's size

and slows it down.

At least for a student this is not "painless", but (very) painful.

2.3. Increase of complexity with AI

Our computing environments are constantly changing and their complexity is rapidly growing.

Every day are uploaded/modified thousands of new libraries/API-s which are also used in new

programs, e.g. in one week - August 3 – August 10, 2022 in the Github repository for node.js

"1,479 files have changed and there have been 34,550 additions and 6,640 deletions." [10].

Fig. 3. Uploading of new node.js modules during Feb.1..Feb.7, 2022 [11]

With exhaustion of Earth's natural resources humanity is forced to use their

resources/technologies far more efficiently. All our innovations begin with communication – a

workgroup meeting, chat in wine/bierstudbe etc, i.e they are presented in some natural human

language. For handling human language in computers have been developed programs with

enormous (inner) complexity.

The Tensorflow example from Google [12] tries 'understand' natural language' - any language –

English, Serbian, Croatian etc without using any dictionaries; these 'superlinguists' abilities are

based on 4 imported modules only:

import tensorflow as tf

import numpy as np

import os

The PyInstaller reveals that from these four are imported other 158 modules:

_bootlocale • _collections_abc • _weakrefset • abc • codecs • collections •

collections.abc • copyreg • encodings • encodings.aliases • encodings.ascii •

encodings.base64_codec • encodings.big5 • encodings.big5hkscs •

encodings.bz2_codec • encodings.charmap • encodings.cp037 • encodings.cp1006 •

encodings.cp1026 • encodings.cp1125 …•

The module os imports also package boto (the current version is boto3/botocore), which

appears in the modulegraph gross-reference list 334 times. The module boto is the low-level CLI

(Command Language Interface) for several cloud platforms - AWS (Amazon Web Services), i.e.

SDK (System Developing Kit), which makes it easy to integrate a Python library or script with

AWS services including Amazon S3, Amazon EC2, Amazon DynamoDB, but also for Google

Storage and some private cloud systems, e.g. VMware vCloud, OpenStack, Open Nebula or

7:6

Eucalyptus. Thus Tensorflow is already prepared to swim in Amazon cloud (boto is a small river

dolphin living in Amazon [13]).

The search for Python 3.7 modules was able to find 55 of 158 modules with 24465 lines of code.

The Tensorflow example program had 52 lines of code, thus in this case

() 52
0.002125485

() 24_ 46

_

5

LOC visible code
visibility

LOC invisible code

But here the main growth in complexity comes from the program.

Definition of the Tensorflow model contains only 6 lines of code:

def build_model(vocab_size, embedding_dim, rnn_units, batch_size):

model = tf.keras.Sequential([tf.keras.layers.Embedding(vocab_size,

embedding_dim,batch_input_shape=[batch_size, None]),

tf.keras.layers.GRU(rnn_units,return_sequences=True,stateful=True,recurrent_init

ializer='glorot_uniform'),tf.keras.layers.Dense(vocab_size)]

return model

But this definition creates a model with over 4 million parameters as shown in output for Python

command model.summary():

Model: "sequential"

Layer (type) Output Shape Param #

===

embedding (Embedding) (128, None, 256) 43776

gru (GRU) (128, None, 1024) 3938304

dense (Dense) (128, None, 171) 175275

===

Total params: 4,157,355

Trainable params: 4,157,355

Non-trainable params: 0

Handling more than 4 million parameters is (very) slow in 'plain' Python, since Python uses only

a single CPU core and cannot parallelize computation. In most of modern computers are already

multicore CPU-s and their speed can be utilized with another library - bodo, which is [14]: "a new

compute engine using a novel JIT inferential compiler technology that brings supercomputing-like

performance and scalability to native Python analytics code. Bodo automatically parallelizes

Python/Pandas code allowing applications to scale to 10,000+ cores and petabytes of data."

Innovations – cloud computing, multicore CPU-s, use of graphics etc introduce constantly new

modules and libraries – and hide more LOC 'under the water'. The rapidly growing cloud

computing is currently one of the most important reasons increasing complexity of programs

introducing new libraries. The recent forecast [15] predicts, that the global cloud computing

market will be 1,251.09 billion USD by 2028 or the annual growth over the period will be 19.1%.

The growth of cloud computing in education is expected even bigger – 25.6% [16]. In 2021 nearly

half (42%) of enterprises in EU already used cloud computing [17].

Fig. 4. Percentage of enterprizes using cloud computing

7:7

3. Conclusions

Many (most) of the classical programming textbooks considered programming as a process of

creating a linear artefact - putting programming language statements one-after-another in a

proper order.

But already creators of the compilers for the first high-level language – Fortran, Cobol –

understood that programs and their functionality (also creating the programs itself) are far from

linearity and programs are always presented as trees – e.g. as the AST (Abstract Syntax Tree).

Programming, human thought has never been linear, although many of created by ourselves

tools (standards, texts, constitutions etc.) are trying to force to us this style of thinking.

We are not linear. Programming has constantly becoming more and more non-linear -

hierarchical. Programmers still have to create linear text, but programs are including libraries,

IDE-s, modules etc. which all make programs functionality (inner working) strongly

multidimensional. Software development is not a smooth or simple process, many researchers

are worried with its growing complexity, see e.g. [18]. Emily Freeman, head of DevOps at

Amazon Web Services Inc characterized it "It’s a study in entropy, and it is not getting any more

simple”[19]. Unfortunately we are still not aware how to teach to our non-linearly thinking

students the proper non-linear thinking methods/styles, but they should (at least) be aware of

tremendous dimensionality of our programs (and our thoughts).

References

[1] 1 Unesco Institute for Statistics. 2022. How much does your country invest in R&D. Retrieved
from http://uis.unesco.org/apps/visualisations/research-and-development-spending/ on July 30th,

2022.

[2] 2Pyinstaller. 2022. Pyinstaller 5.2. Retrieved from https://pypi.org/project/pyinstaller/ on July
30th, 2022.

[3] Microsoft. 2022. Application Manifest. Retrieved from https://docs.microsoft.com/en-

us/windows/win32/sbscs/application-manifests on July 30th, 2022.

[4] 3React. 2022. React - A JavaScript library for building user interfaces. Retrieved from
https://reactjs.org/ on July 30th, 2022.

[5] 4W3Schools. React Getting Started. Retrieved from https://www.w3schools.com/react/

react_getstarted.asp on July 30th, 2022.
[6] 5 rot, Rémy. 2020. Understanding Cross-Origin Resource Sharing Vulnerabilities. Tenable Blog.

Retrieved from https://www.tenable.com/blog/understanding-cross-origin-resource-sharing-

vulnerabilities on July 30th, 2022.
[7] 6MDN Web Docs. 2022. <title>: The Document Title element. Retrieved from

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/title on July 30th, 2022.

[8] 7W3Schools. 2022. JavaScript Versions. Browser Support for ECMAScript 2016. Retrieved from

https://www.w3schools.com/js/js_versions.asp on July 30th, 2022.
[9] 8SidmartinBio. 2022. Do you need Babel for ES6? Retrieved from https://www.sidmartinbio.org/

do-you-need-babel-for-es6/ on July 30th, 2022.

[10] 9 Nodejs. 2022. Nodejs/Node Pulse. Retrieved from https://github.com/nodejs/node/pulse on July
30th, 2022.

[11] 10Node. 2022. Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.

Download for Windows (X64). Retrieved from https://nodejs.org/en/ on July 30th, 2022.

[12] TensorFlow. 2022.Text generation with an RNN. Retrieved from https://www.tensorflow.org/
text/tutorials/text_generation on July 30th, 2022.

[13] 12Wikipedia. 2022. Amazon river dolphin. Retrieved from https://en.wikipedia.org/wiki/

Amazon_river_dolphin on July 30th, 2022.
[14] 13Pypi. 2022. Bodo 2022.6 Project Description. Retrieved from https://pypi.org/project/bodo/ on

July 30th, 2022.

[15] 14Research and Markets. 2022. Cloud Computing Market Size, Share & Trends Analysis Report
by Service (SaaS, IaaS), by Enterprise Size (Large Enterprises, SMEs), by End Use (BFSI,

7:8

Manufacturing), by Deployment, and Segment Forecasts, 2021-2028. Retrieved from
https://www.researchandmarkets.com/reports/5397840/cloud-computing-market-size-share-and-

trends on July 30th, 2022.

[16] 15Markets and Markets. 2022. Cloud Computing in Education Market by Service Model (SaaS,

PaaS, and IaaS), Deployment Model (Private Cloud, Public Cloud, Hybrid Cloud, and
Community Cloud), User Type (K-12 and Higher Education) and Region - Global Forecast to

2021. Retrieved from https://www.marketsandmarkets.com/Market-Reports/cloud-computing-

education-market-17863862.html on July 30th, 2022.
[17] 16Eurostat. 20232. Cloud computing used by 42% of enterprises. Retrieved from

https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20211209-2 on July 30th, 2022.

[18] 17Carey, Scott. 2021. Complexity is killing software developers. Infoworld. Rerieved from
https://www.infoworld.com/article/3639050/complexity-is-killing-software-developers.html on

July 30th, 2022.

[19] 18Amy-Vogt, Betsy. 2021. ‘DevOps for Dummies’ author Emily Freeman introduces revolutionary

model for modern software development. siliconAngle. Retrieved from
https://siliconangle.com/2021/09/29/devops-dummies-author-emily-freeman-introduces-

revolutionary-model-modern-software-development-awsq3/ on July 30th, 2022.

7:9

