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Abstract  
As an active sensor, light detection and ranging (LiDAR) has an important position in 

Simultaneous Localization and Mapping (SLAM). In particular, it is not affected by lighting 

conditions, so that it can work well at night. Infrared image is also less affected by illumination, 

so it can be well fused with LiDAR. Generally, the LiDAR SLAM system consists of a front-

end odometer and a back-end optimization module. The back-end with loop closure detection 

plays an important role in systematically improving the positioning and mapping accuracy of 

LiDAR SLAM. However, LiDAR works at a single wavelength (such as 905nm), and few 

features are extracted, which limits the performance of loop closure detection and graphics 

optimization based on point cloud matching. In order to improve the performance of LiDAR 

SLAM, a SLAM back-end which is not affected by illumination conditions is proposed in this 

paper. This method combines infrared image and the geometric features of LiDAR as loop 

detection. Firstly, the bag of word (BOW) model, describing the visual similarities, was 

constructed to assist in the loop closure detection. Then, through the time interval of infrared 

image and the spatial distance of point cloud, the loop closure detection is verified, and 

accomplish graph optimization. We conducted experiments in different scenes at night to 

evaluate our method. The results show that the addition of infrared images effectively helps 

the loop closure detection and improves the performance of LiDAR SLAM.  
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1. Introduction 

With the coming of the "New Technology Revolution", human beings have higher and higher 

requirements for automation, intelligence and even intelligence, and the demand for positioning 

services is also increasing day by day. In outdoor environments, the global navigation satellite system 

(GNSS) is a very mature localization technology that can provide accurate outdoor localization services 

[1]. However, it is greatly affected by satellite signals and is not suitable for working in weak signal 

areas, especially in indoor scenes with satellite e signal occlusion [2]. For indoor environment, SLAM 

has the characteristics of high positioning accuracy and no need to lay infrastructure in advance. With 

these characteristics, SLAM technology is widely used in the field of positioning. Traditionally, SLAM 

technology is generally divided into visual SLAM and LiDAR SLAM according to different sensors 

[3][4][5][6]. With the continuous research on SLAM technology by scholars, there are more and more 

SLAM schemes for the fusion of the two sensors.  

Graeter proposed the LiDAR-monocular visual odometry [7], The depth information extracted from 

LiDAR point cloud is used for camera feature point tracking, which makes up for the defect of 

monocular vision scale. However, the core framework of this method is still based on visual SLAM, 
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and the role of LiDAR is only a supplement, which does not give full play to the advantages of LiDAR. 

Similar schemes include binocular vision inertial navigation LiDAR SLAM proposed by Shao and 

Shin's direct vision slam using sparse depth [8][9]. Zhang proposed the slam method of visual LiDAR 

fusion [10]. The visual odometer provides the initial value for laser point cloud matching, its accuracy 

and robustness are further improved than LOAM [11]. But this method lacks back-end loop detection 

and global graph optimization. In order to solve this problem, Chen proposed a scheme to provide loop 

detection with LiDAR odometer as the front-end and image as the back-end, and achieved good results 

[12]. 

Most of the visual information used in the above scheme is RGB image. In the case of poor lighting 

conditions such as at night, these schemes often have poor effects or even useless. Infrared image is 

less affected by light and can be used normally at night. It can be well fused with LiDAR. At present, 

scholars have few SLAM schemes for the fusion of infrared image and LiDAR. Pierre proposed a 

SLAM method, which is able to solve various difficulties (lack of GPS signal, lighting conditions, 

smoke) [13]. In this method, the infrared camera and LiDAR sensor are fused when the illumination is 

insufficient. However, infrared images are different from RGB images. Directly using BOW to perform 

loop detection will lead to inaccurate loop candidates [14]. Shin propose a thermal-infrared SLAM 

system enhanced by sparse depth measurements from LiDAR [14]. Compared with the SLAM method 

of monocular camera and LiDAR fusion, this method has good robustness in day and night. But the 

core framework of this method is still based on visual SLAM, which does not give full play to the 

advantages of LiDAR. Kataoka proposed a SLAM method combining LiDAR intensity and near-

infrared according to the near-infrared information of common puddles in the damaged nuclear power 

plant and the characteristics of LiDAR reflection intensity [15]. This method may be limited in other 

scenarios. 

This paper constructs a LiDAR / infrared SLAM based on loop closure detection and global graph 

optimization to improve the accuracy of localization trajectories and the consistency of point cloud 

images in the night environment. In LiDAR / infrared SLAM system, a loop closure detection method 

based on infrared image information and point cloud re-matching is realized. We conducted 

experiments in different scenes at night to evaluate our method. The results show that the addition of 

infrared image effectively helps the loop closure detection and improves the SLAM performance of 

LiDAR in night environment. 

  

2. MODEL FOR LOCALISATION IN NIGHT 
2.1. System Overview 
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Figure 1: The whole system structure 

 



In this section, we will introduce the system and structure of our method in detail. As shown in 

Figure 1, our method consists of sensor data, algorithm front-end and algorithm back-end. 

The sensor data of our algorithm includes LiDAR point cloud data and infrared image data. LiDAR 

point cloud data is collected by 16-line LiDAR, and infrared image data is collected by Azure Kinect 

DK camera. 

The front-end input of our algorithm is LiDAR sensor data. Through NDT-LOAM algorithm [16] 

to process LiDAR data, we finally get the front-end odometer. The back-end input of our algorithm is 

infrared image data and odometer data obtained from the front-end. Firstly, Bow is used to evaluate the 

similarity of infrared images. Then judge the similarity results from the time interval of the infrared 

image, and then judge the spatial distance from the data obtained from the front end of the algorithm to 

realize loop detection. Then, the edge constraints between key frames are calculated, and the attitude 

graph of global key frames is constructed. Finally, the graph optimization theory is used to reduce the 

global cumulative error, improve the global Trajectory Accuracy and map consistency, and obtain the 

final global motion trajectory and point cloud map. 

 

2.2. Infrared Loop Closure Detection 

The technical route of loop closure detection is mainly based on geometry and appearance. The loop 

closure detection method based on geometry refers to verifying whether there is a loop closure when 

the platform returns to a previous position according to the front-end odometer or other known 

information [17]. The loop closure detection method based on appearance is independent of the state 

estimation of the front-end and back-end. It uses the similarity detection of two images or point clouds 

to get rid of the influence of cumulative error [18][19][20].    

Infrared image and RGB image have certain similarity, they can reflect the structural information of 

the scene, so the principle of loop closure detection using the two devices is the same. However, 

compared with RGB images, infrared images have less information and poor quality. The accuracy and 

recall of loop matching of infrared image are worse than that of RGB image. Therefore, improving the 

accuracy and recall of infrared loop matching is an important problem that need to be solved urgently 

before we optimize the back-end. In order to improve the accuracy and recall of infrared loop matching, 

the loop closure detection method adopted in this paper combines geometric detection method and 

appearance detection method. The algorithm flow chart is shown in Figure 2. 

 
Figure 2: Flow chart of the loop closure detection method 

 



Firstly, we use Bow model to test the similarity of infrared images and get the similarity score results 

of each image. The program we use here is the open source library DBOW3 

(https://github.com/rmsalinas/DBow3, accessed on 7 June 2021) to assist the implementation. However, 

the characteristics of infrared image and RGB image are different. Direct loop closure detection will 

lead to inaccurate loop closure candidates[14]. In order to improve the computational efficiency and 

loopback accuracy of the algorithm, we eliminate the results of infrared image similarity less than 0.05. 

Then the results are verified in temporal distance and spatial distance. The first is to screen the loop 

closure results from the temporal distance. Details are shown in points 1 to 3. The spatial filtering is 

based on the odometer and LIDAR point cloud output from the front-end of the algorithm. Details are 

shown in points 4 to 7. 

1) Because there is usually a standing time at the beginning and end of data acquisition, we 

eliminate the start and end 𝑇1 second data; 

2) The time length threshold 𝑇2 of the loop, and the elapsed time of the loop is greater than this 

threshold; 

3) The interval of each loop is 𝑇3. In each time interval 𝑇3, select the point with the highest 

similarity as the suspected loop closure frames. 

4) The threshold L1 of the search area, and only the loop closure frames less than the threshold 

can be the potential loop closure frames; 

5) The space interval threshold L2 of the loop, and the interval between two loops should be 

greater than this threshold; 

6) The loop length threshold is L3, and the loop distance should be greater than this threshold; 

7) After the above 6 conditions are met, the point cloud re-matching verification is carried out. 

Match the current frame with the suspected loop closure frame one by one in order. If the 

mean square of the distance from the source point cloud to the target point cloud is lower 

than the threshold L4, the frame is the final loop closure frame of the current frame. 

 

When detecting the loop closure, there are usually four conditions: true positives (TPs), false 

positives (FPs), true negatives (TNs), and false negatives (FNs). An FP indicates that the truth is not a 

loop but the algorithm determines that it is a loop. A TN indicates that the truth and algorithm detection 

are not loop closures. An FN indicates that the truth is a loop, but the algorithm determines that it is not 

a loop. 

In our results, we want TP and TN to appear as much as possible, and FP and FN to appear as little 

as possible, or not at all. According to the frequency of the four possible results, we can calculate the 

accuracy rate and recall rate as two evaluation indexes: 

                               

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

2.3. Global Graph Optimization  

With the accumulation of time, the trajectory of the robot will be longer and longer, and the scale of 

the map will continue to grow. Since the scanning space of LiDAR is always limited, the scale of point 

cloud or road sign can not grow indefinitely with the map, and the constraint relationship between the 

current frame and earlier historical data may no longer exist. In addition, there are errors in direct 

matching and feature point optimization, the cumulative error obtained at the front end of the algorithm 

will be larger and larger, and the inconsistency of the global map will be more and more obvious. 

In order to improve the pose accuracy of odometer and ensure the quality of global point cloud map, 

we save the trajectory obtained from the front-end of the algorithm and construct a back-end global 

map optimization with only trajectory to reduce the cumulative error. The global pose map takes the 

pose of odometer as the node. The relative motion estimator between the two pose nodes obtained by 

https://github.com/rmsalinas/DBow3


point cloud matching is used as the constraint edge. Finally, the nonlinear least squares adjustment 

method is used to obtain the results with higher accuracy and stronger consistency. 
 

3. EXPERIMENTS AND RESULTS 

To evaluate our method and compare with other approaches, we designed a series of experiments to 

compare the performance of NDT-LOAM and LI-SLAM in positioning and mapping. 

3.1. Dataset Description 

We use mobile robots for data acquisition. The mobile machine is loaded with a variety of sensors, 

including Azure Kinect DK camera and RS-LiDAR-16, as shown in Figure 3. Through these sensors, 

we can obtain data such as LiDAR and infrared images.   

 
Figure 3: Mobile robot equipment 

In the experiments, we controlled the robot walking via a robot remote control handle. When the 

robot ran as planned, we recorded all sensor data using ROS commands.  We compare the location and 

mapping results obtained by our method (LI-SLAM) with those obtained by other methods. In order to 

make the experiment more universal in the night, we conducted experiments in the underground parking 

lot of the Zhi Teng Building at Shenzhen University, indoor and some outdoor scenes on the first floor 

of Zhi Teng building and the first floor of Zhi Yuan building of Shenzhen University. 

 
Figure 4: Experimental scene 1 

 



As shown in Figure 4. Experimental scene 1 was an underground parking lot of the Zhi Teng 

Building at Shenzhen University, covering a total distance of 203.245 m. The feature points of the scene 

are obvious, and there are no dramatic changes in the scene. Generally speaking, LiDAR has high 

accuracy in this scene. 

 
Figure 5: Experimental scene 2. For the convenience of display, here we put the real picture taken 
during the day. 

As shown in Figure 5. Experimental scene 2 was an indoor and some outdoor scenes on the first 

floor of Zhi Teng building, covering a total distance of 422.863 m. The red line indicates the 

approximate movement track of the robot, and the intersection of the red line is the starting point and 

end point of the robot movement. The upper left and right corners of the picture are the outdoor real 

map and indoor real map of the scene respectively. It can be seen that the indoor geometric 

characteristics are obvious and there are many characteristics. Outdoors, the scene is relatively single, 

there are few feature points, and the scene changes greatly when switching between indoor and outdoor. 

Therefore, generally speaking, the accuracy of LiDAR positioning and mapping is not particularly high 

in this scene. 

 
Figure 6: Experimental scene3. For the convenience of display, here we put the real picture taken 
during the day 

As shown in Figure 6. Experimental scene 3 was the first floor of Zhi Yuan building of Shenzhen 

University. We manipulated the robot to walk twice on the first floor of Zhi Yuan building, with a total 



distance of 323.552m. In Figure 6, the red arrow indicates the approximate walking route of the robot. 

In the process of walking, the scenes that the robot passes through include railing scene, hall scene and 

narrow corridor scene. Generally speaking, there are few geometric features in the corridor, and the 

location accuracy of the laser radar is very poor. 

We tested the data of these three experiments. Some important threshold parameters used in the 

experiment are set as follows: 

Parameter 𝑇1, 𝑇2, 𝑇3 are 10s, 25s and 3s; Parameters L1, L2, L3 and L4 are 5m, 7m, 20m and 0.2m. 

3.2. Results and Analysis 

At night, we conducted experiment 1, experiment 2 and experiment 3 in the above experimental 

scene 1, experimental scene 2 and experimental scene 3 respectively, and all experiments have loops. 

We compare the results with loops (LI-SLAM) and without loops (NDT-LOAM). The positioning 

accuracy results are shown in Table 1. 

Table 1 
Comparison of error results 

Group Distance(m) Amount of Detected Loop Closure Accuracy (%) NDT-LOAM LI-SLAM 

#01 203.245 8 100% 0.107 0.024 
#02 422.863 6 100% 1.735 0.245 
#03 323.552 10 100% 4.575 1.176 

  
Experiment 1 is an underground parking lot scene, including many columns, beams and other 

conventional buildings, with good environmental perception structure. It can be seen from Table I. and 

Figure 7 that in this experiment, the positioning accuracy of NDT-LOAM has been relatively high, and 

the positioning error is 0.1072m. In this experiment, LI-SLAM detects 8 loop closures, with an accuracy 

of 100% and a positioning error of 0.0244m. Since the positioning accuracy of NDT-LOAM is 

relatively high, point cloud comparison is not done here. The experiment shows that the positioning 

accuracy of LI-SLAM is much higher than that of NDT-LOAM in the environment with simple scene 

and good LiDAR positioning and mapping effect.   

 

 
Figure 7: Experimental scene1 trajectory comparison 

Experiment 2 includes indoor and outdoor scenes. The interior includes many columns, beams and 

other conventional buildings, with good environmental perception structure. However, the outdoor 



space is relatively wide, the feature points are relatively few, and there are several speed bumps. Figure 

8 shows the positioning trajectory obtained by NDT-LOAM and LI-SLAM, in which the red circle 

represents the starting point of the trajectory. In Table 1 and Figure 7, it can be seen that in this 

experiment the positioning error of NDT-LOAM is 1.735m. The LI-SLAM algorithm proposed by us 

has a positioning error of 0.245m. Compared with the algorithm without loop closure optimization, the 

positioning accuracy of LI-SLAM has been greatly improved. Figure 9 (a) and Figure 9 (b) are the point 

cloud images obtained by NDT-LOAM and LI-SLAM respectively. It can be clearly seen that the 

mapping accuracy of LI-SLAM is higher than that of NDT-LOAM. 

 

 
Figure 8: Experimental scene2 trajectory comparison 

  
(a) (b) 

Figure 9: Point cloud maps of experimental scene2 
 



 
Figure 10: Experimental scene3 trajectory comparison 

 

          
(a)                                                                            (b) 

Figure 11: Point cloud maps of experimental scene3. 
The scene of experiment 3 is complex. The scene includes narrow corridors, halls and railings. 

Especially in narrow corridors, the structure of environmental perception is poor. in Table 1 and Figure 

8, It can be seen that the positioning accuracy of LI-SLAM is significantly higher than that of NDT-

LOAM. The positioning accuracy of NDT-LOAM is relatively poor, and the positioning error is 4.575m.  

The LI-SLAM proposed in this paper detects 8 loop closures, with an accuracy of 100% and a 

positioning error of 1.1758m. The experiment shows that the positioning accuracy of LI-SLAM is much 

higher than that of NDT-LOAM in the environment of complex scene and poor effect of LiDAR 

positioning and mapping.  

Figure 11 is the point cloud diagram of experiment 3, in which figure 11 (a) is the point cloud 

diagram obtained by NDT-LOAM and Figure 11 (b) is the point cloud diagram obtained by LI-SLAM. 

From the point cloud map, it can be clearly seen that the point cloud map obtained by NDT-LOAM has 

wall ghosting and bending, which does not appear in LI-SLAM. This shows that, the mapping accuracy 

of LI-SLAM is significantly higher than that of NDT-LOAM in this environment. 

4. DISCUSSION 

In this paper, we propose a LiDAR SLAM back-end used at night. This method combines LiDAR 

and infrared image. First, we use NDT-LOAM as the front-end to get the front-end odometer data. Then 

we use BOW to score the similarity of infrared images. Then we combine the infrared image, front-end 

odometer and LIDAR point cloud data to determine the loop closure. Finally, we optimize the front-

end results and build the global map.   



The main innovation of this paper is a new method of loop closure detection based on infrared image 

and LiDAR. This method is a good fusion of image and LiDAR information, and it can work normally 

in dark conditions. It judges the loop closure points in time and space and identifies the final loop 

closure. We selected several different scenes at night to verify our method. The results show that 

compared with the SLAM Based on LiDAR, our LiDAR/Infrared image SLAM with loop closure 

detection and global graphics optimization has achieved better performance, including better mapping 

and point location results. However, in some cases, the information extracted from infrared images is 

too little. Therefore, there is still room for improvement in the enhancement of infrared image 

information. In the future, we plan to use deep learning and other methods to enhance the infrared image 

information. 
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