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Abstract
Understanding inductive and deductive reasoning requires in some or other form the representation
of concepts. A basic assumption underlying Gärdenfors’ linguistic-cognitive framework of conceptual
spaces as well as the machine-learning based framework of knowledge-graph embeddings is that concepts
and reasoning over them are geometrical. The main ingredient of Gärdenfors’ conceptual spaces is a
ternary betweenness relation which is the basis for de�ning concepts as convex (= betweenness-closed)
sets. Though many interesting phenomena of cognitive reasoning can be explained in the framework of
conceptual spaces, it is at least not obvious how to use betweenness for other, more logico-formal aspects
of reasoning that, e.g., require de�ning logical operators. In particular, for the logical operator of negation
other mathematical structures such as the orthoframes of Goldblatt have proven more useful. In this
paper, we provide �rst ideas and results on the connection between conceptual spaces and orthoframes.
The main technical result of this paper concerns the de�nition of a betweenness relation within an
orthoframe. The construction is an adaptation of Goodman’s mereology-based betweenness relation
over so-called qualia to a set-theoretic betweenness relation based on an orthoframe.
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1. Introduction

Enriching sub-symbolic by conceptual information or understanding reasoning in general
requires the representation of concepts as well as operators on them, such as conjunction,
and relations between them, such as subsumption. One possible representation of this kind is
the framework of conceptual spaces introduced by Gärdenfors [1]. His claim is that concepts
can be represented geometrically as (sets of) convex regions in a space, whereas subsymbolic
information is represented as points in this space. This enables to combine sub-symbolic
information, e.g., as used in neural networks, with symbolic information.
In conceptual spaces, (logical) conjunction of concepts is easily de�ned as intersection,

however, it is not straight-forward to de�ne other logical operators. According to Gärdenfors,
the de�nition of negation is particularly challenging [1]. Concepts in conceptual spaces are
de�ned as convex sets. The basis for this de�nition is a notion of betweenness: convex sets are
those sets containing with each pair of elements also all elements in between them. Thus, the
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question arises, whether it is possible to de�ne a representation which sticks to the advantages
of a conceptual space by ensuring convexity but can also represent logical operations that
preserve convexity, e.g., a negation operator such that negated concepts are convex.
One such representation allowing to de�ne negation is that of orthoframes as introduced

by Goldblatt [2]. Orthoframes are structures with a domain and a binary relation that is
irre�exive and symmetric. Hence, formally orthoframes correspond to symmetric loopless
graphs. Orthoframes are immensely important structures, not only because they can be used
to de�ne an orthonegation, a generalization of classical Boolean negation. But additionally, as
shown by Goldblatt [2, 3], orthoframes are able to represent any kind of orthonegation.

So, how does one combine these two frameworks—the one focusing on a (ternary) between-
ness relation, the other on a (binary) orthogonality relation—in order to get the best of both
worlds? There has been some relevant work dealing with the problem of de�ning one relation
based on the other. For example, in Appendix B of [4] one can �nd a survey of betweenness
relations de�ned in the context of partial orders and [5] gives a de�nition of betweenness
based on re�exive antisymmetric relations. But until now, as far as we can tell, no approach
tackled the interconnection of betweenness with binary relations in the context of negation
and orthogonality relations.
This paper tries to �ll this gap with some �rst ideas on understanding the interconnection

of betweenness and orthogonality. Technically, we de�ne a betweenness relation based on
a construction going back to Goodman [6]. Goodman’s betweenness notion is couched in
mereological terms (terms developed in a theory of parts and wholes [7]) and is de�ned for
qualia. Qualia are abstract phenomenal qualities, describing a sensory impression of a property
under a condition, e.g., the color of an object under a speci�c illumination. Our key idea for
adapting Goodman’s approach comes from the observation that his de�nition of the betweenness
relies on a binary relation called matching, which is intended to re�ect “similarity” of qualia. We
adapt his construction to a set-theoretical setting, replacing matching by the induced relation
of non-orthogonality in an orthoframe. This observation leads to our main technical result, the
de�nition of a betweenness-relation for orthoframes that enables the representation of convex
concepts and their negations which are also convex.
The rest of the paper is structured as follows: In Section 2, the idea of conceptual spaces

introduced by Gärdenfors is discussed and his notion of betweenness is introduced. Whereas in
Section 2 negation is considered in a conceptual-space point of view, in Section 3, orthoframes
and the notion of orthonegation are introduced. There, also an example for an orthonegation
de�ned via betweenness is given. In Section 4, the approach of Goodman is introduced and
connected to the betweenness-relation of Gärdenfors. The main theoretical result of the paper
can be found in Section 5, where the notion of betweenness introduced by Goodman is adapted
to orthoframes. The paper ends with a short conclusion.

2. Conceptual Spaces and Betweenness

Gärdenfors’ conceptual spaces (see the textbook [1] and the summary in [8], on which this short
section is partially based) are the main elements of a cognition oriented semantics of language
which tries to �ll the gap between sub-conceptual semantics on a sub-symbolic level as that of
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neural networks and the higher symbolic level of logical languages.
The basic assumption underlying the general framework of conceptual spaces is that the

nature of concepts and the nature of reasoning with concepts is geometrical. Conceptual spaces
are geometrical and as such are not only relevant for spatial (and temporal) reasoning, as argued
in [9], but generally for representing and reasoning with concepts. The same assumption on
the geometrical nature of concepts is at the core of knowledge-graph embedding (KGE) [10]. In
KGEs one also has some domainX with dimensions, but usually these dimensions do not come
with a prescribed meaning (they are latent), and the space X has usually a richer mathematical
structure in that it is a Hilbert space.
The ingredients of conceptual spaces can be illustrated with Gärdenfors’ example of the

color concept. The color of an object is determined by three quality dimensions, chromaticness
(saturation), brightness, and hue. The �rst two of these are isomorphic to R with the usual
ordering while the latter is isomorphic to a circle in the plane. Other examples of quality
dimensions are force, height, width. This aspect of quality dimensionsmarks already a signi�cant
di�erence to the vector-spaces used in knowledge graph embeddings (KGEs), as in KGEs the
dimension do not have a pre-de�ned meaning but are latent entities “gaining their meaning”
during the embedding process.

De�ning the color of an object calls for assigning it to a point in a conic-shaped space induced
by the three quality dimensions. One cannot assign a value on one dimension without giving a
value on the other dimensions. Gärdenfors says that this set of quality dimensions is integral.
The complementary notion is that of separability. The space made up of a set of integral quality
dimensions that are separable from all other quality dimensions is called a domain. Note that
according to this de�nition, a domain is identi�ed by its dimensions.

The most important component of conceptual spaces is the betweenness relation. A between-
ness relation btw(x, y, z) is a ternary relation with the intended meaning that point y is between
points x and z. This notion generalizes that of a metric d, which induces a betweenness relation
btwd by setting btwd(x, y, z) i� d(x, z) = d(x, y) + d(y, z).

In our following considerations we are going to deal with this bare bone of conceptual spaces.
Thus, we will be dealing mainly with structures of the form (X, btw)whereX is an arbitrary set,
also called domain, and a ternary relation btw ful�lling some properties expressed by axioms.
(So we abstract from the fact that there are dimensions with a prede�ned meaning.) We are
going to work with Gärdenfors’ list of axioms for the betweenness relation btw.

De�nition 1. Betweenness axioms according to Gärdenfors are the following:

If btw(a, b, c), then a, b, c are distinct (B0)

If btw(a, b, c), then btw(c, b, a) (B1)

If btw(a, b, c), then not btw(b, a, c) (B2)

If btw(a, b, c) and btw(b, c, d), then btw(a, b, d) (B3)

If btw(a, b, d) and btw(b, c, d), then btw(a, b, c) (B4)

Axiom (B0) constrains the ternary relation btw to what is sometimes called open betweenness

[4]. (B1) expresses commutativity of betweenness w.r.t. the outer points. (B2) expresses that if a
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point is between two points it cannot have one of the points in between itself and the other
point. (B3) is sometimes called outer transitivity and (B4) inner transitivity.
We stick to the talk of “betweenness axioms according to Gärdenfors” though, of course,

the axioms mentioned above are part of the folklore de�nitions of betweenness (see, e.g., [5]).
Actually, Gärdenfors refers the reader to [11] for the notion of betweenness. But note that
[11] treats betweenness as a primitive notion next to those of lines and points. The axioms
(B0)–(B4) Gärdenfors mentions are only those that do not refer to lines and points. But there are
additional theorems of geometry (as developed in [11]) that constrain the betweenness relation
even further. One such property is stated as axiom (B5) below.
The betweenness relation is the basis for de�ning convex sets Y within a domain X . A set

Y is convex i� for all pairs of points contained in Y one has also all points lying in between
them in Y , formally: for all x, y, z ∈ X : if x, z ∈ Y and btw(x, y, z), then also y ∈ Y . In a way,
convex sets are well-shaped and as such are candidates for the mental pendants of concepts.
Gärdenfors de�nes a (natural) concept to be a set of convex regions in possibly multiple domains.
What are the reasons to de�ne concepts on the basis of convex regions? The main reason

is that of “cognitive economy” [1, p. 70], as learning and reasoning with concepts on convex
regions seems to demand less cognitive capacities, or, more technically, less resources such as
space (memory) and time. Technical underpinnings of this observation can be found in di�erent
areas in which convex regions seem to ease the computation [12, 13, 14].

Nice at it is from the philosophical or cognitive-linguistic point of view, the conceptual-space
approach has problems in de�ning linguistic or logical constructors for combining concepts. The
only real concept constructor de�ned in [1] is a form of combination that bears similarities to
concept conjunction, but is a bit more complicated [1, p.122], as it tries to explain adjective noun
combinations such as “small elephant”. Nonetheless, restricting the combinations to simple
noun-noun combinations with “and” may allow the interpretation by intersection of convex
regions. Because the intersection of convex regions is again a convex region, the operator
would be well-de�ned. In so far, the approach of conceptual spaces is more promising than, say,
support vector machines. These lead to representations of concepts by half-spaces, which are
not closed under intersection. (See also the discussion in our forthcoming [15]).
But according to Gärdenfors, the main problem within the conceptual-space framework is

the handling of negation and quanti�ers [1, p.202]. One can readily add disjunction as being as
di�cult because disjunction can be de�ned via De Morgan through conjunction and negation.
When talking about negation, Gärdenfors probably has a more sophisticated, cognitively

and linguistically founded operator in mind—which must have lead him to the conviction that
handling negation is hard. In the next section we are going to tackle the point of negation from
a logical or rather lattice theoretical point of view and discuss in how far de�ning negation in
structures with a betweenness relation is possible.

3. The Case of Negation and Orthoframes

Following roughly the wording of the title in Gabbay’s paper [16], we would like to know
“What is negation in conceptual spaces in 2022”? A similar question is of importance for KGEs:
“What is negation in embedding approaches in 2022”? Because also for KGEs the question of the
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kinds of supported negations is still not settled in a satisfying manner. Some ideas—couched
in geometrical terms—have been described [8, 17, 18, 19]. In particular, the approach of [19]
pushes the limits of expressivity: whereas [8, 17, 18] do not allow for full negation of concepts
to be represented, [19] de�nes negation for a model of cones that uses polarity.

We propose that the theory of orthologics and orthoframes according to [2] can take the role
of a foundational geometric framework that at least can be considered as a useful completion of
KGEs and conceptual spaces in particular w.r.t. negation. Here we want to give an informal
argument for our claim.

Orthologics are a generalization of propositional logic that provide a full notion of negation
called orthonegation and (using De Morgan) also full disjunction. Orthonegation exhibits
not all properties of Boolean negation but at least it ful�lls antitonicity (contraposition), the
intuitionistic absurdity principle (anything follows from a sentence stating A and its negation)
and allows for double negation elimination. Now, as Goldblatt showed, any orthologic is
characterizable by a very basic class of structures, called orthoframes, that is as simple and
basic as conceptual structures. Formally, an orthoframe (X,⊥) consists of a domain X and
a binary orthogonality relation ⊥ ⊆ X ×X , i.e., a relation that is irre�exive and symmetric.
In other words, an orthoframe is nothing else than a symmetric graph without self-loops. Of
course, when Goldblatt invented the notion of an orthoframe he had in mind (also) examples of
a more geometrical kind, e.g.,X being a vector space and⊥ standing for the usual orthogonality
relation that holds between two vectors when they have an angle of 90 degrees.
Now, Goldblatt’s “concepts” in an orthoframe are de�ned as ⊥-closed sets: De�ne Y ⊥ =

{x ∈ X | for all y ∈ Y : x⊥y}. A set Y is⊥-closed i� Y ⊥⊥ = Y . The class of all orthogonality-
closed sets makes up an ortholattice, i.e., a lattice with (·)⊥ as ortholattice complement. In
this paper we call the orthocomplement orthonegation. Applied to ⊥-closed concepts, the
three properties of orthonegation mentioned above are explicated formally as follows: Y1 ⊆ Y2
entails Y2

⊥ ⊆ Y1
⊥ (antitonicity); Y ⊥⊥ = Y (double negation elimination); and ∅ = Y ∩ Y ⊥

(intuitionistic absurdity).
Part of our research program is the working hypothesis that under further constraints

on an orthoframe rich betweenness relations can be de�ned that ful�ll all of Gärdenfors’
betweenness axioms mentioned above and even other axioms that have been discussed as
potential betweenness axioms [20, 21]. In this paper we show that at least we can use an
adaptation of Goodman’s notion of betweenness that ful�lls all axioms except for axiom (B3).

Before proving this in the next section, we close this section with a simple example illustrating
the other direction regarding the interconnection of orthoframes and betweenness: given a
betweenness relation on X , we can de�ne an orthogonality relation on the same space X . The
starting point is the observation that a conceptual space, read as a structure (X, btw) with a
betweenness relation btw already comes equipped with a means to de�ne an orthoframe (and
hence negation). Take any an arbitrary and henceforth �xed element 0 ∈ X . Then de�ne an
orthogonality relation for all x, y 6= 0 as follows:

x⊥0y i� btw(x, 0, y) (1)

The relation is indeed an orthogonality relation: it is irre�exive due to (B0) and symmetric due
to (B1). So, we have a means to de�ne a an orthogonality relation even in conceptual spaces
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where betweenness does not necessarily ful�ll all axioms of Gärdenfors. Now, based on ⊥0

we can consider the ⊥0-closed subsets as concepts on which a form of negation is de�ned,
namely orthonegation of the ortholattice induced by ⊥0. So, why did Gärdenfors think de�ning
negation in a conceptual space is a challenging task? The �rst point was mentioned above: he
probably had an advanced, cognitively and linguistically justi�ed notion of negation in mind.
But even for orthonegation there might be a reason to consider de�ning an appropriate one
based on betweenness challenging. As we show below, it might be the case that the class of
⊥0-closed subsets is not su�ciently rich.

To get it right from the beginning: If we do not make further restrictions on the betweenness
relation other than those expressed by (B1)-(B4) (or even just (B0) and (B1)), then ⊥0 may
give a rich set of concepts. But if we consider further natural restrictions on betweenness,
the set of ⊥0-closed sets becomes too simple. By “natural restriction” we mean properties
that follow from considering betweenness in absolute geometry [11]. Absolute geometry is
the geometry developed by Euclid on the basis of the notions of points, lines and planes (and
the incidence relation)—but without the parallel axiom. Now, we consider one of the axioms
of absolute geometry (see [11, axiom I3, page 21]) that states that for two distinct points a, b
there is maximally one line containing them. We transfer this axiom into a property for the
betweenness relation as expressed by (B5).

btw(y, z1, z2) or btw(y, z2, z1) or z1 = z2 if btw(x, y, z1) and btw(x, y, z2) (B5)

So assume that btw ful�lls (B0)–(B5). Note that we can de�ne notions of line and half-line on
the basis of a betweenness notion as follows [11]. Let a, b ∈ X be arbitrary, then de�ne the line
L(a, b) through a, b as

L(a, b) := {x | x = a or x = b or btw(a, x, b) or btw(x, a, b) or btw(a, b, x)} (2)

Given a line L and points a, b on L, one has two disjoint open half-lines HL(a, b) and
HL∗(a, b) starting at a such that L = {a} ∪HL(a, b) ∪HL∗(a, b). These can be de�ned as
follows:

HL(a, b) = {x | btw(a, x, b) or btw(a, b, x) or x = b} (3)

HL∗(a, b) = {x | btw(x, a, b)} (4)

The property expressed in (B5) just ensures that the notion of line is a proper one. Now, the
⊥0-closed sets are nothing else than half-lines starting at 0.

Proposition 1. If btw ful�lls (B1)− (B5) and ⊥0 is de�ned according to (1), then for all sets Y
in the orthoframe (X,⊥0): Y is ⊥0-closed i� it is the empty set or or the complete space X or a

half-line starting at 0.

The proof is omitted due to space restrictions. As an example for a betweenness-relation
ful�lling this restriction a two-dimensional space and the betweenness-relation btwd based on
the Euclidean distance can be considered.

In fact, the⊥0-closed sets are also closed w.r.t. the betweenness relation, i.e., they are concepts
according to Gärdenfors. But though we have a proper notion of negation the resulting set of
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“concepts” is not su�ciently rich: being half-lines they are of dimension 1 and the conjunction
of two half-lines does not lead to interesting other concepts, only half-lines again or the empty
set.

4. Goodman’s Original Approach Based on Matching

In note 20 of his book on conceptual spaces [1] Gärdenfors remarks that Nelson Goodman
[6] establishes a notion of betweenness based on his notion of matching. Nelson Goodman’s
approach is relevant for the topic of this paper, because matching is a binary, symmetric and
re�exive relation. Now, a similarity notion ∼ can be de�ned as the negation of an orthogonality
relation ⊥ as follows:

x ∼ y i� not x⊥y (5)

According to this de�nition, ∼ is a symmetric and re�exive relation, hence it can take the role
of Goodman’s matching. Gärdenfors notes that Goodman meant to show that he can establish
many properties of the betweenness relations, which suggests that not all of (B0)–(B4) are
ful�lled. In fact, in Goodman’s book we found only proofs showing that (B0)-(B2) are ful�lled.
The ideas of Nelson Goodman concern a betweenness relation of so-called qualia, abstract

phenomenal qualities, describing a sensory impression of a property under a condition, e.g.,
the color of an object under a speci�c illumination. This constraint is in fact not a problem,
as his general construction can be used also for non-qualia (as he himself states and as we
show below with our adaptation). The theory of qualia is developed in a mereological system (a
theory of parts and wholes) with a mereological sum operator (see, e.g., [7] for a modern, book
length treatment and [22] for recent advances in the intersection of geometry and mereology).
We adapt Goodman’s approach to a set theoretical setting (replacing sum by union). Though
mereology has its merits and a long tradition in epistemology, metaphysics, and ontology
research there are technical reasons [23] why it has not found the same acceptance as set
theory—at least by mathematicians.

Goodman de�ned his notion of betweenness only for �nite domains. This is the other point
in which our adaptation of Goodman’s construction deviates from the original approach: we
consider also in�nite (and even more: dense and continuous) spaces as they are used in general
by embedding approaches.

The relevant betweenness relation of Goodman is called “betwixtness” (an old English word
for betweenness) and reads as follows [6, De�nition D10.02, p. 219]:

x/y/z i� M(x, y) & M(y, z) & M(x, z) & G(x†z, x†y) & G(x†z, y†z) (6)

M(x, y) stands for Goodman’s re�exive and symmetric notion of matching. This notion
seems to be a primitive notion, i.e., to be unde�ned. The de�nition Goodman gives for matching
[6, De�nition DA-2, p. 205] relies on the notion of allying “A”. This notion in turn is de�ned on
the basis of M . So M is given only “implicitly” de�ned by some axioms [6, pp. 209 �]. He has
a mereological notion of symmetric di�erence denoted by the dagger † (p. 211) and a binary
notion of aggregatively greater than G(x, y). [6, De�nition D8.021, p. 182] . This one is based
on a primitive notion of “is of equal aggregate size” Z. (Translated to set theory Z just means:
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has the same cardinality). De�nition D8.021 reads: G(x, y) i� there is a proper part t of x such
that t is equal in aggregate size to y. And this seems to be the main place where Goodman
assumes a �nite domain: Because, if xwhere in�nite, then one could �nd a proper part (a proper
subset of x) that is of equal size as x. But then x would be greater than itself.
According to Goodman [6, p. 219], his betweenness relation ful�lls the following axioms

(with the corresponding enumeration in Goodman’s book given in brackets): (B0) (Goodman:
10.25), (B1) (Goodman: 10.26), (B2) (Goodman: 10.27). There is no proof of (B3), which our
adaptation does not ful�ll too, and of (B4), which in case of our adaptation is provable.
(B3) is problematic due to several reasons. One problem is that each pair of x, y, z must

match. And this cannot be guaranteed: whereas each pair in {a, b, c} and in {b, c, d} may
match, a and d may not match anymore. However, even when matching of each pair is
assumed, (B3) is not necessarily ful�lled, as, e.g., the creation of circles in similarity (meaning
a ∼ b, b ∼ c, c ∼ d, d ∼ a) could lead to the case that btw(a, b, c) and btw(b, c, d), but
btw(d, a, b) instead of btw(a, b, d).
Despite that (B3) and (B4) are strongly related, (B4) is (in this context) simpler to establish

than (B3). (B4) represents the inner transitivity, thus the elements a and d restrict the subset
which needs to be considered. In contrast, (B3) represents outer transitivity, hence (B3) needs
to be ful�lled for a relation btw(a, b, c) for each d with btw(b, c, d), thus for an unrestricted
region.

5. Goodman-style Betweenness on Orthoframes

Let (X,⊥) be an orthoframe and ∼ be the negation of ⊥ according to Eq. (5). Let A4B =
A \B ∪B \A denote the symmetric di�erence of two sets A,B. We de�ne a corresponding
notion of symmetric di�erence x⊕ y for elements x, y ∈ X of an orthoframe as follows:

x⊕ y = {z ∈ X | z ∼ x}4{z ∈ X | z ∼ y} (7)

So x⊕ y denotes the set of elements z which are similar to one of {x, y} but not the other.
Now, our adaptation of Goodman’s betweenness relation is given in the following de�nition.

De�nition 2. The Goodman-style betweenness relation based on subset-inclusion over an

orthoframe (X,⊥) is de�ned as follows:

b(x, y, z) i� x ∼ y & y ∼ z & x ∼ z & x⊕ y ª x⊕ z & y ⊕ z ª x⊕ z (8)

This mimics Goodman’s construction but replaces the greater-than relation G with proper
set inclusion. The reason is that we—in contrast to Goodman—do not assume that X is �nite.

Which of the betweenness axioms (Bi) above are ful�lled? We show that (B0), (B1), (B2), and
(B4) are ful�lled and construct a counterexample for (B3).

In the proof of (B4) we need the following lemma.

Lemma 1. If x⊕ y ⊆ x⊕ z holds, then: x⊕ y ª x⊕ z is the case i� y ⊕ z 6= ∅.

Proof. Assume x⊕ y ª x⊕ z, then there is v ∈ x⊕ z and v /∈ x⊕ y. If v ∼ x and not v ∼ z,
then we must have v ∼ y and hence v ∈ z⊕y. If not v ∼ x and v ∼ z, then v ∼ y cannot be the
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case and we again have v ∈ z ⊕ y. Assume now that y ⊕ z 6= ∅, say with v ∈ z ⊕ y, i.e., v ∼ z
i� not v ∼ y. We have to show that x⊕ y ª x⊕ z holds. If not, then we have x⊕ y = x⊕ z.
On the one hand v ∈ x⊕ z i� (v ∼ x i� not v ∼ z). On the other hand v ∈ y ⊕ z i� (v ∼ x i�
not v ∼ y). So we have (v ∼ x i� not v ∼ z) i� (v ∼ x i� not v ∼ y). Contradiction.

Proposition 2. The Goodman-style betweenness relation according to Equation (8) ful�lls (B0),
(B1), (B2), and (B4) but in general not (B3).

Proof.

Ad (B0): If btw(x, y, z), then x, y, z are distinct. The de�nition guarantees that x and z must
be di�erent. Because otherwise x⊕ z = ∅ and the empty set cannot have a proper subset. If
x = y were the case, then substituting in the de�nition of btw(x, y, z) the y with x would lead
to x⊕ z ª x⊕ z, a contradiction. Analogously the assumption y = z leads to a contradiction.
Ad (B1): If btw(x, y, z), then btw(z, y, x). This follows from the fact that ⊕ is symmetric:

Let btw(x, y, z), i.e., x ∼ y & y ∼ z & x ∼ z & x ⊕ y ª x ⊕ z & y ⊕ z ª x ⊕ z. Then
x ∼ y & y ∼ z & x ∼ z & z ⊕ y ª z ⊕ x & y ⊕ x ª z ⊕ x , i.e., btw(z, y, x).
Ad (B2): If btw(x, y, z), then not btw(y, x, z). Let btw(x, y, z), i.e., x ∼ y & y ∼ z & x ∼

z & x ⊕ y ª x ⊕ z & y ⊕ z ª x ⊕ z, and assume btw(y, x, z). Then the former implies
y ⊕ z ª x⊕ z, whereas the latter implies x⊕ z ª y ⊕ z, a contradiction.
Ad (B3): Not necessarily: If btw(x, y, z) and btw(y, z, w), then btw(x, y, w). Consider the

following counterexample: (X,∼) with X = {a, b, c, d, e} and ∼ with: a ∼ b, a ∼ c, b ∼
c, b ∼ d, c ∼ d, c ∼ e and d ∼ e and assertions v ∼ v and if v ∼ w also w ∼ v for all
v, w ∈ X . Then: a ⊕ c = {d, e}, a ⊕ b = {d}, b ⊕ c = {e}, hence btw(a, b, c); moreover,
b ⊕ d = {a, e}, c ⊕ d = {a}, hence btw(b, c, d). But a ∼ d does not hold, hence btw(a, b, d)
does not hold.
Ad (B4): If btw(x, y, z) and btw(y, w, z), then btw(x, y, w). Let btw(x, y, z), i.e.,

x ∼ y & y ∼ z & x ∼ z & (9)

x⊕ y ª x⊕ z & (10)

y ⊕ z ª x⊕ z (11)

and let btw(y, w, z), i.e.,

w ∼ y & y ∼ z & w ∼ z & (12)

y ⊕ w ª y ⊕ z & (13)

w ⊕ z ª y ⊕ z (14)

We have to show: bwt(x, y, w), i.e., that the following conditions hold:

x ∼ y & y ∼ w & x ∼ w & (15)

x⊕ y ª x⊕ w & (16)

y ⊕ w ª x⊕ w (17)

Proof of (15): We have trivially x ∼ y and w ∼ y. But we also have x ∼ w due to the
following: y ⊕ w ª y ⊕ z hold. Now, as y ∼ x and z ∼ x it follows that x /∈ y ⊕ z. Assume

49



for sake of contradiction that not x ∼ w. As y ∼ x, this would give us x ∈ y ⊕ w, but then x
would have to be in y ⊕ z, leading to a contradiction. Proof of (16): x⊕ y ª x⊕ w. We show
�rst that the ⊆ relation holds: Assume that v exists with v ∈ x⊕ y and thus v ∈ x⊕ z. Case
1: v ∼ x and not v ∼ y. Thus, not v ∼ z. We have to show that v ∈ x⊕ w, i.e., not v ∼ w. If
v ∼ w were the case, then v ∈ w ⊕ z ª y ⊕ z, thus v ∼ y, a contradiction. Case 2 is analog to
case 1: not v ∼ x and v ∼ y. Thus, v ∼ z. We have to show that v ∈ x⊕ w, i.e., v ∼ w. If not
v ∼ w were the case, then v ∈ w ⊕ z ª y ⊕ z, thus not v ∼ y, a contradiction.

Now we are left with showing that x⊕ y is a proper subset of x⊕ w or in other words that
x⊕ w is not a subset of x⊕ y. Due to Lemma 1, in order to show x⊕ y ª x⊕ w, we have to
show that y ⊕ w is not empty. But this is due to Lemma 1 and (14).

Proof of (17): We have to show y⊕w ª x⊕w. We start again by showing ⊆: Let v ∈ y⊕w.
Case 1: v ∼ y and not v ∼ w. We have to show v ∈ x⊕ w and thus v ∼ x. Assume not v ∼ x.
But then (as v ∼ y ) v ∈ x⊕ y. Due to (16) we then have v ∈ x⊕ w, giving us a contradiction.
Similar for case 2 having not v ∼ y and v ∼ w. We are left with showing that x⊕ w is not a
subset of y ⊕ w. Due to Lemma 1 we have to show that y ⊕ x is not empty which is due to
Lemma 1 and (11).

As Goodman’s construction is intended for sensory impressions, the matching operation is
assumed to be a similarity relation, which is usually not transitive. And in fact, the betweenness
construction according to Goodman does not work out for arbitrary orthogonality relations.
Consider an orthogonality relation ⊥ such that the following holds:

For all x, y, z ∈ X : If x⊥z, then x⊥y or y⊥z. (Trans*)

This condition is equivalent to the condition stating that ∼ is transitive, i.e., as ∼ already is
assumed to be symmetric and re�exive, that ∼ is an equivalence relation. In this case the
betweenness relation becomes trivial: if ⊥ ful�ls (Trans*) then no triple of elements stands in
btw-relation. The reason is that as ∼ becomes transitive, x ∼ y and y ∼ z and y ∼ z would
mean that x⊕ y = y ⊕ z = x⊕ z = ∅. But then x⊕ z cannot have any proper subset.

Having an arbitrary orthogonality relation and a betweenness-relation based on it according
to De�nition 2, it is possible to show that the ⊥-closed sets are actually convex, meaning that
the respective orthoframe can be interpreted as conceptual space.

Proposition 3. A set Y is convex if it is ⊥-closed.

Proof. Assume Y to be ⊥-closed and let x, z ∈ Y . Assume that Y is not convex. Thus, there
must exist a y 6∈ Y with btw(x, y, z). y 6∈ Y means that there exists a v ∈ Y ⊥ with v ∼ y. By
de�nition of betweenness, x⊕ y ª x⊕ z. As x⊥v, v ∈ x⊕ y, thus v ∈ x⊕ z, thus v ∼ z. A
contradiction, as then v 6∈ Y ⊥.

6. Conclusion

Though conceptual spaces and orthoframes provide apparently di�erent approaches to (repre-
senting and reasoning with) concepts, already simple constructions such as that of Goodman
[6] uncover interesting relations between them. The investigation reported in this paper is the
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beginning of ongoing work with an in-depth and systematic treatment of conceptual spaces and
orthoframes. Some open research questions are the following: How to deal with negation for
conceptual spaces without our simplifying assumptions, for example, how to handle negation
for concepts represented as sets of convex sets in own domains? How to �nd inverse pairs of
constructions from betweenness to orthonegation and vice versa? How can these insights be
transferred to and exploited by recent KGE approaches?
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