
Business Rule Based Configuration Management and
Software System Implementation Using Decision Tables

Olegas Vasilecas, Aidas Smaizys

Vilnius Gediminas Technical University,
Sauletekio av. 11, LT-10223 Vilnius, Lithuania
olegas.vasilecas@fm.vgtu.lt, aidas@isl.vgtu.lt

Abstract. Deployment and customization of the software in different
information systems of separate organizations challenge large requirement
conformity, project and specification management, design and architecture
complexity, code integration, compatibility and interoperability issues,
frequently causing the need of reengineering through the entire all the system
development lifecycle. The paper proposes new business rule based method of
information system configuration management and automated way of
configuration implementation into the final software system code.

1 Introduction

Business systems are functioning according to business rules in specific business
domain. Due to dynamic of its nature, business environment is changing frequently
according to internal and external influences such as changes in law, new competition
etc. [1]. However Business rules (BR) of particular problem domain are similar in
several organizations but they are never applied the same way even they depend on
the same legal regulations.
Production and implementation of such a software system into the large amount of
slightly different information systems of separate organizations challenge large
requirement conformity, project and specification management, design and
architecture complexity, produced code integration, compatibility and interoperability
problems through entire all the software system development lifecycle.
The complexity of slightly different application of the business rules on every specific
business system cause to chose from several alternative options:
− Splitting the source code line into the alternative paths, implementing specific

business requirements by redesigning models through all the entire layers (business
system, information system and software system layer) and producing separate
executable code;

− Design and implementation of modular software system architecture and
customization of the separate modules according to the customers needs;

− Implementation of all the possible variations of the same business rules application
into the software code and activation using specific parameter values for every
particular implementation;

Y. Ioannidis, B. Novikov and B. Rachev (Eds.): Local Proceedings of ADBIS 2007, pp. 27-37
© Technical University of Varna, 2007

− Change of business system according to constrains caused by particular
implementation of business rules hard coded into the software system.

Every solution proposed before has its own specific limitations. Separate code lines
result in dramatic usage of resources to manage the changes and are rarely used in
practice, unless it’s planed to split and develop separate software because of different
target market segments, pricing policy etc.
Modular architecture allows separation of core functionality and creation of separate
modules prepared for customization according to the customers needs, but it results
integration problems after core modules are renewed. Such upgrades often result
unacceptable risk, especially in case of business critical applications.
The solution based on configuration parameters require redesign of software system
code for every implementation of every different aspect of business rule
implementation according to the specific customer needs and redesign of the
configuration parameter storage or at least change of configuration values. In large
systems such configuration parameter set can grow dramatically and cause large
configurations and complicated management. Usually it is very difficult to follow the
meaning of every parameter and prevent duplication or contradicting settings that
result in unpredictable behaviour of the system.
The accommodation of business system according to the proposed software or
information system is the easiest way for developer, but the least acceptable for
business people, because of unpredictable influence of such a modification into the
business system efficiency, competitiveness and etc. This way is applied very rarely
and only partly changing business processes mostly critical for implementation.
The paper proposes new business rule based method of information system
configuration management and automated way of configuration implementation into
the final software system code using metamodel transformations.
The paper is structured as follows: Section 2 discusses related work, in Section 3 we
introduce decision table based rule model driven method for automated way of
configuration implementation into the final software system code using metamodel
transformations. In Section 4 we introduce current state of our research experimental
implementation. Finally we present our conclusions and discuss future research in
Section 5.

2. Related Work

A decision is a choice about a "course of action". A course of action may include
many individual actions. A decision may be characterized on a continuum from
unstructured to structured [7].
Rules can be graphically represented in multiple ways for usability purposes. Two
structures are primarily used: decision trees and decision tables (DTs). Rule engines
do not really care about the rule representation since either structure is compiled into
similar executable rule statements.
According to [4, 6] business rules are involved in capturing requirements and creating
business or information system model and stored in graphical specifications.
Although the main reason why business patterns or models are not reused without

28Business Rule Based Software System Configuration Management and Implementation ...

further manual interpretation is because the computation of a floating decimal number
remained in gross-to-net pay obviously did not remain the same even in two
installations in the same city. That means - design process does not eliminate or
control further manual transformation of the requirements and the final result usually
depends on the developer. Thereby by implementing the requirement in development
process the relations to the business rules are lost. The other problem is that the
meaning of the Business rule embedded in a graphical model can change already in
design process by involvement of new business rules represented by adding new
components and relations to the model. Such changes can result in contradictions and
incompleteness of business rule set.
The decision table formalism is not an isolated technique and shows a lot of interfaces
to other representation formalisms such as code, trees, rules, etc. Making good use of
these connections, however, is only possible through flexible computer support.
Therefore a variety of bridges have been built between the decision table workbench
and other representations, resulting in a large application domain for decision table
modelling [8]. Decision tables are context free. Unlike decision trees, no prior path
must be completed for the table to arrive at a decision. Only input values for the
necessary parameters along the axes are required. Decision tables are best used for a
consistent, but limited, set of parameters, where potentially a large number of possible
values persist for those parameters.
That is the main reason why we have selected DTs as the best solution for software
configuration embedded business rules used for process logic modifications according
to the business object condition represented by values of selected business object
attributes. However a table with many different parameters quickly becomes complex
which diminishes its usefulness as a simplification concept.
Whatever DTs is the technique used to visualize business rules (Decision table or tree
viewer), it is necessary to have a language which makes it possible to specify the
syntax and the semantics of the rules [8, 3]. We disagree with such a point of view
into the Decision table usage. We think that in some cases it’s a perfect solution for
BR specification interface design.
The business analysts or domain experts need to develop clear, precise and complete
business rules that represent real life business process logics and these processes need
to be logically robust as a software implementation. From the other side the
programmers use the same business rules, interpreted as software system functional
requirements that are later translated into a programming language that becomes part
of the application. Software development involved code writing covers every possible
combination of circumstances – user input, database transaction, or any other event –
that the program will encounter. When the programmer or analyst overlooks a
possible combination of inputs or events, the program will do things in unpredictable
way and produce unexpected results. Even worse are errors made by programmers
who do not fully understand the interaction between different options and their
combination. The automated implementation of the DTs represented rules into the
software system code would allow error prone solution of all the possible problems
like omitted, duplicated, or contradictioning conditions and inadequate
implementation.

29 Olegas Vasilecas and Aidas Smaizys

There are two main views in dynamic business rule driven software system design.
One of them is to design predefined executable processes and execute them by using
rules in software system, where processes and execution rules are derived from
business rules using transformations [5]. And other one discussed in our papers [10],
where business rules and facts describing current business system state are loaded into
inference engine of the software system and transformed into software system
executable data analysis process according to the results of logical derivations.
The authors in [2] say that „model translations can be specified in a truly generic way:
the source and the target metamodels are parameters of the entire procedure and
specify the operation of model translation as a special diagram operation well known
in category theory under the name of pull-back. At the heart of the approach is a
mapping between the two metamodels, which governs the entire translation
procedure“. We agree with the authors and have used similar approach for BR
transformation, although we have used XML based transformations as described in
[10]. This approach is used for automated generation of design models and final
software system components according to the method proposed in next section.

3. Decision table based method for formal business rule
representation and automated implementation

One part of a decision tables contains conditions that can be linked to create a rule,
and the other part contains actions that are related to the rules. Once you’ve defined
the rules, it’s possible using special editor to automatically analyze them, add missing
rules, and remove those that are redundant or contradictory.
In this paper we propose configuration management based on business system rules.
According to the framework presented in [11] business rules are captured in business
system usually interviewing business people, analyzing business processes, studying
documentation and legal regulations. Captured informal business rules are placed in
repository and transformed in to the information system rules using decision tables.
Decision tables are directly implemented into the software system database using
automated logical data model generator according to the method schema (Fig. 1.).
After that data model from DBMS is to be reverse engineered back into the software
system model and used for building business logic (BL) classes and data access (DA)
classes in the software system model allowing automated access and manipulation
from information or business system model, implementing business services for
processing business objects automatically into the separate software system module
(GUI executable) later on.

30Business Rule Based Software System Configuration Management and Implementation ...

Fig. 1. The method for automated business rule based configuration implementation.

3.1 Decision table based business system process rule specification and
representation

Business analysts often use decision tables to represent a particular set of
requirements, so replication of that structure in the rule engine reuses a familiar

31 Olegas Vasilecas and Aidas Smaizys

concept. Decision tables can quickly highlight where an outcome or decision is
missing. Each decision table should only make one particular type of determination.
Also, not all parameters have valid decision outcomes in all the cases.

1 Group
2 Sort V T P V T P V T P
1 P - X X - - X - X X
2 B X - - - - - X - -
1 NUMBERING1 X - - - - - - - -
2 NUMBERING2 - - - - - - X - -
3 NUMBERING3 - X X - - X - - -
4 NUMBERING4 - - - - - - - X X

Code 1 2 3 4 5 6 7 8 9

Ty
pe

getConfiguration(Group, Sort, Type, Numbering)
PER SEC AUT

N
um

be
rin

g

Rules

Condition

Conclusion1

Conclusion2

Condition
Label

A
bs

tr
ac

t S
ph

er
e

R
u
l
e C

on
cr

et
e

Sp
he

re

Fig. 2. Main DTs metamodel nodes

Figure (Fig. 2.) displays MOF/UML metamodel based rule set represented as decision
table that captures business rules used to represent business process model which
logics depends on the configuration parameters stored in the final software system.
Each condition is a logical formula that refers to the domain atoms and variables of
the rule set.

Business system object process rules & preconditions DTs:

1 Group
2 Sort V T P V T P V T P
1 B X - - - - - X - -
2 P - X X - - X - X X
1 NUMBERING1 X - - - - - - - -
2 NUMBERING2 - - - - - - X - -
3 NUMBERING3 - X X - - X - - -
4 NUMBERING4 - - - - - - - X X

Code 1 2 3 4 5 6 7 8 9

getConfiguration(Group, Sort, Type, Numbering)

N
um

be
rin

g

PER SEC AUT

Ty
pe

Rules

Rule representation for business system users:

1
2
3
4
5
6
7
8
9 IF Pass Group IS Auto AND Pass Sort IS Permanent THEN issue Pass Type Proximity AND use NUMBERING4

IF Pass Group IS Security AND Pass Sort IS Temporary THEN issue Pass is Not Available
IF Pass Group IS Security AND Pass Sort IS Permanent THEN issue Pass Type Proximity AND use NUMBERING3
IF Pass Group IS Auto AND Pass Sort IS Visitor THEN issue Pass Type BarCode AND use NUMBERING2
IF Pass Group IS Auto AND Pass Sort IS Temporary THEN issue Pass Type Proximity AND use NUMBERING4

IF Pass Group IS Person AND Pass Sort IS Visitor THEN issue Pass Type BarCode AND use NUMBERING1
IF Pass Group IS Person AND Pass Sort IS Temporary THEN issue Pass Type Proximity AND use NUMBERING3
IF Pass Group IS Person AND Pass Sort IS Permanent THEN issue Pass Type Proximity AND use NUMBERING3
IF Pass Group IS Security AND Pass Sort IS Visitor THEN issue Pass is Not Available

Fig. 3. Pass issue business process rules represented by Decision Table

The actual rules of the rule set are an ordered conjunction of conditions, such that a
rule contains at most one condition of each condition label. Notice that not every
conjunction of conditions is necessarily meaningful. In other words, it might be the
case that a specific condition is only meaningful in combination with other specific
conditions. In addition to conditions, a rule refers to one or more conclusions.

32Business Rule Based Software System Configuration Management and Implementation ...

Figure (Fig. 3.) presents an example of such a DTs used for security system Pass issue
process logic representation and (Fig. 4.) presents its subjects, properties and
variables. As displayed in rules the selection of numbering and type of the pass is
preceded according to the group and sort of the pass.

Subjects, properties, variables and values:

ID Code Name

1 PER Person
2 SEC Security
3 AUT Auto

1 V Visitor
2 T Temporary
3 P Permanent

1 B BarCode
2 P Proximity

ID Code StartFrom FinishOn Current

1 NUMBERING1 PB0001 PB9999 PB0000
2 NUMBERING2 AB0001 AB9999 AB0000
3 NUMBERING3 PP0001 PP9999 PP0000
4 NUMBERING4 AP0001 AP9999 AP0000

Pass used for one entrance and exit.

Pass issued using Proximity card
Pass issued using BarCode card

Entrance through automobile gates allowed
All security operations allowed
Entrance through pedestrian gates allowed

Description, processing requirements

N
um

be
rin

g

Pass used for unlimited access
Pass used for multiple acces for temporary periodSo

rt
Ty

pe
G

ro
up

Fig. 4. Pass issue process rule DTs subjects, properties, variables and values

We have used the especially produced DTs management software to allow addition of
the attributes for condition labels and conclusions for better understanding of the DTs
and generation of the configuration data tables and filling them with configuration
values. Next Section presents transformation of DTs rules into the Entity-Relationship
(ER) model.

3.2 Metamodel based transformation of Decision tables

We have used slightly modified MOF/UML DTs metamodel presented in [3] and
created similar ER metamodel. Such metamodels were used for specification of the
transformations needed to produce ER model from DTs created as described in
previous Section. Models represented in typed graphs were transformed into XSD
schemas and mapped according to the method described in [9]. All the mapping
functions were collected into XSLT transformation schema and the transformation
executed using XML parser. As a result of transformations we have got ER model
used for creation of the database and filling it with data entered in DTs using
generated SQL clauses.

33 Olegas Vasilecas and Aidas Smaizys

Fig. 5. The result of metamodel based DTs transformation into the ER model.

ER model was used for automated generation of the database using produced SQL
CREATE TABLE, JOIN and INSERT clauses to fill the data from DT’s. As the result
we have got database with value filled tables related according to the ER model
displayed in (Fig. 6.).

ID GroupCode SortCode TypeCode NumberingCode

1 PER V B NUMBERING1
2 PER T P NUMBERING3
3 PER P P NUMBERING3
4 SEC P P NUMBERING3
5 AUT V B NUMBERING2
6 AUT T P NUMBERING4
7 AUT P P NUMBERING4

C
on

fig
ur

at
io

n

Fig. 6. Example of produced business system object Pass Configuration Table

Generated database was used for business object processing automation presented in
next Section.

3.3 Business process automation and software system code generation

Because we have business process logics represented as DTs, data model in ER and
data values filled into the database it is possible the generation of information system
(IS) process code (Fig. 7.) in the software system (SS) according to the Information
processing rules (Fig. 1.) that allows generation of the business object processing
interface in business service tier and necessary classes in BL tier used for automation
of the collection and entity operations like save, get, delete, filter etc. The access to
the database is performed through generated DAO classes in DA tier according to the
data processing rules stored in Template.

34Business Rule Based Software System Configuration Management and Implementation ...

'Generated Software system Business service tier GUI Business object processing Form code
001 Imports BL.CollectionClasses
002 Imports BL.EntityClasses
003 Imports BL.FieldClasses
004 Public Class frmPassEdit
005 Inherits System.Windows.Forms.Form
006 Private _PassEntity As PassEntity

...
007 Me.cbGroup.DataSource = GroupCollection()
008 Me.cbGroup.ValueMember = GroupFields.Code.Alias.ToString()
009 Me.cbGroup.DisplayMember = GroupFields.Name.Alias.ToString()

…
010 Private Sub btnSave_Click _
011 (ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnSave.Click
012 Dim Pass As PassEntity
013 Dim Numbering As String
014 Dim Err As Boolean = ConfigurationEntity.getConfiguration _
015 (cbGroup.SelectedValue, cbSort.SelectedValue, Pass.Type, Numbering)
016 If Err then Exit Sub
017 lblType.Text = Pass.Type.Name 'Get Pass Type Name through Entity relations in BL
018 Pass.Number = NumberingEntity.getNumber(Numbering)
019 Pass.Save
020 End Sub
021 End Class

'Generated Software system Business logic tier code using ER model
021 Imports DA.DaoClasses
022 Namespace BL.EntityClasses
023 Public Class ConfigurationEntity

...
024 Public Shared Function getConfiguration _
025 (ByVal Group As String, ByVal Sort As String, _
026 ByRef Type As String, ByRef Numbering As String) As Boolean
027 Dim Configuration As ConfigurationEntity = GetConfigurationEntity(Group, Sort)
028 If IsNothing(Configuration) Then Return False
029 Type = Configuration.Type
030 Sort = Configuration.Sort
031 Return True
032 End Function
033 End Class
034 End Namespace

Fig. 7. Pass issue process SS code in Basic generated from ER model and DTs

The code provides interface for business object “Pass” processing. We displayed an
example of code used to save the “Pass” data. Because Type and Numbering of the
“Pass” is based on Configuration – procedure code (lines 14 - 15) selects
Configuration data according to the Group and Sort combo boxes in PassEdit Form.
Group and Sort combo boxes are created (lines 7 - 9) using Collection and Field
classes generated in BL tier. The Function getConfiguration is stored in BL tier and
returns false if there is no configuration records available for selected preconditions.
If configuration is available the function sets Type and Numbering values returned
into the Form (lines 29 – 30). Configuration data is got from database using function
getConfigurationEntity in DA tier and uses generated DaoClasses to get data from
database (line 27).

35 Olegas Vasilecas and Aidas Smaizys

4. Experimental evaluation of the method

The proposed method was used for development of automated security system used
for transport and visitor control and access data exchange system in sea port.
According to the proposed method we have collected informal business rules used for
access restrictions and regulations and transformed them according to the proposed
method presented in Section 3 into the formal decision rules in information system
layer.
Such decision tables were implemented directly into the software system database and
used for automated software system code generation producing separate parts of the
software code allowing implementation of the business rules logics and automated
software built decisions according to the parameters filled into the previously built
database used as configuration storage.
We have experienced that such decision tables are very common and well understood
by system engineers, but difficult to read for business users. So we designed
transformations used to extract business rules implemented into Software system
Configuration according to the currently entered configuration parameter values and
represent them in plain text.
The same decision tables where used for transformation into the Horn clauses, used as
logical control code uploaded into the security system controllers.

5. Conclusions

In this paper, we have set out for using a business rule model stored in decision tables
to represent the semantics of domain specific business object attribute values
dependent process logics and created a method that allows automated implementation
of them into the configuration of the N-tier architecture based software system and
process code.
In particular, we have shown that Decision tables usually used as business rule
visualization technique are applicable for business rule specification.
The proposed method of automated software configuration implementation allows
changes of process logic by changing configuration values directly in the software
system and is limited only by data model implemented into the database, because if
such modifications will be needed it should be produced all the automated
reengineering process starting from the changes of DTs rules adding new conditions
and conclusions and finishing with application of automated transformations.
All the limitations of the DTs belong to the proposed method too and should be
solved using other engineering methods.
At the moment we are continuing our research in the following directions. First of all,
we are working on information processing rule templates for the validation of
business object entities and their attributes in the software system business logic and
service tier. In addition we envision extension of the presented method, metamodels,
transformations and templates to allow automated incorporation of business rules
used for validation into the generated software code.

36Business Rule Based Software System Configuration Management and Implementation ...

References

1. Barbara von Hale, Business Rules Applied: Building Better Systems Using the Business
Rules Approach. John Wiley & Sons, Inc., New York, 2001.

2. Diskin Z., Dingel J., A metamodel independent framework for model transformation:
Towards generic model management patterns in reverse engineering // Proceedings of the
3rd International Workshop on Metamodels, Schemas, Grammas and Ontologies for reverse
engineering (ATEM-2006), 2006, pp. 55-66.

3. Goedertier S., Vanthienen J., Rule-based business process modeling and execution //
Proceedings of the International IEEE EDOC Workshop on Vocabularies, Ontologies and
Rules for The Enterprise (VORTE 2005), 2005, pp. 67-74.

4. Kilov H., Simmonds I., Business patterns: reusable abstract constructs for business
specification. Implementing Systems for Supporting Management Decisions: Concepts,
methods and experiences, Edited by Patrick Humphreys et al, Chapman and Hall, 1996, pp.
225-248.

5. Orriens B., Yang J., Papazoglou M. P., A Framework for Business Rule Driven Service
Composition. // Proceedings of the Fourth International Workshop on Conceptual Modeling
Approaches for e-Business Dealing with Business Volatility, Chicago, United States,
October 13-16, 2003. Lecture Notes on Computer Science, Springer-Verlag, Berlin,
Germany.

6. Orriens B., Yang J., Model driven service composition // Proceedings of the First
International Conference on Service Oriented Computing, Trento, Italy, December 15-18,
2003.

7. Simon H. A., The new science of management decision, Prentice Hall PTR, 1977.
8. Vanthienen J., Ruling the Business: About Business Rules and Decision tables.

Vandenbulcke J., Snoeck M. (eds.): New Directions in Software Engineering, Leuven
University Press, Leuven, 2001, pp. 103–120.

9. Vasilecas O., Smaizys A., Business rule specification and transformation for rule based
data analysis // Proceedings of 19th International Conference on Systems for Automation of
Engineering and Research (SAER 2005), Sofia: CAD Research and Development Centre
"Progress", 2005, pp. 35-40.

10. Vasilecas O., Smaizys A., Business rule based data analysis for decision support and
automation, International Conference on Computer Systems and Technologies -
CompSysTech'06, 2006, pp. II.9-1-II.9-6.

11. Vasilecas O., Smaizys A., The framework for business rule based software modeling: An
approach for data analysis models integration. Databases and Information Systems IV, vol.
155 Frontiers in Art, IOS Press, Amsterdam, 2007, pp. 175-188.

37 Olegas Vasilecas and Aidas Smaizys

