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Abstract  
Visual-inertial navigation systems (VINS) face challenges in highly dynamic environments. 

Current mainstream solutions filter dynamic objects based on the semantics of the object 

category. Such approaches require semantic classifiers to encompass all possibly-moving 

object classes, which makes them hard to scale and deploy. This paper proposes a dynamic 

feature point recognition method without advanced training. It utilizes the conflict information 

between IMU pre-integration and visual measurement to determine whether the RANSAC-

modeled essential matrix locates in the static world or dynamic object. And it helps to filter out 

dynamic feature points when there is one primary moving object. We add a moving object in 

the visual field as interference and make an artificial dataset based on the EuRoC dataset. 

Experiments show that after adding the interference, the error of VINS-Mono increases by 

about 12 times, while our dynamic-VIO only increases by about 1.4 times. When VINS-Mono 

diverged due to interference, dynamic-VIO can remain robust. This method is capable of both 

dynamic objects moving in the environment and partially occluding.  
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1. Introduction 

Most typical visual SLAMs require a strong assumption that the scene is rigid [1]. The Visual Inertial 

Navigation System (VINS), which is widely applied to autonomous driving and micro MAVs [2, 3, 4], 

is usually more robust than visual SLAMs owing to its tightly coupled optimization with IMU 

participation. But it is still inseparable from the rigidity assumption. The visually dynamic environment 

is still a significant challenge. 

The mainstream method uses semantic segmentation to identify and filter dynamic feature points. 

However, the semantics of the model trained by this supervised learning is limited. The dynamic 

interference in the actual environment is complex and changeable. In addition to rigid dynamic objects, 

there are flexible, dynamic interference and irregular shape visual field occlusion. In this case, 

maintaining robustness is our first demand. This paper presents a non-training-based robust VIO, which 

identifies and filters dynamic feature points based on RANSAC modeling when the estimated motion 

from inertial and visual information conflict. This method can keep robust when there is a single main 

dynamic object in the field of view. 

2. Related Work 
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Most approaches use supervised deep learning methods to recognize moving objects and filter them. 

[5] proposes to learn the rigidity of a scene in a supervised manner from an extensive collection of 

dynamic scene data and directly infer a rigidity mask from two sequential images with depths. [6] 

proposes a generalized Hidden Markov Model (HMM) that formulates the tracking and management 

of the primary motion and the secondary motion as a single estimation problem and an epipolar 

constrained deep neural network that generates a per-pixel motion conflict probability map. It can 

distinguish the motion conflict of each road marking point at the pixel level. This method can not only 

identify the feature points belonging to the main motion but also calculate the motion of other dynamic 

objects to realize the simultaneous tracking of various motions.  

Among the deep learning methods, different semantic segmentation methods (e.g., Mask R-CNN, 

SegNet) are trendy because of their scalability, intuitiveness, and good performance. [7] constructs an 

SSD object detector that combines prior knowledge to detect dynamic objects in the newly detection 

thread at the semantic level based on the convolutional neural network. They also proposed a missed 

detection compensation algorithm based on the speed invariance in adjacent frames to improve the 

recall rate of detection. [1] presents a real-time visual dynamic SLAM, RDS-SLAM, built on ORB-

SLAM3 and adds a semantic thread and a semantic-based optimization thread for robust tracking and 

mapping in dynamic environments in real-time. The parallel thread enables the tracking thread to 

eliminate the wait for semantic information. [8] proposes a dynamic RGB-D SLAM based on semantic 

information and optical flow (DRSO-SLAM). They use the Mask R-CNN semantic segmentation 

network to obtain semantic information in indoor dynamic scenes and use the epipolar geometry to 

filter out the actual dynamic feature points.  

However, the method based on pre-training is challenging to expand and deploy, which is also a 

problem that many researchers are aware of. The Autonomous Systems Lab, ETHZ, presents a novel 

end-to-end occupancy grid-based pipeline that can automatically label a wide variety of arbitrary 

dynamic objects. And it can thus generalize to different environments without the need for expensive 

manual labeling and, at the same time, avoids assumptions about the presence of a predefined set of 

known objects in the scene [9]. There are also some methods that are not based on deep learning. [10] 

regards structural regularities in the form of planes such as walls and ground surfaces as crucially static 

and presents a robust plane-based monocular VIO (RP-VIO), which also improves the robustness and 

accuracy in challenging dynamic environments. [11] adds adaptive multi-resolution range images and 

uses tightly-coupled lidar inertial odometry first to remove moving objects and then match lidar scan to 

the submap. This article also discusses how to make better use of IMU to make VIO more robust.  
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Figure 1: The pipeline of the dynamic-VIO algorithm 

 



3. Method 

This work is based on VINS-Mono [12]. The main idea is when the motion perceived by IMU 

conflicts with the visual measurement, we choose to believe the IMU measurement. It does not mean 

using the measurement and calculation of IMU as the output but using this indication of IMU to reverse 

the selection range of feature points to provide more reliable features for the back end. Figure 1 shows 

the specific algorithm process. The IMU and camera obtain their measured motion information (rotation 

information is used here) through pre-integration and visual geometry, respectively, and then compare 

their differences. If the difference is slight, the feature tracker publishes feature points normally. If the 

difference can not be ignored, it selects the feature points inversely and publishes the outliers. 

3.1. IMU pre-integration 

The sampling rate of the camera is slower than that of IMU. Only when the camera has one sample 

coming in can the IMU integration be participated in backend optimization. So we can pre-integrate the 

IMU measurements over an image sampling period in the sensor coordinate system. This strategy saves 

a significant amount of computational resources [13]. Another significance of pre-integration is that 

IMU needs to calculate at the same time as the camera. Therefore, we need to save the IMU 

measurements in advance according to (1), (2), and (3) before that time point. 
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3.2. Timestamp Alignment between images and IMUs 

The frequency of IMU is usually higher than that of the camera, and the sampling timestamps are 

not synchronized perfectly. As shown in Figure 2: Timestamps of IMU and camera sampling, there 

must be two IMU measurements at both ends of the sampling time 𝑡𝑐 of an image frame on the time 

axis. We need to interpolate the IMU measurements to align the timestamps. The acceleration 𝒂 

interpolates linearly using Linear intERPolation (LERP) as (4), (5), and the angular velocity 𝝎 uses the 

Spherical Linear intERPolation (SLERP) as (6), (7). Considering the computational efficiency, we can 

use LERP to interpolate 𝝎 in the program. That is because the sampling rate of the gyroscope is fast 

(200Hz), and the angle change can be minimal. As we can see later, we use IMU pre-integration only 

to decide the primary motion, and we do not need to calculate the accurate value of interpolation. As a 

result, the error of interpolation using LERP or SLERP can be ignored. 

 

 
Figure 2: Timestamps of IMU and camera sampling 
 

𝒂𝑡𝑐 = (1 − 𝜏)𝒂𝑡1 + 𝜏𝒂𝑡2, (4) 

𝜏 =
𝑡2 − 𝑡

𝑡2 − 𝑡1
, 

(5) 



𝝎𝑡𝑐 =
sin[(1 − 𝜏)𝜃]

𝑠𝑖𝑛𝜃
𝝎𝑡1 +

sin(𝜏𝜃)

𝑠𝑖𝑛𝜃
𝝎𝑡2, 

(6) 

𝜃 = arccos(𝝎𝑡1 ⋅ 𝝎𝑡2), (7) 
Then, we pre-integrate the acceleration and angular velocity at time 𝑡𝑐  and get the real pre-

integration between the two frames. We use the pre-integrated quaternion 𝒒IMU  for further 

determination. 

3.3. Inliers and Outliers by RANSAC 

We use feature point detection and matching to correlate two images. Once the two images match, 

we calculate the essential matrix 𝑬 and decompose it by SVD. The essential matrix 𝑬 is solved with 

Random Sample Consensus (RANSAC). RANSAC computes a model that matches the most points by 

repeatedly selecting a group of random subsets in the data, and the selected subsets are assumed to be 

inlier points. Then we get inlier points that match the final model and the outlier points that match not 

the model. Both inliers and outliers are essential to our algorithm, and the next section will explain why. 

After triangulation, we can get one unique set of 𝑹, 𝑻  from four solutions from SVD. At last, we 

transform the rotation matrix 𝑹 into quaternion 𝒒camera for further determination. 

3.4. Feature Points Publishing 

Normally, element values of the quaternions obtained by the camera and the IMU are similar. If so, 

it means that the RANSAC algorithm has modeled the visually obtained essential matrix into the correct 

scene, which also means that there are no very prominent dynamic objects. 

If this is not the case, that is, 𝒒IMU and 𝒒camera have a large difference, it means that RANSAC must 

have built the model on the incorrect object. Because the IMU measurements are always more reliable 

than the camera measurement under normal circumstances. At this point, most of the field of view is 

occluded by dynamic objects, and the outliers obtained by RANSAC are actually located in the static 

world. Under this circumstance, we should not publish the inlier points to the backend but the outlier 

points. 

 
Figure 3: A dynamic points recognition example. Red points are recognized to be the dynamic points, 
and the blue points lie in the static world. 

4. Experiment 

We overlaid a leaf image over the original image based on the EuRoC dataset [14] and generated 

the new dataset called EuRoC_mask. The EuRoC ground truth is obtained from Leica Nova MS503 

laser tracker and Vicon motion capture system. The length of the testing path is about 80m. These 

datasets simulated the process of the leaf gradually moving from the left end of the image to the right 

and then disappearing to the right end of the view, as shown in Figure 4: EuRoC dataset masked by a 

moving leaf. The experiment environments are Intel Core i5-9400F，6×2.90GHz, Ubuntu 16.04, and 

ROS Kinetic. 

 



    

Figure 4: EuRoC dataset masked by a moving leaf 
 

We run VINS-Mono (no-loop) and the dynamic-VIO (no-loop) proposed by this paper on these 

datasets. The number of feature points detected and tracked is set to 150. Table 1 shows the Root Mean 

Square Error (RMSE) of the Absolute Trajectory Error (ATE). When running on the masked datasets, 

the positioning error of VINS-Mono increases significantly, while dynamic-VIO can still keep the error 

in a small range. 

 

Table 1 
The positioning accuracy of the two algorithms on different datasets 

Dataset 
Absolute Trajectory Error RMSE (m) 

VINS-Mono Dynamic-VIO 

MH01_easy_mask 1.563484 0.215349 
MH03_medium_mask 3.482319 0.348051 
MH05_difficult_mask 2.339641 0.335812 
V1_02_medium_mask 2.03004 0.227272 

 
In addition, a typical case is that when VINS diverges, as shown in Figure 5: VINS-Mono trajectory 

on V2_02_mask, dynamic-VIO can still maintain convergence, as shown in Figure 6: The positioning 

trajectory of VINS-Mono and dynamic-VIO.. 

 
Figure 5: VINS-Mono trajectory on V2_02_mask 
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Figure 6: The positioning trajectory of VINS-Mono and dynamic-VIO. 
 



This research also plans to test flexible, dynamic objects and static visual field occlusion. 

Theoretically, this method should also be capable of flexible objects because the modeling process of 

RANSAC does not depend on object characteristics. As long as the motion sampled by IMU and camera 

is different, it is sufficient to identify the primary dynamic object in the static world. For static visual 

field occlusion, it depends on the degree of occlusion. For a small part of occlusion, it can be regarded 

as a particular case of this method, and this part of the occlusion area will be filtered out in each 

calculation period. If the occlusion part is too large, resulting in an insufficient number of feature points 

collected for a long time, this method will also fail. 

However, the binary judgment between inertial information and visual information determines that 

this method can only recognize the largest dynamic object, which also comes from the reason that 

RANSAC selects the model satisfied by most feature points. If there are multiple dynamic objects in 

the environment and they are similar in size, this method will fail. In this case, this method will not do 

better than semantic segmentation-based approaches. 

5. Conclusion 

This paper proposed a robust VIO in dynamic environments. According to the principle of RANSAC 

modeling and the level of motion conflict, this algorithm flexibly selects inlier points and outlier points 

to publish, which can avoid the interference of the major dynamic object. Experiments on artificial 

datasets show that this method can keep robust and maintain the same level of trajectory error, while 

VINS-Mono should fail or get the positioning error increase significantly. Theoretically, this method 

should be applicable to rigid, flexible, dynamic objects and visual field occlusion. This method does 

not need data training and can be conveniently deployed when there is one major dynamic object, and 

high robustness is required. 
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