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Abstract
Localization plays a vital role in unmanned platforms. The feature-based LiDAR odometry has excellent
real-time performance but suffers accumulated error. The localization based on global matching can
provide an unbiased estimation of states, whereas it requires an amount of calculation. This paper
proposed a joint framework that fuses the LiDAR, IMU, and pre-build prior map to estimate the unmanned
platform’s six-degrees-of-freedom (DOF) states to solve the accumulated error problem under the premise
of ensuring real-time. This work divided the system into two main threads. The one is utilizing the
high-frequency feature-based LiDAR odometry coupled with IMU to localize. And the other is using
the low-frequency global matching to correct the odometry. We link the two threads through sub-map
optimization built atop the factor graph. As the global matching can provide unbiased estimation, and
feature-based LiDAR odometry is with little calculation, the system can achieve both accuracy and
real-time performance. The proposed framework is extensively validated with experiments under two
flatforms and achieves excellent performance.
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1. Introduction

Localization is essential for most unmanned platforms such as automatic vehicles, moving robots,
and unmanned air vehicles. In tradition, the localization usually relies on the collaborative
cooperation of GPS and INS[1]. However, GPS signal is easy to lose due to the shelter like trees,
rocks, and buildings; meanwhile, resulting from the accumulated error, the accuracy of the IMU
is extremely low. Therefore, equipped with a perceptual sensor like LiDAR or camera on board,
the odometry can be designed for localization and independent of external signals. Among
them, the LiDAR-based methods are more robust and invariable to interference, and it becomes
more convenient to be applied in practical applications.

There are usually two ways to implement odometry. One is SLAM, and the other is localization
in a pre-built prior map through global matching.

LiDAR SLAM plays a pivotal role in unmanned platforms, which have witnessed rapid
progress in the past few years[2]. Recently, fusing multiple sensors like IMU and GPS, the
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LiDAR SLAM can provide accurate real-time state estimation and map, especially the tightly
coupled method with IMU. However, the online localization of SLAM also suffers from drift
when the GPS signal is lost consecutively. As a result, the precision is not enough to meet
practical application requirements.

The global match is to match the point cloud of the current LiDAR frame against the prior map
to estimate the current pose. The prior map is built previously by fusing the LiDAR odometry,
GPS, and loop closure. Although the GPS signal is not fully covered, the system can establish
a high precision prior map thanks to the globally consistent optimization. Usually, the global
matching can be expressed as a nonlinear optimization problem, and it has specific requirements
for a large number of calculations. Therefore it decreases the real-time performance and the
frequency of localization. In addition, an excellent initial pose is also requested for global
matching. However, Most of the existing methods utilize the linear model to estimate the initial
pose, which will result in low precision and low robustness. The environmental change due to
the dynamic object or seasonal variation will also affect the performance of global matching[3].

Aiming at the above problems, we propose a joint framework that fuses the LiDAR odom-
etry with global matching to estimate the six-degrees-of-freedom (DOF) state for unmanned
platforms. The LiDAR odometry obtained from feature-based scan matching is fast but with
cumulative error. The global localization obtained from global matching is slow, but it can offer
unbiased estimation with high precision. So the proposed framework utilizes the high-frequency
LiDAR odometry coupled with IMU to localize and the low-frequency global matching to correct
it so that the system can achieve both accuracy and real-time performance. We link the LiDAR
odometry and the global matching through sub-map optimization atop the factor graph. The
LiDAR odometry can also provide a tremendous initial pose for global matching. In addition,
the LiDAR odometry matching against the current sub-map can effectively decrease the error
result from the global matching in the changing environment. Because the prior map needs to
be established in advance, my project is most suitable for specific scenes such as underground
parking, scenic spots, and factory areas. Thanks to the global localization from the prior map,
the system can achieve high-precision positioning without relying on GPS information so that
the system can be applied to indoor localization tasks.

The main contributions of our work can be summarized as follows:

• We proposed a joint framework that utilizes the high-frequency LiDAR odometry coupled
with IMU to localize and the low-frequency global matching to correct it. And, We link the
LiDAR odometry and the global matching through sub-map optimization atop the factor
graph. In this way, the system can achieve both accuracy and real-time performance.

• The proposed framework is extensively validated with experiments in two environments
and achieves excellent performance in precision and robustness.

2. Related Work

Scan matching is the most important part of lidar odometry, and many algorithms deal with it;
Iterative closest point (ICP)[4], and GICP[5] are the famous algorithms among them. However,
matching a full point cloud is less computational efficient, so the feature-based matching
methods are more suitable. The well-known method is LOAM proposed in [6], which extracts



edge and planar features by evaluating the roughness of points over a local region for scan-scan
matching. Based on LOAM, Lego-loam proposed in [7] is ground-optimized and matches the
plane feature and angle separately. Our work also follows the feature-based matching methods
to ensure real-time performance.

Recently, LiDAR odometry is typically coupled with IMU for de-skewing the point cloud
and joint optimization[8]. The coupling method can mainly be grouped into loosely coupled
and tightly coupled. The popular approach for loosely-coupled is using extended Kalman
filters (EKF)[9, 10, 11, 12]. However, the tightly-coupled method especially based on the IMU
preintegration algorithm proposed in [13] usually offers improved performance and has attracted
wide attention[14]. For example, In [15], a tightly coupled lidar- inertial odometry algorithm is
proposed and provides real-time accurate state estimation with a high update rate. In [8], the
LIO framework is built atop a factor graph and is suitable for multi-sensor fusion and global
optimization, achieving excellent performance. Our proposed system also followed this work.

Global matching is essential for localization. In [16], the intensity and altitude are adaptively
combined to match the online lidar scan against the prior map and conduct a 3 DOF (x,y, yaw)
estimation. As to 6 DOF estimation, In [17], the ICP is utilized for global matching. However,
it is known that the ICP is very computationally inefficient and sensitive to environmental
change. The Normal Distribution Transform (NDT) method proposed in [18] has been more
popular in recent years. It has both advantages of real-time and precision. In addition, it has
more tolerance for the accuracy of the initial pose. So, our work also follows the NDT method
for global matching.

3. System Overview

3.1. Definition and Notation

The mathematical symbols used in this paper are defined in Table 1.

Table 1
Mathematical Symbols

Symbols Name

⊤ Transpose
𝑁 Normal distribution

𝑆𝑂(3) Special Orthogonal Group
𝑆𝐸(3) Special Euclidean Group

∪ Intersection
∈ Belong To
R Real Number
.
= Or∑︀

Summation∏︀
Product Operator

‖*‖ Mahalanobis Distance



We define the skew symmetric matrix of a vector 𝜔 ∈ R3 using (·)∧:

𝜔∧ =

⎡⎣𝜔1

𝜔2

𝜔3

⎤⎦∧

=

⎡⎣ 0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

⎤⎦ . (1)

Similarly, we can map a skew symmetric matrix to a vector in R3 using the operator (·)∨.
We use 𝑅 ∈ 𝑆𝑂(3), 𝑝 ∈ R3, and 𝑇 = [𝑅|𝑝] ∈ 𝑆𝐸(3) to represent the rotation matrix, the
position vector, and the transformation matrix, respectively. It is worth mentioning that the
transformation matrix from the reference coordinate to the object coordinate can also describe
the object’s pose in the reference coordinate. We denote the world frame by W, and it is the
same as East, North, and Up (ENU) coordinates. We denote the platform body frame by B that
is the same as the IMU frame. We also define the GPS frame by G and the LiDAR frame by
L. Assume that the parameters in frame A can be wrote as (·)𝐴 and the transformation from
frame B to frame A can be denoted as (·)𝐴𝐵 . The state of the platform 𝑋 can be defined as:

𝑋 = [𝑅⊤, 𝑝⊤, 𝑣⊤, 𝑏⊤]
⊤

(2)

where 𝑣 ∈ R3 denotes the speed, 𝑏 = [𝑏𝑎, 𝑏𝜔] denotes the IMU bias, 𝑏𝑎 ∈ R3 is the acceleration
bias, and 𝑏𝜔 ∈ R3 is the gyroscope bias.

3.2. System Structure

This paper proposed a framework that fuses the LiDAR odometry, the IMU preintegration, and
the global localization to estimate the six degrees-of-freedom(DOF) pose. The architecture of
the proposed framework is shown in Figure.1, and it mainly consists of four modules: Scan
Matching, IMU preintegration, Global Matching, and Sub-map Optimization. We marked them
blue in the figure.
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Figure 1: The system pipeline

The Scan Matching module provides the LiDAR odometry by matching the current LiDAR
scan to the sub-map. In our system, we follow the feature-based scan matching method proposed



in [6] for computational efficiency. Using every LiDAR frame for optimization is computationally
intractable. Instead, we consider the keyframes and use a simple but widely used approach
for keyframe selection, which registers a LiDAR frame as a keyframe when its pose exceeds a
user-defined threshold compared with the previous keyframe. The data of the 𝑛th keyframe
from LiDAR can be written as F𝑛, and the related state is defined as 𝑋𝑛. The IMU preintegration
module is built by following Christian Forster’s work proposed in [13], and it mainly provides
the IMU preintegration factor for sub-map optimization and provides the initial guess for
Scan Matching at each computation cycle. The Global Matching module provides the global
localization factor for the sub-map optimization. The Global Matching module is built by
following the NDT (Normal-Distributions Transform) method proposed in [19] by Magnusson,
and it can conduct an unbiased estimation of the pose through matching online LiDAR scans
against the prior map built in advance. The sub-map contains the feature points of a fixed
number of resenting LiDAR keyframes. The optimization of the sub-map can directly affect the
accuracy of Lidar Odometry. So we fuse the LiDAR odometry factor, IMU preintegration factor,
and Global Matching Factor for optimization through a factor graph. The optimization result
will update the IMU bias and the LiDAR odometry.

4. LiDAR odometry

We follow the scan matching method proposed in [6]. It utilizes the feature points rather than
ICP to achieve scan matching. Therefore it greatly improves the real-time performance. In
addition, we follow the scan to the sub-map matching frame proposed in [8], it can make the
most of sub-keyframe constraints to improve the precision.

When the LiDAR frame F𝑛 is received, we first calculate the roughness value of each point
by comparing it to the consecutive neighbor points in the same scan. Then the edge and planar
features will be extracted according to the roughness value. The points with large values are
classified as the edge features and denoted as 𝐹 𝑒

𝑛 and the points with small roughness are
classified as the planar feature and denoted as 𝐹 𝑝

𝑛 . The features of the LiDAR frame F𝑛 are
in frame L. Then the extracted features {𝐹 𝑒

𝑛, 𝐹
𝑝
𝑛} are matched to the features from sub-map

as 𝑀𝑛−1 =
{︀
𝑀 𝑒
𝑛−1,𝑀

𝑝
𝑛−1

}︀
. 𝑀𝑛−1 gathers the features of the previous keyframes, and the

features are transformed to W by LiDAR pose:

𝑀 𝑒
𝑛−1 = �̄�

𝑒
𝑛−1 ∪ �̄�

𝑒
𝑛−2 ∪ ... ∪ �̄�

𝑒
𝑛−𝑁𝑘−1

𝑀𝑝
𝑛−1 = �̄�

𝑝
𝑛−1 ∪ �̄�

𝑝
𝑛−2 ∪ ... ∪ �̄�

𝑝
𝑛−𝑁𝑘−1

(3)

where �̄�
𝑒
𝑛 and �̄�

𝑝
𝑛 are the transformed edge and planar features in W. The distance of features

between the current scan and sub-map are
{︁
𝑑𝑒(𝑇𝑛𝑝

𝑒
𝑛,𝑖), 𝑑𝑝(𝑇𝑛𝑝

𝑝
𝑛,𝑗)

}︁
, 𝑝𝑒𝑛,𝑖 ∈ 𝐹 𝑒

𝑛, 𝑝
𝑝
𝑛,𝑗 ∈ 𝐹 𝑝

𝑛 ,

𝑇�̃� is the transformation of keyframe F𝑛 to be estimated, and the detail definition of distance
can be seen in [6]. As the result, the optimization problem can be written as:

𝑇
𝑊𝐿
𝑛 = argmin

𝑇𝑛

⎧⎪⎨⎪⎩
∑︁

𝑝𝑒𝑛,𝑖∈𝐹 𝑒
𝑛

𝑑𝑒(𝑇𝑛𝑝
𝑒
𝑛,𝑖) +

∑︁
𝑝𝑝𝑛,𝑗∈𝐹

𝑝
𝑛

𝑑𝑝(𝑇𝑛𝑝
𝑝
𝑛,𝑗)

⎫⎪⎬⎪⎭ (4)



The initial guess of 𝑇�̃� can be obtain from the IMU preintegration in Section 5. Through man-
ifold optimization[20] and GaussNewton method, we can solve it to obtain the transformation

𝑇
𝑊𝐿
𝑛 . Given the extrinsic parameters between L and B as 𝑇𝐵𝐿, then we can calculate the pose

of platform 𝑇 and the relative transformation Δ𝑇𝑛−1,𝑛 between the F𝑛−1 and F𝑛 through the
equation:

𝑇𝑛 = 𝑇
𝑊𝐿
𝑛 (𝑇𝐵𝐿)⊤

Δ𝑇𝑛−1,𝑛 = (𝑇𝑛−1)
⊤𝑇𝑛

(5)

The Δ𝑇𝑛−1,𝑛 can be seen as the measurement from LiDAR, assumed that it’s noise is 𝛿𝜉, it
can be written as:

Δ𝑇𝑛−1,𝑛 = Δ𝑇𝑛−1,𝑛𝑒𝑥𝑝(𝛿𝜉
∧
𝑛−1,𝑛) (6)

The residual errors of scan matching can be defined as:

𝑟𝐿𝑖𝐷𝐴𝑅 = [𝛿𝜉𝑛−1,𝑛] = 𝑙𝑜𝑔((Δ𝑇𝑛−1,𝑛)
⊤Δ𝑇𝑛−1,𝑛)

∨
(7)

5. IMU preintegration

To avoid repeatedly integrating caused by the changes in initial conditions when the lidar
odometry pose has been optimized, we adopt preintegration of the inertial measurements
introduced by [13] in our implementation.

Firstly, taking the accelerator bias 𝑏𝑎, gyroscope bias 𝑏𝜔 and the additive noise into consider,
the IMU measurements formula can be written as follow:

𝑎�̂� = 𝑅𝑡
⊤(𝑎𝑡 − 𝑔) + 𝑏𝑎𝑡 + 𝑛𝑎𝑡

𝜔�̂� = 𝜔𝑡 + 𝑏𝜔𝑡 + 𝑛𝜔𝑡 .
(8)

Where 𝑡 deonte one sampling time. Where the 𝑔 denotes the gravity vector in W. The 𝑛𝑎𝑡 and
𝑛𝜔𝑡 denotes the additive noise in acceleration and gyroscope measurements, them can be seen
as the Gaussian white noise as 𝑛𝑎𝑡 ∼ 𝑁(0, 𝜎2

𝑎), 𝑛
𝜔
𝑡 ∼ 𝑁(0, 𝜎2

𝜔). Combining the integration of
the IMU measurements with the motion formula of platform, and we discretize and iterate it for
intervals between sampling times 𝑖 and 𝑗, we have:

𝑅𝑗 = 𝑅𝑖

𝑗−1∏︁
𝑘=𝑖

𝑒𝑥𝑝((�̂�𝑘 − 𝑏𝜔𝑘 − 𝑛𝜔𝑘 )
∧Δ𝑡)

𝑣𝑗 = 𝑣𝑖 + 𝑔Δ𝑡𝑖𝑗 +

𝑗−1∑︁
𝑘=𝑖

𝑅𝑘(�̂�𝑘 − 𝑏𝑎𝑘 − 𝑛𝑎𝑘)Δ𝑡

𝑝𝑗 = 𝑝𝑖 +

𝑗−1∑︁
𝑘=𝑖

[︂
𝑣𝑘Δ𝑡+

1

2
𝑔Δ𝑡2 +

1

2
𝑅𝑘(�̂�𝑘 − 𝑏𝑎𝑘 − 𝑛𝑎𝑘)Δ𝑡2

]︂
.

(9)



Where the Δ𝑡 is the interval between two consecutive IMU measurements. We can defined
the preintegrated items as:

Δ𝑅𝑖𝑗
.
=𝑅⊤

𝑖 𝑅𝑗

Δ𝑣𝑖𝑗
.
=𝑅⊤

𝑖 (𝑣𝑗 − 𝑣𝑖 − 𝑔Δ𝑡𝑖𝑗)

Δ𝑝𝑖𝑗
.
=𝑅⊤

𝑖 (𝑝𝑗 − 𝑝𝑖 − 𝑣𝑖 △ 𝑡𝑖𝑗 −
1

2
𝑔Δ𝑡2𝑖𝑗)

(10)

Assuming that the bias remains constant between sampling times 𝑖 and 𝑗, the preintegrated
measurements Δ�̂�𝑖𝑗 , Δ𝑣𝑖𝑗 , Δ�̂�𝑖𝑗 can be obtained as:

Δ�̂�𝑖𝑗
.
=

𝑗−1∏︁
𝑘=𝑖

𝑒𝑥𝑝((�̂�𝑘 − 𝑏𝜔𝑖 )
∧Δ𝑡) = Δ𝑅𝑖𝑗𝑒𝑥𝑝((𝛿𝜑𝑖𝑗)

∧)

Δ𝑣𝑖𝑗
.
=

𝑗−1∑︁
𝑘=𝑖

Δ�̂�𝑖𝑘(�̂�𝑘 − 𝑏𝑎𝑖 )Δ𝑡 = Δ𝑣𝑖𝑗 + 𝛿𝑣𝑖𝑗

Δ�̂�𝑖𝑗
.
=

𝑗−1∑︁
𝑘=𝑖

[︂
Δ𝑣𝑖𝑘Δ𝑡+

1

2
Δ�̂�𝑖𝑘 · (�̂�𝑘 − 𝑏𝑎𝑖 )Δ𝑡2

]︂
= Δ𝑝𝑖𝑗 + 𝛿𝑝𝑖𝑗 .

(11)

where the 𝛿𝜑𝑖𝑗 , 𝛿𝑣𝑖𝑗 , 𝛿𝑝𝑖𝑗 denote the noise of Δ�̂�𝑖𝑗 , Δ𝑣𝑖𝑗 , Δ�̂�𝑖𝑗 respectively and the detail
definition can be seen in [13]. Considering the update of IMU bias, we can obtain the residual
errors between two LiDAR scan (𝑋𝑛−1, 𝑋𝑛) as:

𝑟𝑖𝑚𝑢 =

⎡⎢⎢⎢⎢⎢⎣
𝛿𝜑𝑛−1,𝑛

𝛿𝑣𝑛−1,𝑛

𝛿𝑝𝑛−1,𝑛

𝛿𝑏𝑎𝑛−1,𝑛

𝛿𝑏𝜔𝑛−1,𝑛

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝑙𝑜𝑔(Δ(𝑅𝑛−1,𝑛)

⊤Δ�̂�𝑛−1,𝑛)
∨

Δ𝑣𝑛−1,𝑛 −Δ𝑣𝑛−1,𝑛

Δ�̂�𝑛−1,𝑛 −Δ𝑝𝑛−1,𝑛

𝑏𝑎𝑛 − 𝑏𝑎𝑛−1

𝑏𝜔𝑛 − 𝑏𝜔𝑛−1

⎤⎥⎥⎥⎥⎦ . (12)

6. Global Matching

The global matching procedure mainly provides the no drift pose estimation for sup-map
modules through matching online lidar scan against the prior map, which is built offline.

Offline mapping plays an essential role in our system because it provides the absolute correc-
tion data to eliminate the drift. As a result, the quality of the prior map will directly influence
the precision of the localization in online procedures. The offline mapping procedure follows
the SLAM method proposed in [8] which fuses the LiDAR, IMU, and GPS for establishing the
point cloud map. Thanks to the globally consistent optimization, we can get a high precision
map with limited GPS and loop closure.

We utilize the NDT (Normal-Distributions Transform) method proposed by Martin
Magnusson[18] for global matching, which has more real-time performance than the iterative
closest point (ICP) method.



Firstly, we grid the prior map into a mass of 3x3 small cells. For each cell, it is assumed
that there are 𝑗 points 𝑝𝑘=1,···,𝑗 ∈ R3 in it and the points conform to the normal distribution
relationship. Therefore, the normal distribution parameter can be calculated based on the points
in the cell, and we can easily get the probability density function (PDF) of it:

𝜇 =
1

𝑗

𝑗∑︁
𝑘=1

𝑝𝑘

∑︁
=

1

𝑗

𝑗∑︁
𝑘=1

(𝑝𝑘 − 𝜇)(𝑝𝑘 − 𝜇)𝑇

(13)

Where the 𝜇 and
∑︀

denote the mean and the covariance of the normal distribution, respec-
tively. The probability density function of the cell can be written as:

𝑓𝑛𝑑𝑡(𝑥) =
1

(2𝜋)
3
2
√︀
|
∑︀

|
𝑒−

(𝑥−𝜇)𝑇
∑︀−1(𝑥−𝜇)
2 (14)

When a lidar scan F𝑛 = {𝑃𝐿
𝑘=1,···,𝑖} is about to match against the prior map, the goal is to

find out its translation of lidar 𝑇𝑊𝐿
𝑛 to maximize the likelihood that all of the lidar scan points

will be on the cell of reference points cloud map. Therefore, combining the probability density
function of the cell in (14), the likelihood function can be easily written as:

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 : 𝜃 =
𝑖∏︁

𝑘=1

𝑓𝑘𝑛𝑑𝑡(𝑇
𝑊𝐿
𝑛 𝑃𝐿

𝑘 ) (15)

It’s worth noting that the 𝑓𝑘𝑛𝑑𝑡 is the probability density function of the cell which the 𝑘th
point 𝑇𝑊𝐿

𝑛 𝑃𝐿
𝑘 located. This’s a nonlinear optimization problem, and we can use the Newton

optimization to solve it and obtain the optimized translation of LiDAR. The initial guess can be
obtained from the LiDAR odometry in Section 4. Through the transformation of the coordinate
system 𝑇𝑛 = 𝑇𝑊𝐿

𝑛 (𝑇𝐵𝐿)⊤, we can obtain the pose estimation of platform as 𝑇𝑛. Assumed that
the noise of 𝑇𝑛 is 𝛿𝜉𝑛𝑑𝑡, we have:

𝑇𝑛 = 𝑇𝑛𝑒𝑥𝑝((𝛿𝜉
𝑛𝑑𝑡
𝑛 )

∧
) (16)

The residual errors of scan matching can be defined as:

𝑟𝑛𝑑𝑡 = [𝛿𝜉𝑛𝑑𝑡𝑛 ] = 𝑙𝑜𝑔((𝑇𝑛)
⊤𝑇𝑛)

∨
(17)

In practical application, the NDT method is already integrated into the PCL library[21] and
can be used conveniently.

7. Sub-map Optimization

According to the Section 4, the sub-map 𝑀𝑛 can be defined as the collection of the features of
previous keyframes, and the features are transformed to W by LiDAR pose. Therefore, we only
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Figure 2: The illustration of system optimization procedure

need to optimize the states of all the keyframes in the sub-map. The state need to be optimized
can be defined as:

𝜒 = {𝑋𝑚, 𝑋𝑚+1, · · ·, 𝑋𝑛} (18)

we utilize the factor graph to model this problem. Fig. 2 provides a brief illustration of
optimization procedure. The keyframe state can be seen as the node, and we fusing the LiDAR
odometry factor, IMU preintegration factor and the global matching factor for optimizing. The
residual error function can be writeen as:

min
𝜒

{
∑︁
𝑘∈𝜓

⃦⃦
𝑟𝑖𝑚𝑢(𝑧

𝐼
𝑘, 𝜒)

⃦⃦2
+
∑︁
𝑘∈𝜏

⃦⃦
𝑟𝐿𝑖𝐷𝐴𝑅(𝑧

𝐿
𝑘 , 𝜒)

⃦⃦2
+
∑︁
𝑘∈𝜗

‖𝑟𝑛𝑑𝑡(𝜒)‖2}.
(19)

The 𝑟𝐿𝑖𝐷𝐴𝑅, 𝑟𝑖𝑚𝑢 and 𝑟𝑛𝑑𝑡 are residuals for LiDAR odometry, IMU preintegration and global
matching, which are defined in Section 4, Section 5 and Section 6 respectively.

In addition, to decrease the calculation, we utilize an unfixed sliding window to register the
keyframes for the sub-map, and we also use a simple but efficient way for marginalization.
We register the keyframe into the window when it is received. If the covariance of the latest
keyframe is larger than a set threshold, we perform a global match on it. Then, the keyframes
before the second oldest NDT factor will be marginalized out of the window. Because the NDT
has already provided the prior value, we don’t need to convert measurements corresponding to
marginalized states into a prior. When the global matching of the latest keyframe is done, the
optimization process is performed. After that, the LiDAR odometry and the IMU bias will be
updated according to the optimization results.

Due to the long time consuming of global matching and optimization, the optimization
process will lag. However, the global matching, the optimization process, and the LiDAR
odometry belong to different threads, so the optimization lag does not affect the operation of
LiDAR odometry. Since LiDAR Odometry is processed by matching the scan to the sub-map, the
accuracy of Lidar Odometry can be improved by optimizing the sub-map. Meanwhile, thanks to
the existence of a global matching factor in sub-map optimization, LiDAR odometry can achieve
unbiased estimation.

The sub-map optimization can be represented in pseudocode as Algorithm. 1.



Algorithm 1 Sub-map optimization procedure
1: while 1 do
2: if A now LiDAR keyframe received then
3: Register LiDAR keyframe into sliding window.
4: if Covariance larger than setting threshold? then
5: NDT based Global matching (See Sec.6).
6: Marginalization.
7: Add NDT factor.
8: Sub-map optimization (See Sec.7).
9: Update the LiDAR odometry and the IMU bias.

10: end if
11: end if
12: end while

8. Experiments

8.1. Platforms and Datasets

We collected several data sets on the WHUT campus to analyze the proposed framework
qualitatively and quantitatively. The sensor suite used in our work includes an ouster OS1-32 and
an RTK GPS module, the OS1-32 has a built-in IMU, and the internal parameters are calibrated by
the method proposed in [22], the RTK GPS provides the ground-truth for quantitative analysis.
For validation, we collected six different datasets across two platforms: A-M, A-T-1, A-T-2, B-M,
B-T-1, and B-T-2. The A and B mean the data sequences A and B, respectively, the M means the
mapping datasets, and the T means the test datasets. The platform of A data sequence is the
low-speed Logistics vehicle, the lidar is installed atop it, and the RTK GPS is installed at the
same horizontal position. The platform of the B data sequence is the high-speed electric vehicle,
and the lidar is installed ahead of it, so we only get half of the points and meet the extreme
condition. The platforms are illustrated in Fig.3.

Our method and comparisons are implemented in C++ and executed on a JETSON TX2 with
the framework of Robot Operating System (ROS)[23] in Ubuntu Linux.

8.2. Offline Mapping

Firstly, we utilized the A-M and B-M for mapping, the result is shown in table.2, and the
trajectory with mapping error is shown in Fig.4.

As shown in Fig.4(a), GPS data is missing on some roads in data sequence A, and those were
taken out of the analysis. The average speed within a data sequence is the same. The data
sequence B only has half the point cloud, and the moving speed is faster. As a result, its accuracy
is relatively low. It can be seen that the accuracy of the mapping is approximately in centimeters
and meet the requirements.
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Figure 3: The experimental platforms illustration: (a) platform A; (b) platform B;

Table 2
Mapping details

Dataset
Speed
(Km/h)

Trajectory
length (m)

RMSE
(m)

Max Error
(m)

Size
(MB)

A-M 3.8 342 0.0566 0.1601 197.0
B-M 32.73 1075.6 0.1293 0.3582 233.9
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Figure 4: The trajectory with mapping error: (a) A-M; (b) B-M;

8.3. Localization

Then, we used the datasets A-T-1, A-T-2, B-T-1, and B-T-2 to analyze the online location module
on the prior map they built, respectively. Our method is comparable to the LIO method from
[8] and the NDT method from [19] under the main metrics of a translation error. The results



are shown in Table.3, the unit for the values is (m). It is worth noting that the translation error
only considers the x, y axis.

Table 3
Experimental results

Data sequences DataSets Metrics LIO NDT Our

A
A-T-1

RMSE 1.4271 0.082 0.0749
MAX 2.9252 0.1871 0.1605

A-T-2
RMSE 2.1336 0.0947 0.1046
MAX 3.3551 0.2339 0.2137

B
B-T-1

RMSE 2.0689 Fail 0.2090
MAX 3.8010 Fail 0.4658

B-T-2
RMSE 5.5463 0.3109 0.2059
MAX 9.5560 0.9306 0.4495

It can be seen that the LIO method has the most significant error cause it suffers from drift.
The NDT method used the linear model to estimate the initial guess based on the assumption
of the short-term velocity invariance. The imprecise initial guess results in a bigger error,
especially in cases like a sharp turning point and Speed-up Speed-down, which will cause the
failure like the dataset B-T-1. In contrast, our method achieves better precision in most datasets
due to the fusion of LIO and NDT methods. However, our approach also relies on NDT to
eliminate accumulated errors, so it has no significant improvement in accuracy than the NDT
method but significantly improves robustness, especially in extreme cases.

9. Conclusions And Discussion

In this paper, we propose a precision and robust LiDAR localization framework that combines
LiDAR odometry with NDT-based global matching. We link them through a sub-map opti-
mization built atop the factor graph. Through the experimental analysis, it has been shown
that our method can perform well. It’s worth noting that the problem discussed in this paper
does not involve estimating the initial position on the map, which is usually given by GPS
or related algorithms in engineering. Since GPS is not needed for the proposed localization
system, so the system is also suitable for indoor environments. However, due to the limitation
of experimental conditions, the experiments in this paper are carried out outdoors. Follow-up
indoor experiments are required. Although we have achieved some phased results, there is still
a lot of work to do, such as the influence of environmental changes on localization and the
dynamic update of the map. We will handle those problems in future work.

References

[1] H. Qi, J. Moore, Direct kalman filtering approach for gps/ins integration, IEEE Transactions
on Aerospace and Electronic Systems 38 (2002) 687–693.



[2] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, J. J. Leonard,
Past, present, and future of simultaneous localization and mapping: Toward the robust-
perception age, IEEE Transactions on robotics 32 (2016) 1309–1332.

[3] W. Ding, S. Hou, H. Gao, G. Wan, S. Song, Lidar inertial odometry aided robust lidar
localization system in changing city scenes, in: 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020, pp. 4322–4328.

[4] P. Besl, H. McKay, A method for registration of 3-d shapes, IEEE Transactions on Pattern
Analysis and Machine Intelligence 14 (1992) 239–256.

[5] A. Segal, D. Haehnel, S. Thrun, Generalized-icp., in: Robotics: science and systems,
volume 2, Seattle, WA, 2009, p. 435.

[6] J. Zhang, S. Singh, Low-drift and real-time lidar odometry and mapping, Autonomous
Robots 41 (2017) 401–416.

[7] T. Shan, B. Englot, Lego-loam: Lightweight and ground-optimized lidar odometry and
mapping on variable terrain, in: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2018, pp. 4758–4765.

[8] T. Shan, B. Englot, D. Meyers, W. Wang, C. Ratti, R. Daniela, Lio-sam: Tightly-coupled
lidar inertial odometry via smoothing and mapping, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2020, pp. 5135–5142.

[9] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, R. Siegwart, A robust and modular multi-sensor
fusion approach applied to mav navigation, in: 2013 IEEE/RSJ international conference on
intelligent robots and systems, IEEE, 2013, pp. 3923–3929.

[10] S. Yang, X. Zhu, X. Nian, L. Feng, X. Qu, T. Ma, A robust pose graph approach for city
scale lidar mapping, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2018, pp. 1175–1182.

[11] M. Demir, K. Fujimura, Robust localization with low-mounted multiple lidars in urban
environments, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE,
2019, pp. 3288–3293.

[12] Y. Gao, S. Liu, M. M. Atia, A. Noureldin, Ins/gps/lidar integrated navigation system for
urban and indoor environments using hybrid scan matching algorithm, Sensors 15 (2015)
23286–23302.

[13] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, On-manifold preintegration for real-time
visual–inertial odometry, IEEE Transactions on Robotics 33 (2016) 1–21.

[14] C. Chen, H. Zhu, M. Li, S. You, A review of visual-inertial simultaneous localization and
mapping from filtering-based and optimization-based perspectives, Robotics 7 (2018) 45.

[15] H. Ye, Y. Chen, M. Liu, Tightly coupled 3d lidar inertial odometry and mapping, in: 2019
International Conference on Robotics and Automation (ICRA), 2019, pp. 3144–3150.

[16] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, S. Song, Robust and precise vehicle
localization based on multi-sensor fusion in diverse city scenes, in: 2018 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 4670–4677.

[17] K. Yoneda, H. Tehrani, T. Ogawa, N. Hukuyama, S. Mita, Lidar scan feature for localization
with highly precise 3-d map, in: 2014 IEEE Intelligent Vehicles Symposium Proceedings,
IEEE, 2014, pp. 1345–1350.

[18] M. Magnusson, The three-dimensional normal-distributions transform: an efficient rep-
resentation for registration, surface analysis, and loop detection, Ph.D. thesis, Örebro



universitet, 2009.
[19] The three-dimensional normal-distributions transform : an efficient representation for

registration, surface analysis, and loop detection, renewable energy (2009).
[20] F. Dellaert, M. Kaess, et al., Factor graphs for robot perception, Foundations and Trends®

in Robotics 6 (2017) 1–139.
[21] R. B. Rusu, S. Cousins, 3d is here: Point cloud library (pcl), in: 2011 IEEE international

conference on robotics and automation, IEEE, 2011, pp. 1–4.
[22] W. Gao, imu_utils, https://github.com/gaowenliang/imu_utils, 2018.
[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, Ros:

an open-source robot operating system, in: ICRA workshop on open source software,
volume 3, Kobe, Japan, 2009, p. 5.

https://github.com/gaowenliang/imu_utils

	1 Introduction
	2 Related Work
	3 System Overview
	3.1 Definition and Notation
	3.2 System Structure

	4 LiDAR odometry
	5 IMU preintegration
	6 Global Matching
	7 Sub-map Optimization
	8 Experiments
	8.1 Platforms and Datasets
	8.2 Offline Mapping
	8.3 Localization

	9 Conclusions And Discussion

