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Abstract. In this paper we present our approach for extending the OLAP model 

to include treatment of value uncertainty as part of a multidimensional model 

inhabited by flexible data and non-rigid hierarchical structures of organisation. 

A new multidimensional-cubic model named as the IF-Cube is introduced 

which is able to operate over data with imprecision either in the facts or in the 

dimensional hierarchies.  

1. Introduction 

In this paper we introduce the semantics of the Intuitionistic Fuzzy cubic 

representation in contrast to the basic multidimensional-cubic structures. The basic 

cubic operators are extended and enhanced with the aid of [1], [2] Intuitionistic Fuzzy 

Logic. 

Since the emergence of the OLAP technology [3] different proposals have been 

made to give support to different types of data and application purposes.  One of this 

is to extend the relational model (ROLAP) to support the structures and operations 

typical of OLAP. Further approaches [4], [5] are based on extended relational systems 

to represent data-cubes and operate over them.  The other approach is to develop new 

models using a multidimensional view of the data [6].  

Nowadays, information and knowledge-based systems need to manage imprecision 

in the data and more flexible structures are needed to represent the analysis domain. 

New models have appeared to manage incomplete datacube [7], imprecision in the 

facts and the definition of fact using different levels in the dimensions [8]. 

2.  Semantics of the IF-Cube in contrast to Crisp Cube 

Each element of an Intuitionistic fuzzy [1], [2] set has degrees of membership or 

truth  (µ) and non-membership or falsity (ν), which don’t sum up to 1.0 thus leaving a 

degree of hesitation margin (π). 

Y. Ioannidis, B. Novikov and B. Rachev (Eds.): Local Proceedings of ADBIS 2007, pp. 50-55
© Technical University of Varna, 2007



As opposed to the classical definition of a fuzzy set  given by A′ = {< x, µA′(x) > |x 

∈ X} where µA(x) ∈ [0, 1] is the membership function of the fuzzy set A′, an 
intuitionistic fuzzy set  A is given by: 

A = {< x, µA(x),vA(x) > |x ∈ X} 
where: µA : X → [0, 1] and vA : X → [0, 1] such that 0≤ µA(x) + vA(x)≤1 and µA(x) 

vA(x) ∈  [0, 1] denote a degree of membership and a degree of non-membership of x 

∈ A, respectively. 
Obviously, each fuzzy set may be represented by the following Intuitionistic fuzzy 

set     A={<x, µA′ (x), (x), 1− µA′ (x)>|x ∈ X} 

For each intuitionistic fuzzy set in X, we will call πA (x) = 1 − µA(x) − vA(x) an 

intuitionistic fuzzy index (or a hesitation margin) of x ∈ A which expresses a lack of 

knowledge of whether x belongs to A or not. For each x ∈ A 0<πA (x)<1. 
The IF-Cube is an abstract structure that serves as the foundation for the 

multidimensional data cube model. Cube C is defined as a five-tuple (D, l, F, O, H) 
where: 

• D is a set of dimensions 
• l  is a set of levels l1,…, ln, 
• A dimension di = (l ≤ O, l┴, l┬)  dom(di) where l = li i=1...n.     

li is a set of values and li ∩ lj = {}, 
 ≤ O is a partial order between the elements of l. 
To identify the level l of a dimension, as part of a hierarchy we use dl. 

   l┴: base level l┬: top level 
  for each pair of levels li and lj we have the relation  
  µij : li × lj � [0,1]    νij : li × lj � [0,1]   0 < µij + νij < 1 
• F  is a set of fact instances with schema F = {<x, µF(x) , νF(x)>| x∈ X }, 

where x=<att1, …,attn> is an ordered tuple belonging to a given universe X,   
µF(x) and νF(x)  are the degree of membership and non-membership of x in 
the fact table F respectively. 

• H  is an object type history that corresponds to a cubic structure( l, F, O, H′ ) 
which allows us to trace back the evolution of a cubic structure after 

performing a set of operators i.e. aggregation.  

3. Cubic operators 

Selection (Σ): The selection operator selects a set of fact-instances from a cubic 
structure that satisfy a predicate (θ). A predicate (θ) involves a set of atomic 

predicates (θ1, …, θn )  associated with the aid of logical operators p ( i.e. ∧, ∨, etc.) . 
The set of possible facts (cubic instances) that satisfy the θ  should carry a degree of 
membership µ and non-membership ν expressed as  

F = {<x, min(µF(x), µ(θ (x))), max(νF(x), ν(θ (x))))> | x∈ X }   

Input:      Ci =  (D, l, F, O, H) and the predicate θ  
Output:   Co= (D, l, Fo , O, H) where Fo⊆  F and Fo={f | (f ∈F)∧ (f satisfies θ) 
Mathematical notation:      ( )i oC C

θ
=∑  
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Cubic Product (⊗ ):  This is a binary operator Ci1 ⊗  Ci2 . It is used to relate two 
cubes Ci1 and Ci2 assuming that D1 ⊆  D2  and  O1 , O2  are reconcilable partial orders. 

Thus, l1, l2 could lead to lo  being a ragged hierarchy.  
Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2,l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) where  

         Do= D1 ∪ D2 ,   lo= l1 ∪ l2, Oo= O1 ∪ O2    Ho= H1 ∪ H2, Fo= F1 X F2 
             Fo ={<<x, y>, min(µf1(x), µf2(y)), max(νf1(x), νf2(y),)>|<x, y>∈  X×Y}  

Mathematical notation: Ci1 ⊗  Ci2 = Co 

Join (Θ): It can be expressed using Cubic Product operator. Ci1 = (D1, l1, F1, O1, 
H1)) and Ci2 = (D2 ,l2, F2, O2, H2) are candidates to join if D1 ∩ D2 ≠ 0, 

Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2,l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) 
Mathematical notation: Ci1 Θ Ci2 = σp(Ci1 ⊗  Ci2) 
Union (∪∪∪∪): The union operator is a binary operator that finds the union of two 

cubes. Ci1 and Ci2 have to be union compatible. The operator also coalesces the value-

equivalent facts using the minimum membership and maximum non-membership.  

Input:  Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2,l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) where Do=D1=D2, lo=l1=l2, Oo=O1=O2, Ho=H1=H2, 
Fo= F1 ∪ F2  = { < x, max(µF1 (x), µF2(x)), min(νF1(x),νF2(x)) > | x ∈ X } 
Mathematical notation: Ci1 ∪ Ci2 = Co 
Difference (-):. The difference operator removes the portion of the cube Ci1 that is 

common to both cubes. Ci1 and Ci2 have to be union compatible 

Input:   Ci1 = (D1, l1, F1, O1, H1) and Ci2 = (D2, l2, F2, O2, H2) 
Output: Co= (Do, lo, Fo, Oo, Ho) where Do=D1=D2, lo=l1=l2, Oo=O1=O2, Ho=H1=H2,    

Fo= F1 ∩ F2 = { < x, min(µF1(x),µF2(x)), max(νF1(x),νF2(x)) > | x ∈ X } 
Mathematical notation: Ci1 – Ci2 = Co 

Aggregation (A): An aggregation operator A is a function A(G) where G = {<x, 
µF(x) , νF(x)>| x∈ X }  where x=<att1, …,attn> is an ordered tuple belonging to a 
given universe X, {att1, …, attn} is the set of attributes of the elements of X,  µF(x) and 
νF(x)  are the degree of membership and non-membership of x. The result is a bag of 
the type {<x′, µF(x′) , νF(x′)>| x′∈ X }. To this extent, the bag is a group of elements 
that can be duplicated and each one has a degree of µ and ν.  

Input:  Ci =  (D, l, F, O, H) and the function A(G) 
Output: Co =  (D, lo, Fo , Oo , Ho) 
The definition of the extended group operators allows us to define the extended 

group operators Roll up (∆∆∆∆), and Roll Down (Ω). 
Roll up (∆∆∆∆): The result of applying Roll up over dimension di at level dlr using the 

aggregation operator A over a datacube Ci = (Di ,li ,Fi , O , Hi ) is another datacube  
Co = (Do ,lo ,Fo , O , Ho ). 
Input:       Ci = (Di ,li ,Fi , O , Hi ) 
Output:   Co = (Do ,lo ,Fo , O , Ho )     
         

An object of type history is a recursive structure H =  
 

 

 

 

ω  is the initial state of the cube 
 

(l, D, A, H’)  is the state of the    
cube after performing an 

operation on the cube 

52Imprecise Data and Knowledge Based OLAP



The structured history of the datacube allows us to keep all the information when 

applying Roll up and get it all back when Roll Down is performed. To be able to apply 
the operation of Roll Up we need to make use of the IFSUM  aggregation operator.  
Roll Down (Ω): This operator performs the opposite function of the Roll Up 

operator. It is used to roll down from the higher levels of the hierarchy with a greater 

degree of generalization, to the leaves with the greater degree of precision. The result 

of applying Roll Down over a datacube Ci = (D, l, F, O, H) having H=( l’, D’, A’, H’ ) 
is another datacube Co= (D’, l’, F’, O, H’). 
Input:  Ci=(D, l, F, O, H)  
Output:  Co=(D’,l’, F’, O, H’) where F’ � set of fact instances defined by operator A. 
To this extent, the Roll Down operative makes use of the recursive history structure 

previously created after performing the Roll Up operator. 
 The definition of aggregation operator points to the need of defining the IF 

extensions for traditional group operators [9], [10], [11] such as SUM, AVG, MI? and 
MAX. Based on the standard group operators, we provide their IF extensions and 
meaning. 
IFSUM : The IFsum aggregate, like its standard counterpart, is only defined for 

numeric domains. Given a fact F defined on the schema X (att1, …,attn), let attn-1 
defined on the domain U={u1 , …, un ). The fact F consists of fact instances Fi with 1 
≤  i ≤  m. The fact instances Fi are assumed to take Intuitionistic Fuzzy values for the 

attribute attn-1 for i = 1 to m  we have Fi[attn-1] = {<µi(uki), νi(uki)>/ uki | 1 ≤ ki  ≤ n } . 
The IFsum of the attribute attn-1 of the fact table F is defined by: 

IFSUM((attn-1)(F)) =  

{<u>/ y | (( u= m
i 1min = (µi(uki), νi(uki)) ∧ (y = ∑ =

km

kki kiu
1

) (∀ k1, …km : 1 ≤ k1, …km ≤ n))} 

IFAVG : The IFAVG aggregate, like its standard counterpart, is only defined for 

numeric domains. This aggregate makes use of the IFSUM that was discussed 
previously and the standard COU?T.  The IFAVG  can be defined as: 

      IFAVG((attn-1)(F) = IFSUM((attn-1)(F)) / COU?T((attn-1)(F)) 
IFMAX : The IFMAX aggregate, like its standard counterpart, is only defined for 

numeric domains. The IFsum of the attribute attn-1 of the fact table F is defined by: 
IFMAX((attn-1)(F)) =  

{<u>y|((u= m
i 1min =
(µi(uki),νi(uki))∧(y= m

i 1max =
(µi(uki),νi(uki)))(∀k1,…km :1≤k1,…km≤ n))} 

IFMI) : The IFMI? aggregate, like its standard counterpart, is only defined for 

numeric domains. Given a fact F defined on the schema X (att1, …,attn), let attn-1 
defined on the domain U={u1 , …, un ). The fact F consists of fact instances fi with 1 ≤  
i ≤  m. The fact instances fi are assumed to take Intuitionistic Fuzzy values for the 
attribute attn-1 for i = 1 to m  we have fi[attn-1] = {<µi(uki), νi(uki)>/ uki | 1 ≤ ki  ≤ n } . 
The IFsum of the attribute attn-1 of the fact table F is defined by: 

IFMI?((attn-1)(F)) =  
{<u>/ y|(( u= m

i 1min =
(µi(uki),νi(uki))∧(y= m

i 1min =
(µi(uki),νi(uki)))(∀k1,…km :1≤ k1,…km≤ n))} 

We can observe that the IFMI? is extended in the same manner as IFMAX aggregate 

except for replacing the symbol max in the IFMAX definition with min. 
Once we have defined our Intuitionistic Fuzzy multidimensional model and have 

defined the IF cubic-algebra, the concept of knowledge based OLAP is introduced.  

53 Ermir Rogova, Panagiotis Chountas and Krassimir Atanassov



4.  The Case for Knowledge Based OLAP-K,OLAP 

Let us consider the Intuitionistic fuzzy set M defined as: {Milk<0.8,0.1>, Whole-

Milk<0.7,0.1>, Condensed-Milk<0.4,0.3>}} which is presented in “Fig.1”. Then the 

next step is to calculate the <µ, ν> values for “Pasteurized milk”, “Whole Pasteurized milk 
” and “Condensed whole milk.” 

• If the hierarchical IF structure expresses preferences in a query, the choice of the 

maximum values for µ and minimum value ν from the pairs of values <µ, ν> 
from the parent elements to the sub elements allows us not to exclude any 

possible answer (high possibility necessity degrees). In real cases, the lack of 

answers to a query generally makes this choice preferable, because it consists of 

widening the query answer rather than restricting it.  

• If the hierarchical IF represents an ill-known concept, the choice of the maximum 

value for µ and minimum value ν allows us to preserve all the possible values, 
but it also makes the answer less specific. In a way, it also participates in 

enlarging the query, as a less specific datum may share more common values 

with the query (the possibility degree of matching can thus be higher, although 

the necessity degree can decrease). 

 

Fig. 1.  “IF Hierarchy ‘Milk’ ” Fig. 2.  “Fully weighted Hierarchy ‘Milk’ “ 

“Fig.2” is a fully weighted Hierarchy after applying the maximum values for µ and 

minimum value ν from the pairs of values <µ, ν> from the parent elements to the sub 
elements, i.e. from (whole-milk, condensed-milk) to (condensed-whole-milk), from (milk) 

to (pasteurized milk), and from (whole-milk, pasteurized milk) to (pasteurized-whole-

milk). 

The complete study of the hierarchical IF requires the formal definition of the IF 

hierarchical closure. We will further need to formally define the containment of an IF 

hierarchical set to another.  

5.  Conclusions 

In this paper we have presented a new multidimensional-cubic model named as 

the IF-Cube. The main contribution of this new model is that is able to operate over 

data with imprecision in the facts and the summarisation hierarchies. Classical 

Milk

<0.8, 0.1>

Whole milk

<0.7, 0.1>

Condensed whole milk

Pasteurized milk Condensed milk

<0.4, 0.3>

Whole pasteurized milk

Milk

<0.8, 0.1>

Whole milk

<0.7, 0.1>

Condensed whole milk

Pasteurized milk Condensed milk

<0.4, 0.3>

Whole pasteurized milk

Milk

<0.8, 0.1>
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Condensed whole milk
<0.7, 0.1>

Pasteurized milk
<0.8, 0.1>

Condensed milk

<0.4, 0.3>

Whole pasteurized milk
<0.8, 0.1>
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models imposed a rigid structure that made the models present difficulties when 

merging information from different but still reconcilable sources. We introduce the 

automatic recommendation of analysis according to the context of users’ explorations 

in order to guide the decision making with the aid of Intuitionistic fuzzy set over a 

universe that has a hierarchical structure and the corresponding hierarchies.  

There is finally a need to formally define the closure of Intuitionistic fuzzy set over 

a universe that has a hierarchical structure as well the containment between different 

versions of these sets.  
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