CEUR-WS.org/Vol-3244/PAPER_02.pdf

An Authentication Based Scheme for Mobile Applications Using
THIWT

Sarvesh Chopra?, Amritpal Singh?2, Aman Singh®

2 Department of Computer Science, Lovely Professional University, Punjab, India
b Faculty of Engineering, Universidade, Cuito-Bie, Angola

Abstract

Information and Communication Technology (ICT) integrates multiple devices and applications
that are connected directly to the Internet communications. The development of customer server
systems in technology, such as 10T based, cloud based, and smart homes systems is growing
rapidly in the current era of technology. User authentication is an important concern for these
applications. THIWT i.e., Tuned Hybrid JSON Web Token for JWT-based properties has been
particularly evident in the recent growth of client server requests. JWTs (JSON Web Token) are
used for authentication of subsequent customer requests without making regular calls to a
resource server or database. In this paper, we have introduced the process of authenticating and
verifying JWT on each client request based on the random stamp values to verify client
authentication on the server data. The effectiveness of the proposed approach is enhanced by case
studies that demonstrate time and space complexity.

Keywords
Authentication, Security, Client Authentication, JSON Web Token, THIJWT call authentication

1. Introduction

Security and privacy of user data is a prime concern in today's digital world. User authentication,
access to services and access time in terms of loT, mobile, web and cloud-based applications [4] are
considered important concerns regarding network security. While communicating with clients, servers
maintain customer identity during customer-server interaction. If vital security checks are not performed
to protect client identity, it can lead to serious misuse of personal data. Real data access becomes
complicated when the same user access a resource server from a different device such as mobile phones,
tabs, personal computers etc. using a different operating system such as such as 10S, Android, Windows,
Linux, etc.

IOT devices such as actuators, gadgets, sensors, radio frequency identification (RFID) tags, and
communication technologies can be integrated together and a variety of physical entities and devices can
be connected to the Internet to permit those objects to communicate with each other.

From Data Analysis to healthcare and manufacturing, 10T consists mostly of little materials that are
provided with unique identifiers (UIDs) with the ability to send data over a network without requiring
user to user or user to computer interaction. That is why, 10T is the backbone of a grand technological

WCNC-2022: Workshop on Computer Networks and Communications, April 22 — 24, 2022, Chennai, India.
EMAIL: er.sarveshchopra@gmail.com (Sarvesh Chopra)
ORCID: 0000-0002-4061-0191 (Sarvesh Chopra)

@ ® © 2022 Copyright for this paper by its authors.
e — Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

13

future. 10T is getting major focus in almost every business sector and, it is a fact that it has already started
having its influence on web app design & development. Further, due to COVID-19 our dependency on
such systems has increased exponentially.

Although IOT devices have a lot of significance to our busy world but we need to the secure the data
generating from these devices and must have a special check on the security of such devices. The binary
data that is sent over these networks is always important and vulnerable to attack.

Thus, user data must be secured to protect the privacy and confidentiality of the registered user. If
there is no check, then threats like data tempering, data breaching and theft of personal information can
be there. Hence, some of the crucial terms associated with 10T security involve identification and
authentication. The process of identifying a user as being the claimed/registered person is called user
authentication. The server can provide different roles or privileges to various authorized users. But in
IOT things are little different, there may be a case where a particular node may act as a client for one
node and a server or Authentication Agent for some other, hence a better security system is required.

A web application (or “web app”) is an application that runs on any web browser and performs various
tasks with the help of Internet. The user-facing component of an IOT system is called the interface of the
application. The app may run on any Operating System such as 10S or Android which can be installed on
a laptop, smartphone or a tablet. Data stored at the sever side is used for access and verification. However,
checking the database server for every request would cause a serious performance bottleneck.

2. User Authentication Schemes

2.1 Traditional Approach

Old way of providing security is through methods which store a session on each client's machine
(browser) with client authentication on the server. As long as the session is active, the client can send the
request to access the server resources and server responses to the request using the session key. Time keys
are assigned to clients on initial server request after verification of ownership from the database server.
The client keeps the key assigned to the cookie for ongoing communication with the server. The client
sends the same session key to the server for verification for each request. Sever will only look for a valid
session key from the client for client authentication instead of asking for details again. The weakness of
this machine is to easily hijack session keys by attackers. Hackers may use various tools to identify a
malicious power session and gain access to current user sessions. Various extensions, tools and plugins
can be used to transfer cookie and key information to third-party applications.

2.2 SOAP based OAuth authentication in APIs

OAuth is a protocol which can grant one application the credentials it requires to access data and
information in another application through a web service. Web services allows SOAP to provide a robust
programming model that helps in the following manner:

The SOAP (Simple Object Access Protocol) is a messaging protocol specification which is based on
XML to encode requests and responses in case of a web service. It can be used to handle the following
scenarios:

1. Calling a method on a service.
2. To get aresponse from a service method, and handling its return value and out parameters.

14

3. Handling errors.

Limitations of SOAP: SOAP can only work on XML data, this is one of the biggest reasons why a
SOAP API will be less effective, as XML is a verbose and heavy format compared to JavaScript Object
Notations (JSON data). In case of SOAP, API calls made to your server will require more network
resources such as bandwidth and heavy processing which will take more time to authenticate the client. In
SOAP, tight coupling is implemented as the client-server communication depends on WSDL (Web
Service Description Language) contracts. Therefore, SOAP is not recommended for applications which
are loosely coupled. SOAP is harder to code, and can’t be tested in the web browser (as opposed to REST
where we have response codes). Further it is very difficult to make contracts in WSDL, create client stubs
as it follows strict behavior.

2.3 JWT based authentication in APIs

The JSON Web Token (JWT) is a secure way of representing a collection of information between two
parties. JWT has been used in various applications to maintain customer authentication while
communicating with the server. Various development tools and frameworks such as Passport, OpenlD
Connect, Django REST framework, DNN, Arengu, etc have integrated support for JWT. JWT offers
various methods through which we can authenticate a user and a token can be used to access the server
resources. These methods can be misused by attackers to gain access to server resources.

In this paper, we present a focused approach for detecting and accessing a server resource with a JWT
predictor attack during client-server interaction and distinguishing between valid and invalid customer
requests after a user's registered credentials are not matching. A case study is conducted in which a new
JWT is developed based on each client request containing either a combination of token with an
authorized unique key which can be a registered username or password. This proposed approach
contributes to eliminating JWT predictors by attackers. JWT defines a secure way to transmit information
between parties as a JSON object. This information can be verified and trusted because it is digitally
signed. Here is how it works:

A JSON Web Token consists of a header section, payload section, and a signature section in base64url
encoding, separated by dots (periods), given as follows:

HEADER.PAYLOAD. SIGNATURE

This is how a JWT actually looks like:

eyJhbGciOiJIUzIINilsInR5cCI61kpXVCJ9.eyJuYW1l1joiSm9obiBEb2UiLCJ1c2VX25hbWUiOiJgb2hulm
RvZSIsImIzX2FkbWIuljpmYWxzZXO0.fSppjHFaqINcpK1Q8VudRD84Y luhgFfA67XkLamO_aY

1. The header contains metadata about the token, such as the algorithm used for the signature and
the type of the token (which is simply JWT). For this example, the header before encoding is:

{
"alg": "HS256","typ": "JWT*
}

2. The payload contains information (claims) about the entity (user) that is going to be verified by
the application. Our sample token includes the following claims:

15

"name": “Sarvesh",
"user_name": “Sarvesh_ch",
"is_admin": false
3. Finally, to generate the signature, we have to apply base64url encoding and sign the whole thing
using a secret (for symmetric encryption) or a private key (for asymmetric encryption), depending

on the algorithm specified in the header. We can use any algorithm like SHA256 in the header,
which is a symmetric algorithm, so the encoding and signing operation would be:

HMACSHA256(base64UrlEncode(header) + "." +base64UrlEncode(payload), secret)

This gives us the following signature, which is then appended (after a dot) to the base64url-encoded
headerand payload:

fSppjHFaqINcpK1Q8VudRD84YluhgFfA67XkLam0_aY
Generally, a server uses same JWT for the all requests until user logs out from system. There is a need

to propose a generalized solution for all type of applications. The generalized solution should secure JWT
to eliminate vulnerability in client authentication. Hence, we are proposing the same as follows:

facebook, google, etc.)

Authentication

” User sign-in (using id/password,

Server

User authenticated, JWT
created, and returned to user m

User e User passes JWT when m

A making AP calls

-t J

Application verifies and
processes AP call

Figure 1: How JWT Works

Table 1: JWT Authentication Techniques

Algorithm
Value

Digital Signature or MAC Algorithm

16

HS256 HMAC using SHA-256

HS384 HMAC using SHA-384

HS512 HMAC using SHA-512

RS256 RSASSA-PKCS1-v1 5 using SHA-256

RS384 RSASSA-PKCS1-v1l 5 using SHA-384

RS512 RSASSA-PKCS1-v1l_5 using SHA-512

ES256 ECDSA using P-256 and SHA-256

ES384 ECDSA using P-384 and SHA-384

ES512 ECDSA using P-521 and SHA-512

PS256 RSASSA-PSS using SHA-256 and MGF1 with SHA-256
PS384 RSASSA-PSS using SHA-384 and MGF1 with SHA-384
PS512 RSASSA-PSS using SHA-512 and MGF1 with SHA-512

3. Problem Statement

The two major problem statements are as follows:

1.

2.

Any change in the user role causes a significant value loss after the allocating the token to client.
It can be hacked to exploit the permissions user was given in the first attempt. A resource on
server should be secure and must not be accessible to the unauthorized users or the users whose
permissions are revoked.

Access token or the JWT remains same in most of the cases (get/post/put request and response)
happening between client and server interaction. Attacker can predict this vulnerability and can
temper the JWT.

4. Proposed Solution

The following steps can be used to authenticate client on a server through JWT:

The client will send an authentication request by credentials, such as a username— password
combination for login.

After a valid login, the authentication service will create a JWT with a secret key. This secret key
can be a combination of username or any other registered attribute.

The client uses this token with the request to a secured resource on server.

When the server receives the request from client again, it checks the user authentication from
JWT for reorganization of authentic request along with a check on the secret key. Server will send
a proper response based on valid or invalid token.

The key feature of JWT is that it allows for flexibility in communication, so the client cannot change
the details contained in the token. On the other hand, if the user role is updated it will be displayed or
predictedby the server for any vulnerability in the next application. Under normal circumstances, clients
cannot force you to forget an old JWT token and use a new token.

With every new THIJWT (Tuned Hybrid JSON Web Token) for each resource request with an
authenticatedidentity just to make things harder to predict for the attacker, So, let us assume T is the token
and "T is the combination of Token and unique identity value. When the signature and secret key
combination is calculated it will always generate a unique random-access token (JWT). This token will be
returned to the client in response to each client's request.

17

Here are the steps, that will enhance the authenticity of a client on sever:

Step 1: Client makes a request to server with login credentials.

Step 2: Server receives a request and verifies the credentials from server. If credentials are verified,
then go to step 3 otherwise the control moves to stepl.

Step 3: Server generates JWT by combining a value (it may be any registered user credential).
T=token, T’=token+ (Unique registered credential, can be username)

Step 4: Server will receive a request from client with T’ (Token + Unique registered username).

Step 5: Server will check the token information first if it is not valid, then return Response Code-
401(Unauthorized Token) else move to 6.

Step 6: Server will check the unique registered username if it is not valid-return response code-
401(Unauthorized user). If both 5 & 6 are valid it will move to Step-7 else to Step-1.

Step 7: Server will allocate or provide the resources as per request.

User Name & Password

= Client ‘ ~uthorization Server
JWT Token
— UserName
—_—
JWT Token
Password

>
7| = Resource Skrver

Resource

A

5. Mechanism

e Server will generate trigger for JWT token with the Help of login credentials (Username and
password) and type of token method.

Params @ Aut eade D Body Pre ests it Cookies

KEY VALUE DESCRIPTION o00 Bulk Edit
userName admin
userPassword admin
algo HmacSha512Signature

Body C 20 ¥ 5 Save Response

e Request to resources with the help of generated JWT token.

18

We add the JWT token to the request with the help of the authentication tool.

GET
Params Authorization Headers (6)
Type ioheritau.. -~

t au yt hea Inherit suth from pa

No Auth

APl Key
Bearer Token
Basic Auth
Digest Auth

OAuth 1.0

W

https://localhost:44318/apiaccount/getempioyee

Pre-request Script

Request to resource with JWT token in the request and it will return 401 (Unauthorized).

GET N https:/flocalhost:44318/apl/account/getemployee

Params Auth @ Headers (7) Body

Type Token

Bearer Token v

vill be autome

generated
_—
Body

Pretty Raw Preview

re-req Tests

Visualize Text]

@ 401 Nota Valid Request 48 ms

Settings

Cookies

eyJhbGeiOIUzUxMIilsinR5cCI6IkpX
VCJ9.eyJ1bmixdWVIbmFIZSIGImFkb
WiuliwvibmJmiljoxNjMONZMwMjlyLCJI
eHAIOJE2M2Q3MzIwM;jIsimIhdCIBMT
Y2ZNDezMDIyMnO.Y YAXVOEAKS _sfJxr
iv30_28s2TCxaTZ9A0enughbPDSbLX
AKo-8FASIhLg-]
542CNWIKpOPjk_FDCexpMZOtWuRw

4148 Save Response -

o Q

Request to resources with the help of JWT token and invalid user name, this will result in

401 (Unauthorized)

19

GET v https:/flocalhost: 44 318/aplaccount/getemployee

Send
Params Auth @ Headers (7) Body Pra-req Tests Settings Cookios
Type
Token ey JhbGCIOIIUZUxMitsInRScCIB kpX
Bearer Token v VCJIS ey J1bmixdWVIbmFIZSIGImFkb
WidliwibmJmijoxNiMON2ZMwMjiyLC Il
eHAIOIEZM2Q3M2IwM|IsimINACIEMT
The authorization header YZNDCcZMDIyMn0.Y YAXVOEAKS _stIxr
will be automatically v30_28527CxaTZ9A0enughbPDSLX
sanerated when we AKo-8FASIhLY-
FROREROC.Wen Y sand 542CNWIKpOPK_FOCexpMZOtWUuRwW
the reguest adminwrong
Body ﬁ 401 lnvald Token for User 24415 4178 Save Response
Pretty Raw Preview Visualize Toxt = Ia) Q

Request resources with wrong JWT and correct unique this will result in name,

401 (Unauthorized)

GET v Mtpsi/fiocalihost:44318/api/account/getemployee

Params Auth @ Headers (7) Body Pre-req. Tests

Settings

Type

bl Token

Boarer Token v
The authorization header
will be automatically
generated when you send
the request
Body

Pretty Raw Preview Visualize Text =

1

€A 401 Invald Token 42ms 4088

Cookies

eyJhbGCiOUIUZUxMIISINRSCCIBIKpX
VCJ9.eyJibmixdWVIbmFtZSIGImFkb
WiuliwibmJImijoxNJMON2MwMjlyLC JI
eHAIOJEZM2Q3MzIwMiIsimihdCIEMT
Y2ZNDezMDIyMn0.YYAxXVOEAKS_sfixr
v30_28s2TCxaTZ8A0enughbPDSbX
AKo-8FASIhLg-
S4zCNWIKp9Pjk_FDCexpMZOtWuRw
wrong:admin|

Save Response v

B Q

Request to resource with correct JWT and correct unique username. This will result in 200
(Ok, Authorized) and you will get the requested resources.

20

Type

Save Response

A

6. Results and Discussion

A mobile application is developed to find out the algorithm performance on HTJWT. We have tested
the scenario with 50 times the process, starting from testing the time to generate the token, the size of the
token generated, encrypting it and finally the data transfer speed of the token from the client request to the
server until the token response is received by the client.

If we compare the performance of all the algorithms used, we can see that the HMACSHA-256

algorithm is superior to an average response time of 8.6ms and size 563bytes when compared to
HMACSHA-384 while with HMACSHA-512.

21

GET - https://localhost:44 318/api/account/validlogin?userName=admin&userPasswc Send

Params @ Cookies

Query Params

KEY VALUE DESCRIPTION Bulk Edit

userName admin

= B4 userPassword admin

algo HmacSha256Signature

Body v Save Response v

P.'etl\,' Raw rreview Visualiz J [D

JMONZEXMTIOLCI1eHALIOFE2M2Q3MTISMIQsImihd
I

52LQqILR75K1hd

ocket Initialization
NS Lookup
TCP Handshake
SSL Handshake
Transfer Start

Download

10.58 ms

Save Response 5638 Save Response v

Figure 2: Results of HMACSHA-256

22

GET v https://localhost:44318/apifaccount/validiogin?userName=admin&userPasswc Send v

Params @ Auth Headers (6) Body Pre-req Tests Setlings Cookies
Query Params

KEY VALUE DESCRIPTION 000 Bulk Edit
userName admin
userPassword admin
algo HmacSha384Signature
Body v € 2000k 9ms 5848 SaveResponse v
Pretty Raw Preview Visualize JSON v = O Q

ajoafei2xfeGkBuUBgcFGE3kEMVA3YdS1tIGXeN18bWtEBRNVImEuSZDoLbEIy "

Socket Initialization
DNS Lookup

TCP Handshake
SSL Handshake
Transfer Start

Download

16.14 ms

Save Response v

Save Response v

Figure 3: Results of HMACSHA-384

23

https://localhost:44 318/api/account/validlogin?userName=admin&userPasswc Send

Cookies
Query Params
KEY VALUE DESCRIPTION Bulk Edit

userName admin

userPassword admin

algo HmacShab512Signature

Body 10ms 6068 Save Response v

ZUxMiIsInR5cH
WVEomFtZSI6Im W1l wibmImIjoxNIMONZExXMiA2LCI1eHAIOFE2MzO3MTMWMDYsImlhd
PSS

DexMTIwNNG.

gXFNnzyHRA§UWOSLEd_6_VEgDZn_SQlcOyxKwWsatts

s¢ Response Size
Body
H Socket Initializa
eaders
DNS Lookup

TCP Handshake

Download

17.57 ms

Save Response v
Save Response g -

Figure 4: Results of HMACSHA-512

24

COMPARISON OF HMACSHA-256,384 & 512

SHA-512

SHA-384

n
2
£
=
m
x
<
[
o]
=
o

SHA-256

Hit-3

SERVER HIT

Figure 5: Graph of Comparison of HMACSHA-256, 384 & 512

7. Conclusion

In this study, we have presented an enhancement in the JWT access control solutions for different
applications developed on the platforms, such as mobile apps and cloud systems. Creation of new tokens
on every client request on server can resist attacker to identify the signature of a client. We have
implemented a technique which can be used by application developers for securing the server resources
from revoked permissions and unauthenticated requests.

The results are explained with the comparison of token- based authentication performance using JWT
with several algorithms. The overall results show that the use of THIWT with HMACSHA-256 signature
is superior in case of time taken to generate token, token size and token transfer speed.

8. Future Work

We can implement various user roles and authorize them to access specific resources according to the
need of the overall application. Further we can test our system (mobile application) for various types of
cross scripting attacks such as None Algorithm attack, signature stripping, manipulating Kid (Key
Identifier), SQL injection, etc.

25

9. References

[1] Kumar P, Gurtov A, linatti J, Ylianttila M and Sain M, "Lightweight and Secure Session-Key
Establishment Scheme in Smart Home Environments," in IEEE Sensors Journal, vol. 16, no.1, pp.
254-264, Jan.1, 2016. doi: 10.1109/JSEN.2015.2475298.

[2] Janardanan, Ajil Paul C, Anju P, Eldiva Thomas V and Davis D, "Android Application for Car Wash
Services," 2018 International Conference on Emerging Trends and Innovations In Engineering And
Technological Research (ICETIETR), Ernakulam, 2018, pp. 1-3. doi:
10.1109/ICETIETR.2018.8529025.

[3] Liu Z and Gupta B"Study of Secured Full-Stack Web Development,” Proceedings of 34th
International Conference on Computers and Their Applications, vol. 58, pp. 317- 324, 2019 doi:
10.29007/jpj6.

[4] Ethelbert O, Moghaddam F.F, Wieder P and Yahyapour R, "A JSON Token-Based Authentication
and Access Management Schema for Cloud SaaS Applications,” 2017 IEEE 5th International
Conference on Future Internet of Things and Cloud (FiCloud), Prague, 2017, pp. 47-53. doi:
10.1109/FiCloud.2017.

[5] Hong N, Kim M, Jun M, Kang J, "A Study on a JWT-Based User Authentication and API
Assessment Scheme Using IMEI in a Smart Home Environment,” in jornal of sustainability, vol. 9,
no. 7, June 2017.

[6] Jones M, Bradley J, and Sakimura N, “JSON Web Token (JWT) RFC 7519, http://www.rfc-edi
tor.org/rfc/rfc7519.txt, RFC Editor 2015.

[7] Chifor B, Arseni S, Matei | and Bica I, "Security-Oriented Framework for Internet of Things Smart-
Home Applications,” 2019 22nd International Conference on Control Systems and Computer
Science (CSCS), Bucharest, Romania, 2019, pp. 146-153. doi: 10.1109/CSCS.2019.00033.

[8] Gutzmann K, "Access control and session management in the HTTP environment," in IEEE Internet
Computing, vol. 5, no. 1, pp. 26-35, Jan.-Feb. 2001. doi: 10.1109/4236.895139.

[9] Yuan X, Borkor E, Beal S, Yu. H "Retrieving relevant CAPEC attack patterns for secure software
development,” In Proceedings of the 9th Annual Cyber and Information Security Research
Conference (CISR '14), ACM, pp. 33-36, 2014 doi: https://doi.org/10.1145/2602087.2602092.

[10] Viktor Janoky L, Levendovszky J, Ekler P, "An analysis on the revoking mechanisms for JSON Web
Tokens," International Journal of Distributed Sensor Networks, vol. 14, September 2018, doi:
https://doi.org/10.1177/1550147718801535.

[11] Gomez C and Paradells J, “Wireless home automation networks: A survey of architectures and
technologies,” IEEE Commun. Mag., vol. 48, no. 6, pp. 92-101, Jun. 2010.

[12] Kim J E, Boulos G, Yackovich J, Barth T, Beckel C, and Mosse D, “Seamless integration of
heterogeneous devices and access control in smart homes,” in Proc. 8th Int. Conf. Intell. Environ.
(IE), Jun. 2012, pp. 206-213.

[13] Mantas G, Lymberopoulos D, and Komninos N, “Security in smart home environment,” in Wireless
Technologies for Ambient Assisted Living and Healthcare: Systems and Applications. Hershey, PA,
USA: IGI Global, 2006.

[14] Pishva D and Takeda K, “A product based security model for smart home appliances,” in Proc. 40th
Annu. IEEE Int. Carnahan Conf. Secur. Technol., Oct. 2006, pp. 234-242.

[15] Suryadevara N K, Mukhopadhyay S C, Wang R, and Rayudu R K, “Forecasting the behavior of an
elderly using wireless sensors data in a smart home,” Eng. Appl. Artif. Intell., vol. 26, no. 10, pp.
2641-2652, Nov. 2013.

[16] Bhardwaj S, Ozcelebi T, Lukkien J, and Uysal C, “Resource and service management architecture of
a low capacity network for smart spaces,” IEEE Trans. Consum. Electron.,vol. 58, no. 2, pp. 389-
396, May 2012.

[17] Tschofenig H, Arkko J, and McPherson D, “Architectural considerations in Smart object
networking,” Internet Engineering Task Force, Fremont, CA, USA, Tech. Rep. RFC-7452, Jul. 2014.

26

[18] Korzun D G, Balandin S I, and Gurtov A V, Deployment of Smart Spaces in Internet of Things:
Overview of the Design Challenges (Lecture Notes in Computer Science), vol.8121. New York, NY,
USA: Springer, 2013.

[19] Chen Y and Luo B, “S2A: Secure smart household appliances,” in Proc. 2nd ACM Conf. Data Appl.
Secur. Privacy (CODASPY), 2012, pp. 217-228.

[20] Li, “Design Y of a key establishment protocol for smart home energy management system,” in Proc.
5th Int. Conf. Comput. Intell., Commun. Syst. Netw. (CICSyN), Jun. 2013, pp. 88-93.

[21] Vaidya B, Makrakis D, and Mouftah H T, “Device authentication mechanism for smart energy home
area networks,” in Proc. IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2011, pp. 7

27

