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Abstract
Indoor positioning based on time of arrival (TOA) can be a huge challenge. The complexity and uncer-

tainty of data association (DA) due to the multipath effect and the visibility of anchor observation due

to continuous terminal movement are important issues to be addressed by current indoor positioning

algorithms. Multipath-assisted localization treats the reflected signal received at the base station as

the direct signal received at the virtual anchor point (VA), which can significantly improve the mul-

tipath interference problem. Unlike traditional multipath SLAM, anchors in the scenario are firstly

estimated in a training set when the terminal locations are known using Feature mapping single cluster-

probabilistic hypothesis density (FMSC-PHD) filtering. Then the terminal localization are solved with

a factor graph based belief propagation (BP) algorithm based on the estimated anchors. Experimental

results demonstrate the excellent performance of the algorithm in mapping and localization.
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1. Introduction

With the repaid development of mobile equipment and 5G networks, indoor positioning and

location-based services provide us with more convenience and raise many new requirements.

The applications for indoor positioning are very promising, including robotics[1], Internet of

Things[2], location-aware communication[3] and so on, all have a large demand. The indoor

environment has severe shading, multipath effect, and Doppler effect, which severely limit the

accuracy and reliability of positioning. In recent years, many solutions have also been derived

including inertial guidance, geomagnetic, LiDAR, radio, and other measurement sources that

can be used for localization[4]. Among them, radio signals have become the focus of research

with their advantages of easy deployment, wide applicability, and low cost.

Wireless signals like Bluetooth, UWB, Wi-Fi, and other positioning information source are

widely available in our indoor space[5]. Currently, there are two major radio-based localization

approaches[2, 6, 7]: fingerprint-based and geometry-based methods. Fingerprinting localization

is a method of correlating the specific location with signal features[8]. On the other hand, the

geometry-based approach has great potential for generalization. Geometric methods consist

of range-based and angle-based methods. TOA based on the time of arrival and AoA based

on the angle of arrival is commonly used measurements respectively. Although it can solve
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the problems of spatial consistency in indoor positioning, it requires high angular resolution

of terminals[8]. This means that to achieve better accuracy, the complexity and cost of the

equipment will be greatly increased. In contrast, TOA is a very accessible measurement that

requires only very simple equipment to obtain observations of considerable accuracy. TOA is

currently the most likely option for large-scale deployment.

Multipath-assisted positioning[9, 10] is one of the best solutions for indoor positioning to

solve the multipath effect. It assumes that the walls are all smooth, so the multipath components

are the specular reflection. Specular reflection components are generated in the process of

transmitting radio signals from the mobile terminal to the base station, and they are equivalent to

the Line of Sight(LOS) signals generated by the VAs. Multipath-assisted localization transforms

the previous multipath interference into LOS path signals sent by multiple virtual base stations.

Multipath-assisted localization takes full advantage of the geometric properties of space, not only

overcoming multipath interference but also adding many useful signal sources for localization.

Although multipath-assist localization can take full advantage of the otherwise interfering

multipath reflection components, there are still some problems with the accuracy and complexity

of DA and visibility of anchors in the region of interest. Since there is no distinguishability

among multipath components, we cannot know the relation between anchors and multipath

components. TOA-based indoor localization requires anchors’ position and their corresponding

measurements to solve the location of the terminals. Therefore, a method to solve DA is needed.

In addition, the indoor environments are often heavily obscured, which can cause visibility

problems the terminal may not observe the PAs and VAs when it moves.

Our approach is divided into two phases, first estimating the anchor in the environment using

FMSC-PHD, and then localizing the terminal when the anchor prior information is available.

Our method split into two phases since it is difficult for SC-PHD to perform SLAM with only

TOA observations[11]. When SLAM is performed by SC-PHD, the estimated localization of the

terminal depends on being able to estimate the approximate location of the anchors in a short

time. Estimated the accurate position of anchors needs a process to convergence when SC-PHD

is performed on SLAM with only TOA metric. This means that neither the terminals nor the

anchors can be reliably located. Even though [12, 13] solved this problem to some extent, it is

still limited by the observation of the LOS component. Therefore, by adding terminal locations

as a priori information in the training set, FMSC-PHD can estimate the location of anchors in

the scenario using the terminal locations and TOA.

FMSC-PHD is a filter method extended from PHD[14] and SC-PHD[15, 16] which directly

avoids the complex DA process and solves the uncertainty problem of it. In addition, FMSC-PHD

uses the RFS for modeling anchors in the scenario, which solves the problem of the visibility

of the anchor during the motion of the terminal. After estimating the anchors’ position in the

training set, the localization of the terminal in this indoor scenario can be reduced to the DA

between TOA observations and estimated anchors and the estimation of the terminal positioning

based on the mapping result. We build a probabilistic model of DA and terminal positioning

based on factor graphs and solve it with the BP algorithm. The BP algorithm running on factor

graphs has a great advantage for solving edge probabilities and is suitable for solving DA and

location estimation.

Key innovative contributions of this paper include the following:
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Figure 1: Example of PA and VA

• We divide the complex SLAM process into two independent processes, first using FMSC-

PHD to obtain the features of the scenario such as PAs/VAs, and then performing terminal

positioning based on these estimated anchors. The limitations of SC-PHD in TOA mea-

surements are avoided, and the complexity of the system is reduced at the same time.

• We build a Bayesian model based on FMSC-PHD filtering to represent PA/VA in the form

of RFS, which well solves the problem of visibility of anchor during terminal moving. the

FMSC-PHD inherited from PHD filtering also avoids the process of DA

• Our proposed algorithm is verified through simulation experiments, and the experimental

results demonstrate the high accuracy and scalability of our algorithm.

2. Problem Formulation

As shown in Fig.1, we consider a static PA as a receiver and a mobile terminal as a transmitter

in a two-dimensional space (2-D). The terminal is constantly transmitting signals to the base

station during the movement. The base station is also receiving multipath signals to extract TOA

parameters. In multipath-assisted localization, a PA in a scenario may correspond to multiple

mirrored VAs. From the principle of geometric optics, it is known that in the premise of specular

reflection, the reverse extension of the reflected signal intersects with the wall-normal through

PA at the same point, which is the mirror point of PA, and the linear distance between the

terminal and the mirror point is equal to the reflected signal propagation distance. We only

consider first-order reflections, and subsequently no longer make a strict distinction between

PA and VAs.

The state of the mobile terminal at step k is represented by a vector xk = [pk,vk], where
pk = [xk,1, xk,2] denotes position and vk = [vk,1, vk,2] denotes speed. The position of the nth

static anchor at step k can be expressed as mk,n = [mk,1,mk,n,2]. During the movement of the

terminal, encountering obstacles and long distances may lead to missed detections, and new

anchors may be detected at the same time, which causes visibility problems. The number of



anchors which can be observed by the terminal is variable. RFS is suitable for representing such

a variable number of observed anchors. Hence all anchor nodes observed at each moment can

be represented as an RFS, with each set element representing a random variable of the anchor

distribution. The cardinality of RFS represents the number of anchors at the moment. The RFS

containing all environmental features at step k can then be expressed as

Mk = Mk−1 ∪Bk =
{︀

mk,1, . . . ,mk,|Mk|

}︀

, (1)

where Mk−1 = {mk,1, ...,mk,nk
} is anchor set survive at step k-1, Bk represents newly

detected anchors set. Bk can be modeled as a Possion point process with intensity bk = µkI (·)
where I (·) is the distribution of new birth anchors and the new birth rate µk means the average

number of new birth anchors.

Assuming terminal moving with constant velocity obeys a linear Gaussian model. Its state

equation can be express as

xk = Fxk−1 +Guk−1 =

[︂

I2 ∆T · I2
02 I2

]︂

xk−1 +

[︂

∆T 2

2 · I2
∆T · I2

]︂

uk−1, (2)

where uk−1 is accelerate noise, IN and 0N represents N dimension identity matrix and zero

matrix respectively, ∆T represents the sample period.

Assume that an anchor corresponds to only one multipath component. Since wireless signals

aremultipath propagated in indoor space, we can solve the parameters corresponding to different

multipath signals from the received signals. Provided that clocks between the terminal and base

station are synchronized, the signal s (t) received by the base station from the terminal r (t)
can be expressed as

rk (t) =

|Mk|
∑︁

n=1

wn,ks (t− τn,k) + dk (t) + nAWGN (t). (3)

The first term on the right-hand side of the equation represents |Mk| multipath component

at step k. It can be considered the signal received by different anchors at step k. wn,k and

τn,k represents the nth multipath component complex amplitude and latency respectively. In

the ideal case the time delay is in proportional to the distance, which can be expressed as

τn,k = ‖xk −mk,n‖ /c, where c is the speed of light. The second term dk(t) represents the
scattering components which affect the observation of specular reflections in the form of false

alarms. The last term nAWGN (t) is additive Gaussian white noise(AWGN). Based on the signal

model, the measurement nth zk,n between terminal and anchors can define as

zk,n =

√︁

(xk,1 −mk,n,1)
2 + (xk,2 −mk,n,2)

2 + nk,n, (4)

where nk,n is the observation noise. Since the number of observations at step k is in dependent

on the detected anchors and false alarms. Hence the RFS of observation can be defined as

Zk = Z(xk,Mk) ∪ Ck. (5)



The observations at step k consist of two sets. One is the TOA-based observation of the distance

with added noise. The miss-detection is mainly represented by the number of sets that may be

less than the number of current anchor points. The second represents the set Ck of false alarm

measurements caused by the scattering component. Ck can be considered as a Poisson point

process with intensity c(z) = λcU (z), where λc is the false alarm rate (also understood as the

average number of false alarms), and U (z) denotes a uniform distribution of false alarms over

the detection range.

The anchors estimated in the training set can assist the mobile terminal positioning. State

equation and measurement equation identical to those of the previous training set. The problem

of terminal localization then reduce to DA and location estimation. DA is described by two

vectors - a feature-oriented vector ak,i and an observation-oriented vector bk,m.

ak,i =

{︃

m ∈ ℳk , ith anchor generate mth measurement

0 ,miss detect ith anchor

bk,m =

{︃

i ∈ ℐk ,mth anchor generate ith measurement

0 ,mth measurement is false alarm

whereℳk and ℐk correspond to measurement set and anchor set, respectively.

After obtaining the probability distribution of the DA, the prediction and update formulas of

the Bayesian filter can be used to recursively work out the distribution of the real-time terminal

location distribution. The Bayesian filter is updated in real-time, so the terminal positions can

be estimated in real time.

3. Mapping scenario Via FMSC-PHD

We first estimate the anchors in the scenario using FMSC-PHD. In the training set, the state

of the terminal is known, which can simplify the otherwise more complex SC-PHD that is

more applicable to our problem formulation. We also give the Monte Carlo implementation for

FMSC-PHD.

3.1. FMSC-PHD

According to SC-PHD[15], the prediction of terminal and anchors can be written as

Dk|k−1

(︀

xk|k−1,mk|k−1

)︀

=

∫︁

D̃k|k−1

(︀

mk|k−1|xk−1

)︀

× sk−1 (xk−1)φk|k−1

(︀

xk|k−1|xk−1

)︀

dxk−1

(6)

where sk−1 (xk−1) is terminal probabilistic distribution at step k-1 and φk|k−1

(︀

xk|k−1|xk−1

)︀

is terminal state dynamics follow Markov process. D̃k|k−1

(︀

mk|k−1|xk−1

)︀

is anchors’ PHD

conditioned on terminal state at step k.



The terminal state of the training set is known so that FMSC-PHD filter prediction can be

generated from (6). With the help of the sample property of the Dirac delta function, terminal

probability distribution s (xk) also can be used for the case where the terminal state is known,

i.e.

sk (xk) = δ
(︁

xk − x
′

k

)︁

(7)

where δ (·) is Dirac delta function. Substituting (7) into (6) and according to sampling property

of Dirac delta function, the joint PHD of terminal and anchors can be write as

Dk|k−1

(︀

xk|k−1,mk|k−1

)︀

= φk|k−1

(︁

xk|k−1|x
′

k−1

)︁

D̃k|k−1

(︁

mk|k−1|x
′

k−1

)︁

(8)

According to (8), it can be seen that the joint FMSC-PHD of terminal and anchors predictions

at step k is the state transition equation multiplied by the prediction of conditional PHD of

anchors. When the state of the terminal is known, the terminal state at both step k-1 and

step k is a fixed value, and both can be described by a Dirac delta function like (7). Because

the uncertainty in the terminal locations is eliminated, the state transition equation does not

impact the anchor’s PHD prediction. Therefore, this joint distribution only needs to consider

the conditional PHD of anchors in a scenario where the terminal state is known. Hence the

FMSC-PHD prediction can be represented as

Dk|k−1

(︀

xk|k−1,mk|k−1

)︀

= δ
(︁

xk|k−1 − x
′

k|k−1

)︁

D̃k|k−1

(︁

mk|k−1|x
′

k−1

)︁

. (9)

With previous processing, the prediction of FMSC-PHD was transformed into the prediction

of PHD for anchor conditioned on the terminal state alone. The prediction PHD of anchors

D̃k|k−1

(︀

mk|k−1|xk−1

)︀

in step k can be specifically be expressed as[15]

D̃k|k−1

(︀

mk|k−1|xk−1

)︀

= γk|k−1

(︀

mk|k−1|xk−1

)︀

+

∫︁

D̃k−1 (mk−1|xk−1) pS (mk−1|xk−1)× φk|k−1

(︀

mk|k−1|mk−1;xk−1

)︀

dmk−1

(10)

It consists of two parts, the new birth anchors γk|k−1

(︀

mk|k−1|xk−1

)︀

and the prediction of the

anchor survive from the previous step. D̃k−1 (mk−1|xk−1) and φk|k−1

(︀

mk|k−1|mk−1;xk−1

)︀

represents the updated PHD of anchor at step k-1 and Markov transition probability of anchor.

The joint update function of SC-PHD can be shown as

Dk|k (xk,mk) =
sk|k−1 (xk)LZk

(xk)
∫︀

sk|k−1 (xk)LZk
(xk) dx

D̃k|k (mk|xk) (11)

where sk|k−1(xk) is the predicted terminal distribution, LZk
(xk) is the measurement likelihood

function and D̃k|k (mk|xk) is the updated PHD of anchor conditional on terminals

The terminal part of the update formula can be simplified using known terminal positions.

The predicted terminal state is the same as the terminal position at step k. Hence, the distribution



of predicted terminal states can be replaced by a known Dirac delta function of the terminal

state. Substituted predicted terminal state Dirac delta function into (11), we can get

Dk|k (xk,mk) =
δ (xk − x′

k)LZk
(x′)

∫︀

δ
(︀

xk − x′
k

)︀

LZk
(xk) dxk

D̃k|k

(︀

mk|x
′
k

)︀

= δ
(︀

xk − x′
k

)︀

D̃k|k

(︀

mk|x
′
k

)︀

(12)

Dirac delta function changes the integral of the denominator into a product, while the

likelihood function becomes the value of the function at the terminal position at step k. Similarly,

the likelihood function of the numerator is affected by the Dirac delta function and becomes

the value of the terminal state as a variable at step k. At this point, the values of the likelihood

functions of the numerator and denominator can be eliminated from each other, leaving the

updated part about the anchor PHD[15]

D̃k|k (mk|xk) = D̃k|k−1 (mk|xk)×

⎡

⎣(1− pD (mk|xk)) +
∑︁

z∈Zk

g (z|mk,xk) pD (mk|xk)

ηz (mk|xk)

⎤

⎦ ,

(13)

ηz(xk) = κk (z) +

∫︁

D̃k|k−1 (mk|xk) pD (mk|xk) g (z|mk,xk) dmk (14)

where pD (mk|xk) represents the detection probability, g (z|mk,xk) represents the likelihood
function, and κk (z) represents the false alarm. Likelihood factor in (13) has two parts: unde-

tected anchors and detected anchors based on measurements RFS Zk.

The advantage of PHD is that it does not require DA. We can see DA hidden in the likelihood

function, which can work out anchors’ PHD without calculating DA. With the training set

terminal position known, the PHD of the anchors at step k can be computed recursively at step

k-1 by a prediction and an update. The prediction equation and update equation reveal that the

FMSC-PHD constructed by the cluster model is very similar to the PHD filter[14] under the

condition that the terminal state is known. The difference is that the previous PHD was used to

estimate targets, but now we can use it to estimate anchors in the surrounding.

3.2. Monte Carlo implements of FMSC-PHD

Monte Carlo particle filter can be use to implements FMSC-PHD we performed in 3.1. The

updated PHD at step k-1 of anchorsDk−1 (mk−1) can be simulated by set of weighted particles

{w
(i)
k−1,m

(i)
k−1}

Lk

i=1

Dk−1 (mk−1) ≈

Lk−1
∑︁

i=1

w
(i)
k−1δ

(︁

mk−1 −m
(i)
k−1

)︁

, (15)

where Lk−1 is the number of particles and w
(i)
k−1 is the weight of the ith particle at step k-1

respectively. Substituting particles simulation (15) into (10), we can get particles of predicted

PHD of anchors at step k

Dk|k−1(mk−1|k) ≈ Dγ (mk) +

Lk−1
∑︁

i=1

w
(i)
k−1ps,k

(︁

m
(i)
k−1

)︁

φk|k−1

(︁

mk|k−1|m
(i)
k−1

)︁

(16)



where ps,k

(︁

m
(i)
k−1

)︁

is the probability that particles atmoment k-1 survives at step k, φk|k−1

(︁

mk|k−1|m
(i)
k−1

)︁

is the transition probability of the ith particle from step k-1 to the step k. The predicted PHD of

anchors can be calculated by importance sampling.

Dk|k−1

(︀

mk|k−1

)︀

≈

Lk−1
∑︁

i=1

w
(i)
k−1ps,k

(︁

m
(i)
k−1

)︁ φk|k−1

qk
×qk

(︁

mk|m
(i)
k−1, Zk

)︁

+
Dγ (mk)

qγ,k
qγ,k (mk|Zk)

(17)

Hence, we can get the approximate predicted PHD of anchors.

Dk|k−1

(︀

mk|k−1

)︀

≈

Lk−1+Lγ
∑︁

i=1

w
(i)
k|k−1δ

(︁

mk|k−1 −m
(i)
k|k−1

)︁

(18)

where

m
(i)
k|k−1 ∼

⎧

⎨

⎩

qk

(︁

mk|m
(i)
k−1, Zk

)︁

, i = 1, · · · , Lk−1,

qk (mk|Zk) , i = Lk−1 + 1 · · ·Lk−1 + Lγ,k,
(19)

w
(i)
k|k−1 ∼

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

φk|k−1ps,kw
(i)
k−1

qk

(︁

mk|m
(i)
k−1, Zk

)︁ , i = 1, · · · , Lk−1,

Dγ,k

(︁

m
(i)
k

)︁

Lγ,kqk (mk|Zk)
, i = Lk−1 + 1 · · ·Lk−1 + Lγ,k.

(20)

Substituted the predicted PHD particles set into (13) can get particle simulated updated PHD

Dk|k

(︀

mk|k

)︀

≈

Lk−1+Lγ
∑︁

i=1

w
(i)
k|kδ

(︁

mk|k −m
(i)
k|k

)︁

. (21)

The anchor updated PHD particles are directly inherited from the surviving and newborn anchor

particles in the predicted PHD.

m
(i)
k|k = m

(i)
k|k−1. (22)

The ith particle weight is

w
(i)
k|k = w

(i)
k|k−1

(︁

1− pD

(︁

m
(i)
k|k−1

)︁)︁

+ w
(i)
k|k−1

∑︁

z∈Zk

g
(︁

z|m
(i)
k|k−1,xk

)︁

pD

(︁

m
(i)
k|k−1|xk

)︁

ηz

(︁

m
(i)
k|k−1|xk

)︁ .

(23)

It is possible to calculate the anchor PHD using the Monte Carlo method.

Since the anchors’ PHD are simulated by Monte Carlo methods using particles. Clustering

algorithm[17] can be taken to estimate anchors’ position from particles. The introduction of

the clustering algorithm brings instability and error to the resulting map, so it is crucial to find

a good estimation from all the training sets. However, we do not know the exact location of



the anchor nodes beforehand, so it is impossible to find the best-performing point directly by a

method.

To solve this tricky problem, we choose to use OSPA[18] as a measure for analyzing the

error of the anchor points. To overcome the unknown real anchors’ position, we make a small

change in its input. Since terminal trajectories are known, the distance can be calculated using

the terminal’s position and the anchor node’s estimated position at each moment. We can use

this distance and the observed distance as the OSPA input, and the result thus calculated can

be used as an alternative to the OSPA of estimated result and the exact anchors. We name it

measurement-oriented OSPA (MOSPA) for convenience.

4. localization based on Mapping result

With the help of the training set, we estimate the approximate locations of the anchor in the

scenario by FMSC-PHD filtering. The estimated anchors in the scenario can simplify the indoor

localization problem, which is then divided into two significant problems: DA and location

estimation of terminals. Solving the DA to obtain the correspondence between the observation

and the anchors enables further estimation of the anchor’s location by MMSE.

The relationship between observations and anchors in terms of probabilities usually involves

many operations for solving marginal probabilities. The direct calculation of edge probabilities

leads to the excessive complexity of the algorithm. We use factor graphs to represent the

probabilistic model of DA and then optimize the marginal probability solution in DA using

the BP algorithm. Since the localization of terminals is also based on the probabilistic form of

Bayesian filtering, it can also be represented by factor graphs. DA and terminal state distribution

can be computed directly and efficiently using the BP algorithm.

As mentioned earlier, DA between anchors and observations is described by feature-oriented

vector ak,i and observation-oriented vector bk,m. The prior state for Bayesian filtering at step k

can be expressed as p (xk,ak). Through straightforward and well-known manipulation, the

likelihood function of DA and measurements conditional on the terminal state can be expressed

as[19]

p (Zk,ak|xk) ∝

|Mk|
∏︁

i=1

(1− pD (mk,i))
1−θd(ak,i) ×

(︃

pD (mk,i|xk) p
(︀

z
ak,i
k

)︀

κk
(︀

zk,ak,i
)︀

)︃θd(ak,i) |Zk|
∏︁

j=1

ψc (ak,i, bk,j),

(24)

where |Mk| is the number of anchors in the region of interest, |Zk| is the number of measure-

ments, pD (mk,i) is the detect probability of ith anchor at step k, κk
(︀

zk,ak,i
)︀

represent false

alarm. θd(ak,i) indicate whether the ith multipath component is detected or not, which can be

represent as

θd(a
i
k) =

{︃

0, aik = 0

1, aik ̸= 0.
(25)

Using Bayes’ rule and independence assumptions related to the prior probability density

function(pdf) and likelihood function, the joint posterior pdf of xk and ak at step k is obtained



Figure 2: Factor graph of (26)

as

p (xk,ak|Zk,mk) ∝

|Mk|
∏︁

i=1

ψp (xk, ak,i)

|Zk|
∏︁

j=1

ψc (ak,i, bk,j) (26)

where

ψp (xk, ak,i) =

⎧

⎪

⎨

⎪

⎩

[1− pD (mk,i)] p (xk|Zk) , ak,i = 0

pD (mk,i) p
(︀

zk,ak,i |xk,mk,i

)︀

p (xk|Zk)

κk
(︀

zk,ak,i
)︀ , ak,i ̸= 0

(27)

Since DA is based on the mutual constraints of the feature-oriented vector and the observation-

oriented vector, it can also be reformulated as

ψi,j
c (ak,i, bk,j) =

{︃

0, ak,i = j, bk,j ̸= i or bk,j = i, ak,i ̸= j

1, otherwise
(28)

From equation (26) we can obtain a factor graph as shown in Fig.2, and in turn we can run

the message propagation algorithm on the factor graph. The message propagated between ak,i
and bk,j can be obtained as

µai→bj (bj) =
∑︁

ai

ψi (ai)ψ
ij
c (ai, bj)

∏︁

j′ ̸=j

µbj′→ai (ai) (29)

µbj→ai (ai) =
∑︁

bj

ψij
c (ai, bj)

∏︁

i′ ̸=i

µai′→bj (bj) (30)



Since the factor graph has loops, there are no closed-form solutions. Approximate marginal

pdf can be obtained using iterative operations, and convergence was proved in the article[20].

The marginal probability density of the variable nodes can be computed by the computed

messages. The marginal pdf is associated with the location of the terminal, and the data at the

moment k can be expressed as

p (xk) =

|Mk|
∏︁

i=1

∫︁

ψp (xk, ak,i)

|Zk|
∏︁

j=1

µbj→ai (ak,i)dak,i (31)

p (ak,i) =

∫︁

ψp (xk, ak,i)

|Zk|
∏︁

j=1

µbj→ai (ai) dxk (32)

For estimating xk, we will develop an approximate calculation of the minimum mean-square

error (MMSE) estimator

x̂MMSE

k =

∫︁

xkp (xk) dxk (33)

5. experimental and Simulation result

In this section, to analyze the performance of the proposed FMSC-PHD filter and BP localization

algorithm, we apply it to simulation data within 2-D scenarios in Fig.1. The first situation

confiders the training set using the FMSC-PHD filter to position anchors. The second situation

considers the test set using the BP algorithm to simultaneously solve the DA and terminal

localization.

5.1. Analysis setup

State-Evolution Model The terminal’s state-transition pdf shown in Section 2 is defined

by a linear, near constant-velocity motion model[21] with sampling period ∆T = 1s. The
driving process uk is iid across k, zero-mean, and Gaussian with σ2uI2 accelerate noise, σu is

the accelerate noise. The anchors are static. However, implementing the FMSC-PHD algorithm

introduced a tiny driving process in the anchor state-evolution model for measurement noise.

Accordingly the state evolution is modeled as mk,n = mk−1,n + ωk,n, where ωk,n is iid across

k and n, zero-mean, and Gaussian with covariance matrix σ2mI2

Measurement Model According to the signal and measurement distance in Section 2, the

measurement noise nk,n is iid across k and n, zero-mean, and Gaussian with variance σ2zI2. The
measurement model determines the likelihood function factors in (13) and (24).

Common Simulation Parameters The simulating teaching building, terminal trajectory

of the training set and test set, and static anchors show in Fig.1. The following parameters

are used for both the training set and test set. The false alarm measurements in (5) range

uniformly distribute on the region of interest, and the number follows the Poisson distribution.

The measurement we detect can be regarded as newly born anchors set in (1). The detection

probability is a constant value for anchors, i.e. pD (mk|xk) = pD .
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Figure 3: The top figure plot training set results of OSPA and MOSPA of map error. The bottom figure

plot the number of estimated anchor and the number of measurement for training set.

Table 1

The 1− σ error of cdf

Tests Benchmark Known Anchor Test1 Test2 Test3

Error 0.0134 0.0902 0.1469 0.4434

5.2. Result for Training Set

We used the common simulation parameters described above for our simulations based on a

training set. Terminal travels the diamond trajectory in Fig.4 to map the five anchors in the

scenarios with FMSC-PHD. We used pd = 0.9 and measurement standard variance σz = 0.1
and λc = 1 as parameters to analyze the FMSC-PHD algorithm. The PHD of newborn anchors

were each represented by 10000 particles.

Fig.3 shows the OSPA and MOSPA map error. The OSPA errors are based on the Euclidean

metric and use the cutoff parameter 10m and order 1. Fig.3 shows the simulated MOSPA can

approximate the real OSPA very well. These results demonstrate that the FMSC-PHD algorithm

can extract the best OSPA performance estimation in the scenarios. The OSPA meets a cutoff in

the 100 steps, corresponding to a big turn that solves the problem of space consist. We go on a

diamond trajectory, not a simple line. The estimated anchors are shown in Fig.4, which are very

close to the real anchor positions.

Fig.3 shows the number of anchors estimated and measurements generated. Due to visibility

problems, the clutter measurements and false alarms make the number of measurements vibrate

and offer larger than the actual number of anchors. Nevertheless, the performance of our

algorithm is still good. The number of estimated anchors is much more stable at around five,

the number of anchors shown in Fig.4.
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5.3. Results of Test Set

In the test set, we can use the anchors estimated in the training set to assist terminal positioning.

Terminal walking through the trajectory shown in Fig.4. We also used the common simulation

parameters described above in our test set. We consider three different parameter settings

dubbed Test1, Test2, and Test3. In Test1 and Test2, we used detection probability pD = 0.9. The
mean number of false alarms are λc = 1 and λc = 2 respectively. In Test3, we used pD = 0.5



and λc = 2 to analyze the robustness of our algorithm to deplorable wireless signal conditions.

We use measurement standard variance σz = 0.01. 10000 particles represented the posterior
pdf of the terminal state. The number of message passing iterations for DA is limited by a

maximum iteration number or the message difference lower than 10−7.

As a performance benchmark for the accuracy of terminal localization, we also plot in Fig.5

the terminal position RMSE obtained for Test1 with the known anchor real positions. Table ??

shows the 1− σ cumulative distribution function (CDF) of position error of Test1, Test2, Test3

and known anchors taken together. Test3 is just 0.3m larger than Test2, which suggests a high

accuracy and robustness.

Fig.5 shows terminal position RMSEs of our algorithm obtained individually for the four tests.

We do not give the entire map to plot more detail of four tests. We can find our algorithm plays

a good performance before step 3000. Most errors are less than 0.15. The terminal position error

in Fig.5 illustrates considerable errors between 3500 and 4000. We can find there is a big vibrate

in the bottom left corner. The analysis shows that the anchors that can receive signals in the

bottom right corner are the three vertical anchors, and the other two horizontal anchors cannot

receive signals. We believe that the geometric position of the three vertical anchor points is

responsible for the poor positioning results.

For this reason, we introduce (Geometric Dilution of Precision) GDOP[22] as an analytical

method to analyze measurement errors due to the geometric distribution of anchors. GDOP is

not related to measurement errors but only to the geometric relationship of the anchor, which

fully reflects the geometric affected of anchors’ distribution. The GDOP plot in Fig.5 reflects a

massive error in the lower left-hand corner. At the same time, the fluctuations between 1700

and 2200 also show pool GDOP at the lower right corner. The good thing is that the geometry

of the anchors visible in the bottom right corner is better than that of the anchors in the bottom

left corner, which our algorithm can tolerate. That is why the bottom right corner is not as bad

as the bottom left corner.

6. conclusions and future research direction

In this paper, we proposed a TOA-based anchor mapping and terminal localization algorithm.

The simulation result shows that the FMSC-PHD method based on PHD filtering well estimates

the anchors in the scenarios and solves the problems of DA, false alarm, and miss detection

in indoor localization of wireless signals. In the test set, the factor graph-based BP algorithm

solved both the DA and location estimation problem simultaneously. It was able to be extended

to multi-objective contexts.

Several problems remain to be solved. A limitation of this study is that our search is totally

based on simulation. Therefore, in the future, we are dedicated to validating it with real signals.

Furthermore, our anchor estimation relies on the training set’s observations accuracy. The

test set also depends on the accuracy of the estimation of anchors. We are still working on

PHD methods that can dynamically estimate scenario information, for example, by introducing

information such as AoAs and AoDs for information fusion.
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