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Abstract
The distinction between explicit and implicit information is essential in knowledge representation. In case

of argumentation frameworks (AFs) the latter comes to light if dynamics are considered. The study of

dynamic involvements is one of the most active fields in argumentation theory in recent years. In this

paper, we further contribute to this topic via introducing two new orderings between AFs motivated by

their carried implicit information. The orderings, called information and reachability order, are analyzed

under lattice theoretical aspects.
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1. Introduction

The groundbreaking contribution of Dungs seminal paper [1] was the idea that the evaluation

of arguments can be done on an abstract level solely based on their interactions. This means,

the concrete logical structure of arguments or the reason why an argument attacks another does

not matter and can thus be disregarded. Consequently, arguments and attacks can be represented

as nodes and edges in a directed graph which are known as argumentation frameworks (AFs).

So-called extensions, i.e. jointly acceptable subsets of the arguments are then determined by

argumentation semantics [2].

The set of extensions of an AF F can be seen as the explicit information of F . In contrast, the

implicit information of F comes to light if F undergoes dynamic changes. Both concepts come

along with an induced notion of equivalence, namely ordinary or strong equivalence, respectively.

Especially the latter has been studied for many nonmonotonic formalisms such as logic programs

[3], causal theories [4], as well as logics in general [5, 6].

The topic of comparing frameworks has received some attention in recent years [7, 8]. In this

paper we focus on orderings between AFs induced by their implicit information. More precisely,

we introduce and formally analyse two new orderings, so-called information and reachability

order. Both concepts use the notion of a kernel which can be seen as a uniquely determined
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representative of AFs sharing the same implicit information [9]. We consider the classical Dung

semantics and perform a lattice theoretical analysis of both orderings.

2. Background

2.1. Abstract Argumentation

We fix a non-finite background set U , so-called universe. An argumentation framework (AF)

[1] is a directed graph F = (A,R) where A ¦ U represents a set of arguments and R ¦ A×A

models attacks between them. In this paper we consider finite AFs only and we use F for

the set of all these graphs. For a given AF G = (B,S) we use A(G),R(G) and L(G) to refer

to its arguments, attacks and self-defeating arguments, i.e. A(G) = B, R(G) = S and L(G) =
{a ∈ A(G) | (a,a) ∈ R(G)}. The union F ⊔G of two AFs F = (A,R) and G = (B,S) is given

as (A∪B,R∪S). Analogously, the intersection F ⊓G is defined as (A∩B,R∩S). Moreover,

subgraph relation G ³ F holds iff A ¦ B and R ¦ S. For two arguments a,b ∈ A, if (a,b) ∈ R we

say that a attacks b as well as a attacks (the set) E given that b ∈ E ¦ A. We say a set E defends

an argument a or a set E ′ if any attacker of a respective E ′ is attacked by some argument of E. A

set E is conflict-free in F (for short, E ∈ cf (F)) iff for no a,b ∈ E, (a,b) ∈ R.

A semantics is a function σ : F → 22U

with F ↦→ σ(F) ¦ 2A. This means, given an AF

F = (A,R) a semantics returns a set of subsets of A. These subsets are called σ -extensions. In

this paper we consider so-called stable, admissible, complete, grounded and preferred semantics

(abbr. stb, ad, co, gr, pr) already introduced by Phan Minh Dung in 1995 [1].

Definition 1. Let F = (A,R) be an AF and E ∈ cf (F).

1. E ∈ stb(F) iff E∈cf (A) and E attacks any a /∈ A\E.

2. E ∈ ad(F) iff E defends all its elements,

3. E ∈ co(F) iff E ∈ ad(F) and for any a defended by E we have, a ∈ E,

4. E ∈ gr(F) iff E is ¦-minimal in co(F) and

5. E ∈ pr(F) iff E is ¦-maximal in co(F).

2.2. Lattice Theory

In this section we recall some basic notions from lattice theory [10].

A partial order f on a set M is a binary relation which is reflexive, antisymmetric and transitive.

The pair (M,f) is called partially ordered set. Finite partial ordered sets can be represented via

so-called Hasse-diagrams, i.e. a drawing of its transitive reduction.

Definition 2. Given a partial ordered set (M,f) and a subset X ¦ M. An element m ∈ M is called

• upper bound of X iff x f m for all x ∈ X , and

• supremum/join of X (sup(X)) iff it is the f-least upper bound of X ,
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• lower bound of X iff m f x for all x ∈ X , and

• infimum/meet of X (inf(X)) iff it is the f-greatest lower bound of X .

Remember that joins and meets need not to exist in general. There might be no upper/lower

bounds at all, or no greatest/lowest bounds among them.

Definition 3. A partial order (M,f) is called a lattice iff joins and meets exist for any two-

element sets {m1,m2} ¦ M. If only one of those is guarenteed we call it join-semilattice or

meet-semilattice, respectively.

3. Strong Equivalence and Induced Orders

3.1. Characterizing Strong Equivalence

In case of propositional logic we have that sharing the same models guarantees intersubstitutability

in any logical context without loss of information. This property does not transfer to mainstream

non-monotonic logics [5, 6]. It is not hard to find two AFs F and G possessing the same σ -

extensions but differ semantically if augmented by a further AF H. We say that both frameworks

are strongly equivalent if the latter is impossible. Consider the following formal definition.

Definition 4. Given a semantics σ . Two AFs F and G are strongly equivalent w.r.t. σ (for short,

F ≡σ

s G) iff for each AF H we have, σ(F⊔H) = σ(G⊔H).

Note that strong equivalence is indeed an equivalence relation, i.e. a binary relation being

reflexive, symmetric and transitive. In view of the fact that strong equivalence is defined seman-

tically it was a quite surprising result that it can be decided by looking at the syntax only [9].

Oikarinen and Woltran introduced so-called kernels of an AF F which are (informally speaking)

graphs without redundant attacks w.r.t. any possible expansion. They showed that syntactical

identity of suitably chosen kernels characterizes strong equivalence.

Definition 5. Let σ ∈ {stb,ad,co,gr}. For any AF F = (A,R) we define the σ -kernel Fk(σ) =
(

A,Rk(σ)
)

as:

1. Rk(stb)=R\{(a,b) | a ̸= b,(a,a) ∈ R},

2. Rk(ad)=R\{(a,b) | a ̸= b,(a,a) ∈ R,{(b,a),(b,b)}∩R ̸= /0},

3. Rk(co)=R\{(a,b) | a ̸= b,(a,a),(b,b) ∈ R},

4. Rk(gr)=R\{(a,b) | a ̸= b,(b,b) ∈ R,{(a,a),(b,a)}∩R ̸= /0}.

The following characterization results for finite AFs are taken from [9]. An exhaustive

overview of characterization theorems for different expansion notions in abstract argumentation

can be found in [11]. Note that the admissible kernel is even strong enough to characterize

preferred semantics.
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Theorem 1. Given two AFs F and G. We have,

1. F ≡σ

s G iff Fk(σ) = Gk(σ) for any σ ∈ {stb,co,gr},

2. F ≡τ

s G iff Fk(ad) = Gk(ad) for any τ ∈ {ad,pr}.

Example 1. Consider F as depicted below. According to Definition 5 we obtain the stable kernel

Fk(stb) as well as the admissible kernel Fk(ad) as graphically presented. Note that redundancy

regarding admissible semantics implies redundancy w.r.t. stable semantics.

b ca

F :

b ca

Fk(stb) :

b ca

Fk(ad) :

3.2. Properties of Kernels

We start with some basic properties which will be frequently used throughout the paper.

Proposition 2 (cf. [9, 12]). Given k ∈ {k(stb),k(ad),k(co),k(gr)}. For any AF F we have:

1. A(F) = A
(

Fk
)

, (node-preserving)

2. L(F) = L
(

Fk
)

, (loop-preserving)

3. R(Fk)¦ R(F) and (no further attacks)

4.
(

Fk
)k

= Fk. (idempotency)

We proceed with the following two useful properties stating that subgraphs of kernels as well

as intersections of kernels are already free of redundancy. Due to the limited space we will from

now on present proofs for stable semantics only.

Proposition 3. For any two AFs F, G and kernel k ∈ {k(stb),k(ad),k(co),k(gr)} we have: If

G ³ Fk, then Gk = G.

Proof. First, Gk ³ G is given by Proposition 2. Suppose towards a contradiction that G ̸³ Gk.

Since arguments and loops are preserved we deduce an attack (a,b)∈R(G)\R(Gk). Consider k =
k(stb). Since (a,b) /∈ R(Gk) we infer (a,a)∈ R(G). The assumption G ³ Fk yields (a,b),(a,a)∈
R(Fk) which is impossible in case of stable kernel. The other kernels can be handled in a similar

way.

Proposition 4. For AFs F, G and k ∈ {k(stb),k(ad),k(co),k(gr)}, Fk ⊓Gk =
(

Fk ⊓Gk
)k
.

Proof. Since Fk ⊓Gk ³ Fk we apply Proposition 3 and obtain
(

Fk ⊓Gk
)k

= Fk ⊓Gk.
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3.3. Information Order

In the following we want to compare AFs with regard to their carried implicit semantical

information. This means, we want to consider semantically relevant syntactical material only.

Thus, the standard ordering ³ is not appropriate as it compares syntactical information without

checking its meaningfulness. A suitable candidate is instead to compare the associated kernels of

two AFs since kernels do not contain semantical redundant information. Hence, we will define

the information order directly on the level of equivalence classes |F |σ = {G | F ≡σ

s G} since all

elements possess the same kernel.

Definition 6. Given a semantics σ ∈ {stb,ad,co,gr} and two AFs F and G. The information

order fσ

i on the associated equivalence classes is defined as:

|F |σ fσ

i |G|σ iff Fk(σ) ³ Gk(σ).

Example 2. Consider again AF F from Example 1 as well as the AF G as depicted below. We

observe that neither F ³ G, nor G ³ F.

b caF : b caG :

However, if considering the associated stable kernels we are able to compare their carried infor-

mation. More precisely, we have Fk(stb) ³ Gk(stb) implying that their corresponding equivalence

classes are ordered as |F |stb f
stb
i |G|stb.

b caFk(stb) : b caGk(stb) :

Before continuing we have to show that fσ

i does not depend on the particular choice of

representatives.

Proposition 5. For any σ ∈ {stb,co,gr,ad}, fσ

i is well-defined.

Proof. Given σ ∈ {stb,co,gr,ad} and |F |σ fσ

i |G|σ for some AFs F, G. Assume now F′ ∈ |F |σ
as well as G′ ∈ |G|σ . We have to show |F ′|σ fσ

i |G′|σ .

By Definition 6 we have Fk(σ) ³ Gk(σ). Since F′ ∈ |F |σ as well as G′ ∈ |G|σ we obtain F′ ≡σ

s F

and G′ ≡σ

s G. According to Theorem 1 we derive F ′k(σ) = Fk(σ) and G′k(σ) = Gk(σ). Hence

F ′k(σ) ³ G′k(σ) is implied showing |F ′|σ fσ

i |G′|σ as required.

The next proposition states that the induced information order is indeed a partial order as

claimed.

Proposition 6. For any σ ∈ {stb,ad,co,gr}, fσ

i is a partial order.

Proof.
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1. reflexive: For any AF F we have, Fk(σ) = Fk(σ). Hence, Fk(σ) ³ Fk(σ) is implied justifying

|F |σ fσ

i |F |σ .

2. antisymmetric: Consider two AFs F and G, s.t. |F |σ fσ

i |G|σ as well as |G|σ fσ

i |F |σ . For

antisymmetry we have to prove |F |σ = |G|σ .

The given ordering entails Fk(σ) ³ Gk(σ) as well as Gk(σ) ³ Fk(σ). Thus, Fk(σ) = Gk(σ).

Consequently, F ≡σ

s G and thus, F ∈ |G|σ proving |F |σ = |G|σ .

3. transitive: Consider three AFs F, G and H s.t. |F |σ fσ

i |G|σ and |G|σ fσ

i |H|σ . By

definition we obtain Fk(σ) ³ Gk(σ) and Gk(σ) ³ Hk(σ). Since ³ is itself a partial order we

derive Fk(σ) ³ Hk(σ) proving |F |σ fσ

i |H|σ .

For illustration purpose we present the Hasse diagram for the information order regarding

stable semantics. We restrict ourselves to AFs containing the arguments a and b only. Note that

there are 24 = 16 syntactically different AFs. However, regarding strong equivalence we obtain 9

different equivalence classes only. Some equivalence classes consist of one element, e.g. |F |stb for

F = ({a,b},{(a,b)}). In contrast, the AF G = ({a,b},{(a,a),(b,b)}) induces an equivalence

class with 4 elements.

a ba b a b

a b

a ba b

a b a b

a b

Figure 1: Hasse diagram for fstb
i

3.4. Reachability Order

Let us turn now to another reasonable ordering. Consider a debate where the current state is

represented by the AF F. One interesting question is whether a certain scenario G (and hence a

certain output σ(G)) is reachable, or even more telling, not reachable in future. This means, is it

possible to reach G from F via adding further information encoded by H. Clearly, semantical

redundant information of F and G does not matter. Consequently, we will define the so-called

reachability order on the level of strong equivalence classes.
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Definition 7. Given a semantics σ ∈ {stb,ad,co,gr} and two AFs F and G. The reachability

order fσ

r on the associated equivalence classes is defined as:

|F |σ fσ

r |G|σ iff ∃H :
(

Fk(σ)⊔H
)k(σ)

= Gk(σ).

Example 3. Let us reconsider Example 2. Regarding the information order we found |F |stb f
stb
i

|G|stb since Fk(stb) ³ Gk(stb). The following AF H justifies the same relation w.r.t. reachability, i.e.

|F |stb f
stb
r |G|stb. Note that

(

Fk(stb)⊔H
)k(stb)

=
(

Gk(stb)
)k(stb)

= Gk(stb).

b ca

Fk(stb) :

b ca

Gk(stb) :

ba

H :

We will see that the above observation is no coincidence (cf. Proposition 9). However, before

turning to more interesting results we have to show well-definedness as well as the defining

properties of a partial order.

Proposition 7. For any σ ∈ {stb,co,gr,ad}, fσ

r is well-defined.

Proof. Given σ ∈ {stb,co,gr,ad} and |F |σ fσ

r |G|σ for some AFs F, G. Assume now F′ ∈ |F |σ
as well as G′ ∈ |G|σ . We have to show |F ′|σ fσ

r |G′|σ .

By Definition 7 we have the existence of an AF H, s.t.
(

Fk(σ)⊔H
)k(σ)

= Gk(σ). Since F′ ∈ |F |σ
as well as G′ ∈ |G|σ we obtain F′ ≡σ

s F and G′ ≡σ

s G. According to Theorem 1 we derive F ′k(σ) =

Fk(σ) and G′k(σ) = Gk(σ). Consequently,
(

F ′k(σ)⊔H
)k(σ)

=
(

Fk(σ)⊔H
)k(σ)

= Gk(σ) = G′k(σ).

Thus, |F ′|σ fσ

r |G′|σ as required.

Proposition 8. For any σ ∈ {stb,ad,co,gr}, fσ

r is a partial order.

Proof. Given σ ∈ {stb,ad,co,gr}.

1. reflexive: For any AF F, Fk(σ) = Fk(σ). Consequently, the empty AF H = ( /0, /0) serves as

a witness for |F |σ fσ

r |F |σ as
(

Fk(σ)⊔H
)k(σ)

=
(

Fk(σ)
)k(σ)

= Fk(σ).

2. antisymmetric: Consider two AFs F and G, s.t. |F |σ fσ

r |G|σ as well as |G|σ fσ

r |F |σ .

For antisymmetry we have to prove |F |σ = |G|σ , i.e. Fk(σ) = Gk(σ).

The given ordering entails the existence of two AFs H1 and H2, s.t.
(

Fk(σ)⊔H1

)k(σ)
= Gk(σ) (1) and

(

Gk(σ)⊔H2

)k(σ)
= Fk(σ) (2). Both equations im-

mediately entail A(F)¦ A(G), L(F)¦ L(G) as well as A(G)¦ A(F), L(G)¦ L(F). Thus,

the initial frameworks and their associated kernels share the same arguments as well as

loops.

Towards a contradiction we suppose (a,b) ∈ R
(

Fk(σ)
)

\R
(

Gk(σ)
)

. First of all, we derive

a /∈ L(F). However, according to (1) (a,b) must be deleted in Fk(σ) ⊔H1 if kernelized.

This means, a ∈ L(H1) has to hold. However, this would imply a ∈ L(G) contradicting

L(F) = L(G).
The case (a,b) ∈ R

(

Gk(σ)
)

\R
(

Fk(σ)
)

can be shown in a similar way. Just use equation

(2) instead of (1).
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3. transitive: Consider three AFs F, G and H s.t. |F |σ fσ

r |G|σ and |G|σ fσ

r |H|σ . By

definition we obtain the existence of two AFs I1 and I2, s.t.
(

Fk(σ)⊔ I1

)k(σ)
= Gk(σ) and

(

Gk(σ)⊔ I2

)k(σ)
= Hk(σ). We have to show |F |σ fσ

r |H|σ , i.e. the existence of a witness I3,

s.t.
(

Fk(σ)⊔ I3

)k(σ)
= Hk(σ).

Consider I3 = I1 ⊔ I2. Due to Proposition 2 we have A
(

(

Fk(σ)⊔ I1 ⊔ I2

)k(σ)
)

=

A
(

Hk(σ)
)

as well as L
(

(

Fk(σ)⊔ I1 ⊔ I2

)k(σ)
)

= L
(

Hk(σ)
)

. We will show now

R
(

(

Fk(σ)⊔ I1 ⊔ I2

)k(σ)
)

= R
(

Hk(σ)
)

.

Consider σ = stb.

a) Let (a,b) ∈ R
(

(

Fk(σ)⊔ I1 ⊔ I2

)k(σ)
)

. We infer (a,a) ̸∈ R
(

Fk(σ)
)

,R(I1) ,R(I2) and

hence, (a,a) ̸∈ R
(

(

Fk(σ)⊔ I1

)k(σ)
)

= R
(

Gk(σ)
)

.

i. Let (a,b) ∈ R
(

Fk(σ)⊔ I1

)

: Since (a,a) ̸∈ R
(

Fk(σ)⊔ I1

)

we deduce (a,b) ∈

R
(

(

Fk(σ)⊔ I1

)k(σ)
)

= R
(

Gk(σ)
)

. Since further (a,a) ̸∈ R(I2) we have (a,b) ∈

R
(

(

Gk(σ)⊔ I2

)k(σ)
)

justifying (a,b) ∈ R
(

Hk(σ)
)

.

ii. Let (a,b) ∈ R(I2): Since (a,a) ̸∈ R
(

Gk(σ)
)

,R(I2) we deduce (a,b) ∈

R
(

(

Gk(σ)⊔ I2

)k(σ)
)

hence (a,b) ∈ R
(

Hk(σ)
)

.

b) Consider now (a,b) ∈ R
(

Hk(σ)
)

= R
(

(

Gk(σ)⊔ I2

)k(σ)
)

.

This entails again that (a,a) ̸∈ R
(

Gk(σ)
)

,(I2). Since Gk(σ) =
(

Fk(σ)⊔ I1

)k(σ)
we

derive (a,a) ̸∈ R
(

Fk(σ)
)

,R(I1) as well.

i. Let (a,b) ∈ R
(

Gk(σ)
)

= R
(

(

Fk(σ)⊔ I1

)k(σ)
)

: Due to Proposition 2 we have

(a,b)∈ R
((

Fk(σ)⊔ I1

))

. Since (a,a) ̸∈ R
(

Fk(σ)
)

,R(I1) ,R(I2) we infer (a,b)∈

R
(

(

Fk(σ)⊔ I1 ⊔ I2

)k(σ)
)

.

ii. Let (a,b) ∈ R(I2): Since (a,a) ̸∈ R
(

Fk(σ)
)

,R(I1) ,R(I2) we immediately infer

(a,b) ∈ R
(

(

Fk(σ)⊔ I1 ⊔ I2

)k(σ)
)

.

Let us consider the Hasse diagram for reachability regarding stable semantics (Figure 2).

Again, we restrict ourselves to AFs containing the arguments a and b only. We observe that the

reachability order looks quite different compared to information order. In particular, we have

much less incomparable classes. However, a closer look reveals that the information order is part

of the reachability order. In the following we will formally prove this observation.

Proposition 9. For any two AFs F and G and any semantics σ ∈ {stb,ad,co,gr} we have: If

|F |σ fσ

i |G|σ , then |F |σ fσ

r |G|σ .
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Proof. Given |F |σ fσ

i |G|σ . Consequently, Fk(σ) ³ Gk(σ). In order to show |F |σ fσ

r |G|σ we

have to present a witnessing AF H, s.t.
(

Fk(σ)⊔H
)k(σ)

= Gk(σ). Consider H = Gk(σ). Since

Fk(σ) ³ Gk(σ) we deduce
(

Fk(σ)⊔Gk(σ)
)k(σ)

=
(

Gk(σ)
)k(σ)

= Gk(σ) concluding the proof.

4. Lattice-theoretical Analysis

We now consider the question whether there exist bounds, meets and joins w.r.t. the introduced

orders.

4.1. Information Order

4.1.1. Lower Bounds and Meets

The following proposition shows that lower bounds as well as meets always exist. A lower bound

contains information which is shared by both frameworks. The meet can thus be understood as

the maximum of shared information.

a b

a ba b

a ba b a b

a b a b

a b

Figure 2: Hasse diagram for fstb
r
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Proposition 10. For two AFs F, G and semantics σ ∈ {stb,ad,co,gr} we have

infσ

i (|F |σ , |G|σ ) =
∣

∣

∣
Fk(σ)⊓Gk(σ)

∣

∣

∣

σ

Proof.

1. well-definedness: If F ′ ∈ |F |σ and G′ ∈ |G|σ we obtain Fk(σ) = F ′k(σ)
and Gk(σ) = G′k(σ)

.

Consequently,
∣

∣Fk(σ)⊓Gk(σ)
∣

∣

σ
=
∣

∣

∣
F ′k(σ)⊓G′k(σ)

∣

∣

∣

σ

.

2. lower bound: Consider two AFs F , G and H = Fk(σ)⊓Gk(σ). Since H ³ Fk(σ) and H ³
Gk(σ) we deduce Hk(σ) ³ Fk(σ) as well as Hk(σ) ³ Gk(σ) (Prop. 3). Hence |H|σ fσ

i |F |σ
and |H|σ fσ

i |G|σ is implied.

3. meet: Assume towards contradiction that H is not the greatest lower bound. Then there

has to exist H ′, s.t. |H|
σ
¯σ

i |H ′|
σ
fσ

i |F |
σ
, |G|

σ
. This means,

(

Fk(σ)⊓Gk(σ)
)k(σ)

³❘

H ′k(σ) ³ Fk(σ)⊓Gk(σ) ³ Fk(σ). Applying Prop. 3 again we obtain
(

Fk(σ)⊓Gk(σ)
)k(σ)

=

Fk(σ)⊓Gk(σ). Thus, H ′k(σ)
can not exist proving that H is indeed the greatest lower bound.

4.1.2. Upper Bounds and Joins

In contrast to lower bounds as well as meets we may show the conditional existence of upper

bounds as well as joins only. More precisely, a join exists whenever there is at least one upper

bound. Interestingly, upper bounds regarding the information order coincide with so-called

models in Dung-logics firstly considered in [13]. It will be part of future work to study further

relations between the introduced information order and already established Dung logics. For

the moment, we just use some main results from [13] in order to prove the following non-trivial

assertions. First, there are upper bounds for two AFs if the union of their corresponding kernels

does not contain any redundant attacks. Secondly, if upper bounds exist, the mentioned union

serves as a join.

Proposition 11. For two AFs F, G and semantics σ ∈ {stb,ad,co,gr} we have:

{|H|σ | |F |σ , |G|σ fσ

i |H|σ} ̸= /0 iff
(

Fk(σ)⊔Gk(σ)
)k(σ)

= Fk(σ)⊔Gk(σ)

Proof. Combine Theorem 5 and Lemma 6 from [13].

Proposition 12. For two AFs F, G and semantics σ ∈ {stb,ad,co,gr} we have:

supσ

i (|F |σ , |G|σ ) =
∣

∣

∣
Fk(σ)⊔Gk(σ)

∣

∣

∣

σ

iff {|H|σ | |F |σ , |G|σ fσ

i |H|σ} ̸= /0

Proof. It is easy to see that supσ

i is well-defined as it uses the kernelized versions only. The claim

follows directly if combing Theorem 5 and Lemma 6 from [13].

Example 4. Consider the following three AFs which can also be found in Figure 1.
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baF : baG : baH :

We observe that F = Fk(stb), G = Gk(stb) and H = Hk(stb). First, the join of F and H exists as
(

Fk(stb)⊔Hk(stb)
)k(stb)

=
(

Fk(stb)
)k(stb)

= Fk(stb) = Fk(stb)⊔Hk(stb). Calculating the join reveals

supstb
i (|F |stb, |H|stb) =

∣

∣Fk(stb)⊔Hk(stb)
∣

∣

stb
=

∣

∣Fk(stb)
∣

∣

stb
= |F |stb. However, in case of F and G

there are no upper bounds as (a,b) ∈ R
(

Fk(stb)⊔Gk(stb)
)

\R
(

(

Fk(stb)⊔Gk(stb)
)k(stb)

)

.

4.2. Reachability Order - Bounds, Joins and Meets

4.2.1. Lower Bounds and Meet

The following Example shows that the intersection of classical kernels does not serve for finding

the meet.

Example 5. Consider the following three AFs also depicted in Figure 2.

baF : baG : baH :

We have F = Fk(stb), G = Gk(stb) and H = Hk(stb). Moreover, Fk(stb)⊓Gk(stb) = ({a,b}, /0) = H ′.

Clearly |H ′|stb is a lower bound for |F |stb and |G|stb (confer Figure 2). However, |H ′|stb is not the

meet as |H ′|stb ¯
stb
r |H|stb and |H|stb f

stb
r |F |stb, |G|stb holds.

For the considered semantics we have that the defined kernels represent ³-least elements within

one equivalence class. However, any equivalence class even possesses a ³-greatest element (for

more details we refer to the Handbook of Formal Argumentation [11]). In case of stable semantics

we may define such an element as Fk+(stb)=(A(F),R(F)∪{(a,b) | a ̸= b,(a,a) ∈ R(F)}). This

means, instead of deleting all redundant attacks, we add every single one of them. Note that the

positive version of a kernel is also uniquely determined. The corresponding kernel versions for

the other considered semantics are defined in the same fashion. Due to the limited space we will

omit them as well as all subsequent proofs.

Proposition 13. For two AFs F, G and semantics σ ∈ {stb,ad,co,gr} we have:

infσ

r (|F |σ , |G|σ ) =
∣

∣

∣
Fk+(σ)⊓Gk+(σ)

∣

∣

∣

σ

4.2.2. Upper Bounds and Join

Example 6. Considering again the AFs F and G depicted in Example 4. We observed

that for those two AFs no join under information order exists, because R
(

Fk(stb)⊔Gk(stb)
)

̸=

R
(

(

Fk(stb)⊔Gk(stb)
)k(stb)

)

. However, inspecting Figure 2 reveals that there is candidate for a join

w.r.t. reachability, namely

∣

∣

∣

(

Fk(stb)⊔Gk(stb)
)k(stb)

∣

∣

∣

stb
.
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The following proposition shows that our guess happens to be the join in general.

Proposition 14. For two AFs F, G and semantics σ ∈ {stb,ad,co,gr} we have:

supσ

r (|F |σ , |G|σ ) =

∣

∣

∣

∣

(

Fk(σ)⊔Gk(σ)
)k(σ)

∣

∣

∣

∣

σ

5. Conclusion and Related Work

We introduced two orderings on equivalence classes of AFs, namely the information and reacha-

bility order. We showed that AFs under fσ

i form a semi-lattice as a join does not always exist.

However, AFs under fσ

r form a full-lattice. The topic of comparing frameworks has received

some attention in recent years. In the report by Skiba [7], the ordering of arguments of an AF is

examined by means of ranking based semantics. The concept of single arguments is extended

to sets of arguments. The paper by Sakama and Inoue [8] considers two orderings over AFs.

Both orders compare whole extension sets and establish a relation between two AFs F and G if

for any extension of F (G) there is a superset being an extension of G (F). This can be seen as

possible orderings regarding explicit information. Finally, they lift their orderings to dynamic

environments and provide a connection to strong equivalence of AFs. We mention that our

newly introduced orderings are incomparable with those considered in [8]. We leave a detailed

comparison for future work.

Regarding future work there is one quite interesting question, namely the relation between our

information order and the Dung logics considered in [13]. From a computational point of view

there is one further interesting question, namely how to decide efficiently whether two AFs are

in reachability relation. By definition we have to check the existence of a certain expansion.

The considered four kernels serve for different argumentation semantics. However, in future we

plan to extend our analysis to further semantics not covered by these kernels like the recently

introduced family of semantics based on weak admissibility [14].
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