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Abstract  
 The indoor localization problem consists in identifying the Cartesian coordinates of an object 

or a personal asset in the buildings, malls, hospitals, campuses, factories, etc. To solve this 

problem, we consider a Wi-Fi-based localization method called fingerprinting, a two-step 

process, where a radio map of the monitored area is constructed by collecting signal strength 

from known locations. An unknown location is then predicted using this radio map as a 

reference. In this paper, we first propose an adapted Random Forest (RF) and Extreme Gradient 

Boosting (XGB) algorithms. This adaptation, combined with Minimum Mean Square Error 

(MMSE), improves the accuracy problem caused by the change of environment and extends 

the concept by adding a signal processing functionality as an edge cloud feature to address a 

dynamic cooperation clustering. By embedding the Wi-Fi Access Point (WAP) with multiple 

antennas, the signals sent by the Mobile User Equipment (MUE) can be processed to improve 

the accuracy of the bootstrap. Adding Minimum Mean Square Error (MMSE) is a kind of data-

centric approach because it yields high-quality data as input. The noise inherent in the location 

data is reduced and thus the performance of the MMSE-aided RF and XGB improved. This 

enhancement is further extended by sharing data between WAPS. Thus, the MMSE processing 

and the sharing of such processed data between WAPS enhance the positioning model 

performance. The performance of these methods is evaluated through robust and extensive 

experiments in real-time indoor areas, with regular and reproducible scenarios. We found an 

interesting outcome that the proposed approach can offer better time-2-market compared to the 

traditional, non-Machine-Learning-based indoor positioning system approach. 
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1. Introduction 

The rapid growth of the Internet of Things (IoT), resulted in a wide range of services, including 

Location Based Services (LBS). Generally, localization refers to the process of obtaining the same 

region or the geographical location of a user or a device. Enabling accurate location-based services 

depends on the availability of location information. Localization systems can be categorized into 
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outdoor localization and indoor localization. The Global Positioning System (GPS) is the main 

technology used to determine the position in outdoor localization. However, its accuracy deteriorates 

in the indoor environment due to the poor penetration of GPS signals inside buildings, a lot of power 

consumption, and the multipath effects on the propagating signals [1]. There is an urgent need to address 

precise indoor localization. Nowadays, indoor localization is highly used in our daily life. It is used in 

tracking the location inside a building, malls, hospitals, campuses, factories, etc. Several techniques are 

employed for localization parameter measurements, including Time of Arrival (ToA) [2], Time 

Difference of Arrival (TDoA) [3], Received Signal Strength Indicator RSSI [4], Angle of Arrival 

(AoA), and Time of Flight (ToF) [5].  These approaches suffer from many challenges, including poor 

accuracy, high computational complexity, multipath effect, shadowing, fading, and delay distortion. 

The fingerprints method achieves great attention recently due to its promising results with various ways 

of making predictions. In fingerprinting, a database is first built with data collected from a thorough 

measurement of the field in the offline stage. Then, the position of a mobile user can be estimated by 

comparing the newly received test data with that in the database, the online phase.  

Besides, Wi-Fi fingerprinting localization is one of the methods based on RSSI [6,7,8,9,10], 

Euclidean distance [11], based on RSSI ranging [12], trilateration [13], etc. Compared to other indoor 

localization methods, Wi-Fi fingerprinting localization technology has some advantages including low 

hardware requirements and wide scope of application. At the same time, the technology needs to 

cooperate with more advanced algorithms to ensure higher positioning precision [14]. However, indoor 

localization using Wireless Local Area Network (WLAN) fingerprinting faces several challenges 

including propagation effects, which degrades the localization accuracy [15]. 

  

The rest of the paper is organized as follows. Section 2 gives a brief about the state of the art. Section 

3 presents our proposed localization methods. Section 4 presents the localization performance of the 

algorithm in different ways, and section 5 the conclusion of the work. 

2. State of the art of the previous works 

With the rapid growth in Machine Learning (ML) systems, similar approaches need to be developed 

in the context of ML engineering, which handles the unique complexities of the practical applications 

of ML. This is the domain of MLOps. It is a set of standardized processes and technology capabilities 

for building, deploying, and operationalizing ML systems rapidly and reliably. In recent years, ML 

algorithms such as K-Nearest Neighbor (KNN) [16], Random Forest (RF) [17], XGB [18,19], Support 

Vector Machine (SVM) [ 20,21], KNN, a rules-based classifier (JRip), Decision Tree (DT), RF, and 

SVM [22], KNN, WKNN [23], RF, and XGB [24] have been applied to the RSSI fingerprinting 

positioning technique and have achieved better location results. 

 When the structure and layout of the indoor environment change, the indoor wireless 

communication environment also changes, which leads to a large gap between the new environment 

and the established positioning fingerprint. However, the establishment process of the fingerprint is 

very time-consuming and laborious. It is not economical or realistic to update all positioning 

fingerprints regularly and frequently, which will greatly improve the maintenance cost of the RSSI 

location fingerprinting system. Several methods to reduce the inaccuracies in location measurements 

are proposed in the literature [25]. There is no regular test in the work we have seen. In our previous 

work [24], reproducing these tests can bias the experiments. To assess the bias of machine learning 

methods, carrying out more regular and reproducible tests will make it possible to resolve these 

questions. 

 It is possible to improve the position system performance by using fingerprint techniques that 

employ multipath information in an ML framework, which operates a dataset generated in real-time 

using MMSE. In this work, we consider the RSSI between the transmitter and the receiver as the 

localization attribute. This is because the RSSI-based approach poses minimum requirements on the 

Wi-Fi technology of the requisite modules. RF and XGB algorithms combined with MMSE are 

proposed to minimize both the measurement noise and resolve the accuracy problem caused by the 

change of environment for indoor localization tasks. The method first uses RF and XGB algorithms to 

establish an indoor positioning model, which can achieve indoor positioning. When the environment 



 

changes, a further MMSE method is used to improve the initial positioning. However, Data-centric 

approaches to solving AI problems have been dominant in applications where large and high-quality 

datasets are available. Such approaches aim to improve model performance through the development 

of more complex architectures. 

3. Experiments 

The fingerprint map is built where it contains the data points covering the whole area to be used by 

the algorithms to predict the position. Each data point has the RSSI values from four fixed APs and 

their position. The whole area is 9.5 m x 9.25 m, as shown in Figure 1. A point was taken every 0.2 m 

from the x-axis and every 0.5 m from the y-axis starting from the origin unless there were obstacles like 

walls or furniture that prevented taking the point. This approach for the fingerprint map resulted in 

having 700 data points covering the whole area. Our approach was to increase the number of data points 

and decrease the spacing between them to increase the accuracy in predicting the location. We have as 

input a list of 700 points. For each measurement point, we have 20 RSSI values then we calculate the 

mean of the 20 points as RSSI. (m). However, the RSSI values are very fluctuating so the mean is not 

enough to characterize the precision. To improve accuracy, the mean (m) and the MMSE are combined. 

We performed a point density analysis for the different scenarios. For this, we carried out different 

scenarios depending on the size of the training and testing. First, we divided our data at 10 %, we have 

70 for training and 630 testing points evenly distributed along with x coordinates at 0.2 m doing 1 of 2 

along x and by doing 1 out of 5 according to the y coordinates at 0.5 m to respect the pitch 

homogeneously, that is to say, take the diagonal. At 33 %, we divided our database by 3 by doing 1 out 

of 3 along x and 1 out of 1 along y which gives 233 for training and 467 testing points respecting the 

step between the coordinates x and y. At 66 %, we used 2/3 of our database, i.e.467 for training and 

233 testing points. At 80 %, we divided our base by 4/5 using the fourth points for training and fifth 

points for testing resulting in 560 for training and 140 testing points. Then, we added a random 

positioning algorithm as a reference algorithm to compare the quality of our proposal compared to the 

random one. For this, we took a random point among the 700 and we calculate the distance of this point 

from real coordinates which gives us a distance of 7.5 m. We also used the midpoint algorithm, another 

benchmark algorithm. The midpoint is the central point which corresponds to the 350 points of our 

database and we calculate the distance from this point to the 699 remaining points then we calculate the 

average. We found a distance of 3.5 m for the midpoint. Finally, we calculated the Confidence Interval 

(IC) for each test point, a statistical result by calculating the mean and the standard deviation. For this, 

we give a confidence interval on these values. We used the following formula to calculate the IC. If X 

is a random variable defined on Ω of unknown expectation m and standard deviation б and if 𝑥 ̅ is the 

mean of the values observed on a sample of size n, IC at the confidence threshold α for the parameter 

m is: 

𝐼𝛼 = [𝑥 ̅- t
𝜎

√𝑛
, 𝑥 ̅+ t

𝜎

√𝑛
] where 𝜋(𝑡) =

𝛼+1

2
    ,         (1) 

 

In MLOps, the model training lets efficiently and cost-effectively run powerful algorithms for 

training RF and XGB with MMSE models. Model training should be able to scale with the size of both 

the models and the datasets that are used for training. The testing model capability lets us understand 

how newly trained models perform. It enhances the reliability of our ML releases by helping to decide 

whether to reject poorly performing models and promote well performing ones. In the process of serving 

predictions, once our model is deployed to an indoor environment, the model service starts accepting 

prediction requests and providing responses with predictions.The testing data is used to evaluate the 

predictions generated by the ML model. The predicted locations will be compared to the actual positions 

of the test points able to evaluate the performance of different algorithms.  

 



 

 
 

Figure 1: Area of indoor localization test:700 Point of Reference (PoR)/ Point of Test (PoT), real 
indoor evaluation room based on ML with various ratios (for example here 75 % training and 25 % 
testing with fairly regular topology). 

3.1.  Hardware 

The offline phase is divided into different parts. Firstly, the RSSI reading was taken using an android 

app called Wi-Fi Fingerprint installed on HTC One X9. This RSSI value can be fluctuated due to the 

shadowing effect. Adding MMSE an approach of data-centric AI at each WAP mitigate the effect of 

environmental variation by reducing the noise in the data. This new fingerprint map was saved in an 

excel sheet CSV file to be used by the algorithm and sent to Python. Secondly, in the online phase, a 

Wi-Fi module ESP can read the values from APs and send this value to Firebase. Firebase database is 

specifically used because it is easy to be integrated with the Wi-Fi module and has also a library defined 

in Python making it easy to deal with the Firebase [26] database. Finally, Python IDE ‘Spyder’was used 

to access the data in the excel sheet. The dataset is divided into training and testing. The training data 

is used to train the machine learning model to predict the position and the testing data is used to evaluate 

the predictions generated by the machine learning model, as shown in Figure 2. 

 
Figure 2: Steps of Fingerprint positioning using machine learning. 
 

 

 

 

 



 

3.2. MMSE Estimation 

       A variety of speech enhancement approaches have been proposed. They differ in the statistical 

model, distortion measure, and in the manner in which the signal estimators are being implemented. 

Perhaps the simplest scenario is obtained when the signal and noise are assumed statistically 

independent Gaussian processes, and the MSE distortion measure is used. For this case, the optimal 

estimator of the clean signal is obtained by the Wiener filter. Since speech signals are not strictly 

stationary, a sequence of Wiener filters is designed and applied to vectors of the noisy signal. MMSE 

estimation under Gaussian assumptions leads to linear estimation in the form of Wiener filtering. Noise 

Reduction using MMSE can be used where the enhancement of noisy speech signals is essentially an 

estimation problem in which the clean signal is estimated from a given sample function of the noisy 

signal. The goal is to minimize the expected value of some distortion measure between the clean and 

estimated signals. For this approach to be successful, a perceptually meaningful distortion measure must 

be used, and a reliable statistical model for the signal and noise must be specified. At present, the best 

statistical model for the signal and noise, and the most perceptually meaningful distortion measure, are 

not known. 

 Due to the shadowing effect which deteriorates the MSE of localization. The MMSE estimation of 

Wireless Sensor Networks (WSN) is investigated. This MMSE algorithm can be used to locate the 

coordinates of unknown node values and also minimize location errors. Their simulation results show 

that the distance variance of distances between reference nodes and unknown nodes increases the MSE 

of localization [27]. In this paper, to calculate the MMSE, we use the method proposed in [28] by using 

for APs with their coordinates such as 𝐴𝑃1 (𝑥1 , 𝑦1 ), 𝐴𝑃2 (𝑥2 , 𝑦2 ), 𝐴𝑃3 (𝑥3, 𝑦3 ), 𝐴𝑃4 (𝑥4 , 𝑦4 ) and 

M (𝑥, 𝑦) the coordinates of the mobile user 

(𝑥 − 𝑥1)2  + (𝑦 − 𝑦1)2  = 𝑑1
2                        (𝐴)

(𝑥 − 𝑥2)2  + (𝑦 − 𝑦2)2  = 𝑑2              
2            (𝐵)

(𝑥 − 𝑥3)2  + (𝑦 − 𝑦3)2  = 𝑑3
2                      (𝐶)

(𝑥 − 𝑥4)2  + (𝑦 − 𝑦4)2  = 𝑑4
2                      (𝐷)

, (2) 

 

After subtraction of the equations (𝐴) 𝑒𝑡 (𝐵) then (𝐶) 𝑒𝑡 (𝐷), we will have the following systems: 

 

{𝑥1
2 − 𝑥2

2  − 2𝑥 (𝑥1−𝑥2) + 𝑦1
2 − 𝑦2

2  − 2𝑦 (𝑦1− 𝑦2)= 𝑑1
2 − 𝑑2

2 
 

{𝑥2
2 − 𝑥3

2  − 2𝑥 (𝑥2−𝑥3) + 𝑦2
2 − 𝑦3

2  − 2𝑦 (𝑦2− 𝑦3)= 𝑑2
2 − 𝑑3

2 
 
This can be written as a linear equation and becomes: 

 

bX=a such as b= [
𝑥
𝑦]; a=[

𝑥1
2 −  𝑥2

2   +  𝑦1
2 − 𝑦2

2    −  𝑑1
2 − 𝑑2

2   

𝑥2
2 −  𝑥3

2   +  𝑦2
2 −  𝑦3

2 − 𝑑2
2 − 𝑑3

2 ];X=[
2 (𝑥1 − 𝑥2)     2y (𝑦1 − 𝑦2)
2 (𝑥2 − 𝑥3)    2 (𝑦2 − 𝑦3)

] 

 

[
𝑥
𝑦]=[

2 (𝑥1 − 𝑥2)     2 (𝑦1 − 𝑦2)
2 (𝑥2 − 𝑥3)    2 (𝑦2 −  𝑦3)

]
−1

[
𝑥1

2 − 𝑥2
2   + 𝑦1

2 −  𝑦2
2    −  𝑑1

2 +  𝑑2
2   

𝑥2
2 −  𝑥3

2   +  𝑦2
2 −  𝑦3

2 − 𝑑2
2 +  𝑑3

2 ] ,(3) 

 
Distance measurements can be disturbed by noise or obstacles, which makes distances instead, 

distances are used with measurement errors and the equation becomes: 

 

𝑑�̂�= √( 𝑥𝑖 −  𝑥)2 + ( 𝑦𝑖 − �̂�)2          ,                     (4)      
  for i=1,.,n. n is the number of AP. 

The Squaring and rearranging these terms yields the following equation for each access point 

measurement 

(𝑥 − 𝑥1)2  + (�̂� − 𝑦1)2  = 𝑑1
2̂(1) 

(𝑥 − 𝑥2)2  + (�̂� − 𝑦2)2  = 𝑑2
2̂(2) 

        (𝑥 − 𝑥3)2  + (�̂� − 𝑦3)2  = 𝑑3
2̂(3)    ,(5) 



 

(𝑥 − 𝑥4)2  + (�̂� − 𝑦4)2  = 𝑑4
2̂(4) 

[
𝑥
�̂�

]=[
2 (𝑥1 − 𝑥2)     2 (𝑦1 − 𝑦2)
2 (𝑥2 − 𝑥3)    2 (𝑦2 − 𝑦3)

]
−1

[
𝑥1

2 −  𝑥2
2   +  𝑦1

2 − 𝑦2
2    −  𝑑1

2̂ + 𝑑2
2̂   

𝑥2
2 −  𝑥3

2   +  𝑦2
2 −  𝑦3

2 − 𝑑2
2̂ + 𝑑3

2̂
],        (6) 

 
The difference between equations (6) and (3) gives:  

[
𝑥 − 𝑥

�̂�   − 𝑦
]= [

2 (𝑥1 − 𝑥2)     2 (𝑦1 − 𝑦2)
2 (𝑥2 − 𝑥3)    2 (𝑦2 −  𝑦3)

]
−1

[
( 𝑑1

2̂  −  𝑑1
2) + (𝑑2

2  − 𝑑2
2)̂

(𝑑2
2̂ − 𝑑2

2 ) + ( 𝑑3
2 − 𝑑3

2̂
]         ,   (7)  

A=[
𝑥
�̂�

], W= [
2 (𝑥1 − 𝑥2)     2y (𝑦1 − 𝑦2)
2 (𝑥2 − 𝑥3)    2 (𝑦2 − 𝑦3)

],Z=[
𝑥1

2 − 𝑥2
2   + 𝑦1

2 −  𝑦2
2    −  𝑑1

2̂ +  𝑑2
2̂   

𝑥2
2 −  𝑥3

2   +  𝑦2
2 −  𝑦3

2 − 𝑑2
2̂ +  𝑑3

2̂
]       

 
A is solved using the Moore-Penrose generalized matrix inverse solution for the MMSE [29], [30]. 

 

𝐴 = (𝑊𝑇𝑊)−1𝑊𝑇Z                   (8)  
   However, Federated learning (FL) is a distributed learning framework. As described in [31], FL 

requires end-users’ devices with low computation power to send in their local pretrained machine 

learning model to a sink. The sink will concatenate the models into a global model to perform ML tasks. 

The models received at the sink are affected by noise, and the sink needs to mitigate the noise to 

effectively use the local models. Similarly, MMSE is used in our proposed approach to Data-centric AI 

to suppress the noise of the received measurement used in the fingerprinting. 

 

3.2.1.  Data-centric AI with MMSE 

       Due to the training datasets which impact the performance of the ML, this paper explores the 

concept of data-centric explanations for ML systems that describe the training data to the end-user. 

Their results show that data-centric explanations have the potential to impact how users judge the 

trustworthiness of a system and to assist users in assessing fairness [32]. A data-centric approach to AI 

provides a systematic way to improve data, build data consensus, and clean up inconsistent data. This 

is usually overlooked and data collection is treated as a one-time task. The data-centric approach is 

more rewarding and calls for a move towards data centrism. To make MLOps systematic, it uses firstly 

a model-centric view to collect what data it can develop a model good enough to deal with the noise in 

the data and hold the data fixed and iteratively improve the model. Secondly, it uses a data-centric view 

witch the consistency of the data is paramount. However, using tools to improve the data quality will 

allow multiple models to do well but to hold the code fixed and iteratively improve the data. MLOps’ 

most important task is to make high-quality data available through all stages of the ML project lifecycle 

example prediction serving [33]. In wireless signal processing applications, where the RSSIs values are 

usually noisy, a potentially more fruitful approach is MMSE as an approach to data-centric AI one that 

focuses on improving the data to make simpler wireless network locations perform better. The idea is 

to enhance signal data by improving removing noise. This idea can be extended to include transforming 

signals into a wireless network where key features become more prominent and easier to use. However, 

with a data-centric view, there is significant room for improvement in problems with noise. 

3.2.2. Random Forest MMSE 

 RF contains several DTs on various subsets of the given dataset and takes the average to predict the 

location and the accuracy of the dataset compared to other algorithms in ML such as SVM, KNN, etc. 

During training, a set of labeled training points can be used to optimize the parameters of the tree, and 

for testing the same unlabeled test input data is pushed through each component tree. At each internal 

position, a test is applied and the data point is sent for a prediction. To extend the concept by adding a 

signal processing functionality as an Edge cloud feature to implement a dynamic cooperation clustering, 

the MMSE algorithm at each WAP to enhance the quality of the bootstrapped data and share that 



 

enhanced bootstrap with the neighboring WAPS in demand, and this MMSE is combined to the random 

forest. 

 Proposed RF. (MMSE) algorithm for dynamic cooperation clustering.  

1. For k=1 to B  

• Draw N sample points from the collected data from the MUEs and the neighboring WAPS 

to form a bootstrap at the designated WAP 

• Applied the MMSE to the data collected from the MUEs to reduce the noise 

•  Grow a random forest tree  𝑇𝑏  to the bootstrapped data by recursively repeating the 

following steps for each terminal node of the tree until the minimum size 𝑛𝑚𝑖𝑛 is reached 

• Select m variables at random from the p variables  

• Pick the best variable/split-point among the m (iii) Split the node into two daughter 

nodes    

  2. Output the ensemble of trees   {𝑇𝑏}1
𝐵.  

The prediction of a new location from the u=input data x is given by the regression  

𝑓𝑅𝐹
𝐵 (𝑥) = 

1

𝐵
∑ 𝑇𝑏

𝐵
𝑏=1 (𝑥) 

The classification is given by the majority vote as follows: Let 𝐶𝑏(𝑥) be the class prediction of the 

b-th random forest tree, then  

𝐶𝑅𝐹
𝐵  (𝑥) = 𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦 𝑣𝑜𝑡𝑒 {𝐶𝑏 (𝑥)}1

𝐵. 
 With the proposed RF. (MMSE) the algorithm, each WAP applies the RF locally using its data and 

the data received from the neighboring WAPS to construct the bootstrap. The contribution to this 

scheme is the sharing of data by the WAPS which enables a dynamic cooperation clustering. The data 

shared between WAPs is already processed with MMSE to reduce the noise. It further makes the size 

of the bootstrap variable at each WAP. The cluster of WAPS exchanging data is of a variable size too. 

3.2.3. XGBoost MMSE 

XGB is a software library. It split the X and Y data into a learning and testing set. The training set 

will be used to prepare the XGB model and the testing set will be used to make the predictions, from 

which it can evaluate the performance of the model. For this, it will use the train test split function from 

the scikit-learn library. It also specifies a seed for the random number generator so that we always get 

the same split of data each time. The format of the positions of the training data also needs to be 

modified for the fit function to work Finally. To improve the location accuracy caused by the change 

in environment, we propose to use XGB. (MMSE). The method first uses the XGB algorithm to 

establish an indoor positioning model. When the environment changes, further combine the MMSE 

method to improve the initial positioning. 

4. Evaluation of performance  

 The performance of our developed system is evaluated in terms of localization accuracy. In MLOps, 

to evaluate the performance capability let’s assess the effectiveness of our model, interactively during 

experimentation. For this, we need to visualize and compare performances of different models, compute 

pre-defined or custom evaluation metrics for our model on different slices of the data and track trained-

model predictive performance across different continuous-training executions. This can help to enable 

model behavior interpretation using various explainable AI techniques. To evaluate the performance, 

the different localization algorithms are tested in simulation and compared, as shown in table 1. In all 

cases, the same training data was used to make the machine learning model. The MSE is used to measure 

the accuracy of the localization algorithms. 

MSE= 
1

𝑛
 ∑ (Y − �̂�) 2 ,(9) where Y and  �̂�are the actual and estimate coordinates at n-th references 

point. 

 

 

 



 

4.1.1. Simulation description  

For the simulation, we took all the test points for each percentage to sweep the whole space. That is 

to say take 630 test points for 10 %, as shown in Figure 3, 467 test points for 33 %, as shown in Figure 

4, 233 testing points for 66 %, as shown in Figure 5 and 140 test points for 80 %, as shown in Figure 6. 

So, for testing, we have other possibilities for each percentage. We have 9 possibilities at 10 %, 3 

possibilities at 33 %, 2 possibilities at 66 %, and 2 possibilities at 80 %. These experimental results 

show that at 10 %, the accuracy between RF. (m) and RF. (MMSE) is improved by 66 % and 48 % 

between XGB. (m) and XGB. (MMSE). At 33 %, there is a 79 % improvement in accuracy between 

RF. (m) and RF. (MMSE) and 80 % between XGB. (m) and XGB. (MMSE). At 66 %, there is a 22 % 

improvement in accuracy between RF. (m) and RF. (MMSE) and 28 % between XGB. (m) and XGB. 

(MMSE). At 80 %, there is a 27 % improvement in accuracy between RF. (m) and RF. (MMSE) and 

29 % between XGB. (m) and XGB. (MMSE). 

 

 
 

Figure 3: CDF of RF.(m), XGB. (m), RF.(MMSE), XGB. (MMSE) at 10 % 
 

 
 

Figure 4:CDF of RF.(m), XGB. (m), RF.(MMSE), XGB. (MMSE) at 33 % 
 

 
 

Figure 5: CDF of RF.(m), XGB. (m), RF.(MMSE), XGB. (MMSE) at 66 % 
 



 

 
Figure 6: CDF RF, XGB, RF-MMSE, XGB-MMSE at 80 % 

Table 1  
Representation of positioning errors for the Egypt room from the data of a composition of elements 

 

 

% Scenario RF.(m) XGB. (m) RF.(MMSE) XGB.(MMSE) 
      

    
    
10 % T=70 

A=630 
 
 
 
 
 
 
 
𝐼α at 95 % 

2.26 
2.33 
2.21 
2.28 
2.23 
2.25 
2.24 
2.32 
2.34 
[2.19;2.35] 
 

2.36 
2.38 
2.31 
2.35 
2.30 
2.37 
2.39 
2.41 
2.40 
[2.27;2.45]  

1.60 
152 
1.55 
1.59 
1.61 
1.50 
1.57 
1.54 
1.56 
[1.50;1.62] 

1.88 
1.75 
1.78 
1.86 
1.80 
1.84 
1.79 
1.77 
1.73 
[1.72;1.90] 

33 % A=233 
T=467 
 
 
𝐼α at 90 % 

2.01 
2.09 
2.02 
 
[2;2.09] 
 

2.17 
2.20 
2.19 
 
[2.16;2.20] 
 

1.22 
1.19 
1.17 
 
[1.12;1.26] 
 

1.37 
1.40 
1.35 
 
[1.29;1.45] 
 

66 % A=467 
T=233 
𝐼α at 97 % 

1.25 
1.22 
[1.20;1.25] 
 

1.30 
1.33 
[1.28;1.33] 
 

1.03 
1.01 
[1;1.04] 
 

1.08 
1.05 
[1.04;1.08] 
 

80 % A=560 
T=140 
 
 
𝐼α at 97 % 

1 
1.02 
1.01 
1.03 
[1;1.04] 
 

1.11 
1.13 
1.15 
1.12 
[1.10;1.15] 
 

0.73 
0.70 
0.71 
0.72 
[0.70;0.74] 
 

0.82 
0.79 
0.81 
0.80 
[0.80;0.83] 
 



 

 
 

Figure 7: Percentages of different tests using density per interval.  

4.1.2. Discussion of the experimental results  

Analysis of our experimental data revealed that most location errors occurred due to attribution of 

too much relevance for low RSSI values, that is to say, corresponding to a weak reception, which would 

present fluctuations that can be further amplified by the presence of interior obstacles, can cause the 

coordinates of a point of distant affect the estimation. We compared the performance of the XGB and 

RF algorithm by using MMSE with the state-of-the-art in terms of accuracy. The experiment is done in 

a real-time environment, with a regular and reproducible scenario. Different scenarios of the test are 

done with different training and testing with regular distribution. The accuracy of RF.(m), XGB. (m), 

RF. (MMSE) and XGB. (MMSE) are respectively 2.26 m, 2.36 m, 1.60 m, and 1.88 m at 10 %. 

 At 33 %, we have 233 for training and 467 for testing, the accuracy of RF.(m), XGB. (m), RF. 

(MMSE) and XGB. (MMSE) are 2.01 m, 2.17 m,1.22 m, and 1.37 m respectively. At 66 %, we have 

467 for training and 233 for testing. The accuracy of RF.(m), XGB. (m), RF. (MMSE) and XGB. 

(MMSE) are respectively 1.25 m,1.30 m,1.03 m, and 1.08 m. At 80 %, this means that we divided our 

data into 560 for training and 140 for testing. The accuracy of RF.(m), XGB. (m), RF. (MMSE) and 

XGB. (MMSE) are respectively 1 m, 1.11 m, 0.73 m and 0.82 m. These results show that RF. (MMSE) 

and XGB. (MMSE) give the highest accuracy than RF.(m), XGB. (m). These results confirm the interest 

of ML. But, the analysis of knowing which is the most efficient algorithm varies according to the 

training set compared to the testing set that is needed at 70 %, this is where we obtain the best result. 

such algorithms using RF or XGB vary, we do not have the same performance and above all the quality 

of the accuracy is really different. What seems more reasonable is the results we obtain today rather 

than in the initial test which according to the non-reproducible tests we have a bias which is very 

important of 2 % compared to the previous paper. 

5. Conclusion 

In this work, we performed an implementation, evaluation, and analysis of machine learning 

algorithms such as Random Forest and Extreme Gradient Boosting in an indoor environment. These 

algorithms are combined with MMSE, a data-centric approach to AI, to reduce the noise data and 

improve accuracy. This indoor location approach resulted in having 700 data points by using an app 

called Wi-Fi Fingerprint installed on the phone. Various regular and reproducible test sets were carried 

out. These regular tests are useful to evaluate the ML algorithms and to have a more real and 

reproducible. As part of an indoor experiment, XGB and RF combined with MMSE give better results 

at 80 % or 560 learning data and 140 test data with an accuracy of 0.72 m and 0.80 m respectively. The 

experimental results show that the proposed algorithms RF. (MMSE) and XGB. (MMSE) still achieve 

good positioning effect even in environmental changes compared to other algorithms, which makes it a 

good algorithm for the indoor location. 
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